Integer Programming and IP Proof Systems

Noah Fleming University of California, San Diego

Input: set of linear inequalities $Ax \ge b$

Input: set of linear inequalities $Ax \ge b$

Which defines a polytope $P = \{x : Ax \ge b\}$

Input: set of linear inequalities $Ax \ge b$ linear objective function cx

- **Input:** set of linear inequalities $Ax \ge b$ linear objective function cx
- **Output:** Solution Satisfying Maximizing
- $z \in \mathbb{R}^n$ $Az \geq b$ CZ

- **Input:** set of linear inequalities $Ax \ge b$ linear objective function cx
- **Output:** Solution Satisfying Maximizing
- $z \in \mathbb{R}^n$ $Az \geq b$ CZ

- **Input:** set of linear inequalities $Ax \ge b$ linear objective function CX
- $z \in \mathbb{R}^n$ **Output:** Solution $Az \geq b$ Satisfying Maximizing CZ
- Broadly applicable framework for optimization.
- Efficiently solvable!

- **Input:** set of linear inequalities $Ax \ge b$ linear objective function cx
- $z \in \mathbb{R}^n$ **Output:** Solution $Az \geq b$ Satisfying Maximizing CZ
- Broadly applicable framework for optimization.
- Efficiently solvable! 0

However, many important problems phrased most naturally as finding integer solutions to a linear program • e.g. maxCut, maxSAT, maxClique, etc.

Integer Programming (IP) CX **Input:** set of linear inequalities $Ax \ge b$ \bigcirc \bigcirc \bigcirc linear objective function cx \bigcirc \bigcirc **<u>Output:</u>** Integer solution $z \in \mathbb{Z}^n$ $Az \geq b$ Satisfying \bigcirc Maximizing \bigcirc \bigcirc CZ \bigcirc \bigcirc

Integer Programming (IP) CX **Input:** set of linear inequalities $Ax \ge b$ \bigcirc \bigcirc \bigcirc linear objective function cx \bigcirc \bigcirc **<u>Output:</u>** Integer solution $z \in \mathbb{Z}^n$ $Az \geq b$ Satisfying Maximizing \bigcirc \bigcirc \bigcirc CZ \bigcirc \bigcirc

Integer Programming (IP) CX **Input:** set of linear inequalities $Ax \ge b$ \bigcirc \bigcirc \bigcirc linear objective function cx \bigcirc \bigcirc **<u>Output:</u>** Integer solution $z \in \mathbb{Z}^n$ $A_z \geq b$ Satisfying \bigcirc Maximizing \bigcirc \bigcirc CZ \bigcirc \bigcirc

Extremely general framework! ... but **NP**-complete.

Integer Programming (IP)

Nonetheless, Integer programs are solved extremely fast in practice!

Integer Programming (IP)

Nonetheless, Integer programs are solved extremely fast in practice!

How? Branch-and-Cut!

Idea: Try to use linear programming to solve integer programming!

dea: Try to use linear programming to solve integer programming!

Run a linear program

- dea: Try to use linear programming to solve integer programming!
- Run a linear program
- If solution is integral, **done**!

Idea: Try to use **linear** programming to solve **integer** programming!

Run a linear program

- If solution is integral, **done**!
- Otherwise, refine the polytope until an integer solution can be found by linear programming

dea: Try to use **linear** programming to solve integer programming!

Run a linear program

- If solution is integral, **done**!
- Otherwise, **refine** the polytope until an integer solution can be found by linear programming
 - \rightarrow remove non-integer solutions by adding additional constraints to P

dea: Try to use **linear** programming to solve integer programming!

Run a linear program

- If solution is integral, **done**!
- Otherwise, **refine** the polytope until an integer solution can be found by linear programming
 - \rightarrow remove non-integer solutions by adding additional constraints to P

Remove this point so **better** solutions can be found!

dea: Try to use **linear** programming to solve integer programming!

Run a linear program

- If solution is integral, **done**!
- Otherwise, **refine** the polytope until an integer solution can be found by linear programming
 - \rightarrow remove non-integer solutions by adding additional constraints to P
- Recuse

Remove this point so **better** solutions can be found!

Branch-and-Cut has two ways of **removing noninteger points** from P:

- 1. DPLL-style branching on linear inequalities
- 2. Cutting planes

Branch-and-Cut has two ways of **removing noninteger points** from P:

- 1. DPLL-style branching on linear inequalities
- 2. Cutting planes

Branching — "Break *P* up into subpolytopes"

Branch-and-Cut has two ways of **removing noninteger points** from P:

- 1. DPLL-style branching on linear inequalities
- 2. Cutting planes

Branching — "Break *P* up into subpolytopes"

1. Heuristically choose an integer-linear inequality $ax \ge b$

- Branch-and-Cut has two ways of removing noninteger points from *P*:
- DPLL-style branching on linear inequalities
- **Cutting planes** 2.
- **Branching** "Break *P* up into subpolytopes"
- Heuristically choose an integer-linear inequality $ax \ge b$
- 2. Break P into $P \cap \{ax \ge b\}$ and $P \cap \{ax \le b 1\}$

- Branch-and-Cut has two ways of removing noninteger points from *P*:
- DPLL-style branching on linear inequalities
- **Cutting planes** 2.
- **Branching** "Break *P* up into subpolytopes"
- Heuristically choose an integer-linear inequality $ax \ge b$
- 2. Break P into $P \cap \{ax \ge b\}$ and $P \cap \{ax \le b 1\}$

- Branch-and-Cut has two ways of removing noninteger points from *P*:
- DPLL-style branching on linear inequalities
- **Cutting planes** 2.
- **Branching** "Break *P* up into subpolytopes"
- Heuristically choose an integer-linear inequality $ax \ge b$
- 2. Break P into $P \cap \{ax \ge b\}$ and $P \cap \{ax \le b 1\}$

- Branch-and-Cut has two ways of **removing noninteger points** from P:
- 1. DPLL-style branching on linear inequalities
- 2. Cutting planes
- **Branching** "Break *P* up into subpolytopes"
- 1. Heuristically choose an integer-linear inequality $ax \ge b$
- 2. Break *P* into $P \cap \{ax \ge b\}$ and $P \cap \{ax \le b 1\}$

- Branch-and-Cut has two ways of **removing noninteger points** from P:
- 1. DPLL-style branching on linear inequalities
- 2. Cutting planes
- **Branching** "Break *P* up into subpolytopes"
- 1. Heuristically choose an integer-linear inequality $ax \ge b$
- 2. Recurse on $P \cap \{ax \ge b\}$ and $P \cap \{ax \le b 1\}$

Branch-and-Cut has two ways of **removing noninteger points** from P:

- 1. DPLL-style branching on linear inequalities
- 2. Cutting planes

<u>Cutting Planes</u> – "Remove corners of *P*"

Branch-and-Cut has two ways of **removing noninteger points** from P:

- 1. DPLL-style branching on linear inequalities
- 2. Cutting planes

<u>Cutting Planes</u> – "Remove corners of *P*"

1. Choose an integer-linear inequality $ax \ge b$, and $d \in \mathbb{Z}^{\ge 0}$ s.t. every point in *P* satisfies $ax \ge b$ and *d* divides *a*

- Branch-and-Cut has two ways of **removing noninteger points** from P:
- 1. DPLL-style branching on linear inequalities
- 2. Cutting planes

Cutting Planes – "Remove corners of *P*"

- 1. Choose an integer-linear inequality $ax \ge b$, and $d \in \mathbb{Z}^{\ge 0}$ s.t. every point in P satisfies $ax \ge b$ and d divides a
- 2. Add $(a/d)x \ge \lceil b/d \rceil$

- Branch-and-Cut has two ways of **removing noninteger points** from P:
- 1. DPLL-style branching on linear inequalities
- 2. Cutting planes

Cutting Planes — "Remove corners of *P*"

- 1. Choose an integer-linear inequality $ax \ge b$, and $d \in \mathbb{Z}^{\ge 0}$ s.t. every point in *P* satisfies $ax \ge b$ and *d* divides *a* (*a*/*d*)
- 2. Add $(a/d)x \ge \lceil b/d \rceil$

- Branch-and-Cut has two ways of **removing noninteger points** from P:
- 1. DPLL-style branching on linear inequalities
- 2. Cutting planes

Cutting Planes — "Remove corners of *P*"

- 1. Choose an integer-linear inequality $ax \ge b$, and $d \in \mathbb{Z}^{\ge 0}$ s.t. every point in P satisfies $ax \ge b$ and d divides a (a/d)
- 2. Add $(a/d)x \ge \lceil b/d \rceil$ Preserv

Preserves integer points in P

- Branch-and-Cut has two ways of **removing noninteger points** from P:
- 1. DPLL-style branching on linear inequalities
- 2. Cutting planes

Cutting Planes — "Remove corners of *P*"

- 1. Choose an integer-linear inequality $ax \ge b$, and $d \in$ s.t. every point in P satisfies $ax \ge b$ and d divides a
- 2. Add $(a/d)x \ge \lceil b/d \rceil$ Preserv

today applies to them as well

Idea: Try to use linear programming to solve integer programming!

Branch and Cut Template

- 1. Solve the linear program.
- 2. If solution z is non-integral, refine polytope by:
 - i) Branching.
 - ii) Cutting.
- 3. Repeat.

Idea: Try to use **linear** programming to solve integer programming!

Branch and Cut Template

- 1. Solve the linear program.
- 2. If solution z is non-integral, refine polytope by:
 - Branching. **i**)
 - Cutting.
- 3. Repeat.

Idea: Try to use **linear** programming to solve integer programming!

- 1. Solve the linear program.
- If solution z is non-integral, refine polytope by:
 - Branching. **i**)
 - Cutting.
- 3. Repeat.

Idea: Try to use linear programming to solve integer programming!

- 1. Solve the linear program.
- 2. If solution z is non-integral, refine polytope by:
 - i) Branching.
 - ii) Cutting.
- 3. Repeat.

Idea: Try to use linear programming to solve integer programming!

- 1. Solve the linear program.
- 2. If solution z is non-integral, refine polytope by:
 - i) Branching.
 - ii) Cutting.
- 3. Repeat.

Idea: Try to use linear programming to solve integer programming!

- 1. Solve the linear program.
- 2. If solution z is non-integral, refine polytope by:
 - i) Branching.
 - ii) Cutting.
- 3. Repeat.

Idea: Try to use linear programming to solve integer programming!

- 1. Solve the linear program.
- 2. If solution z is non-integral, refine polytope by:
 - i) Branching.
 - ii) Cutting.
- 3. Repeat.

Idea: Try to use linear programming to solve integer programming!

- 1. Solve the linear program.
- 2. If solution z is non-integral, refine polytope by:
 - i) Branching.
 - ii) Cutting.
- 3. Repeat.

Idea: Try to use linear programming to solve integer programming!

- 1. Solve the linear program.
- 2. If solution z is non-integral, refine polytope by:
 - i) Branching.
 - ii) Cutting.
- 3. Repeat.

Idea: Try to use linear programming to solve integer programming!

- 1. Solve the linear program.
- 2. If solution z is non-integral, refine polytope by:
 - i) Branching.
 - ii) Cutting.
- 3. Repeat.

Idea: Try to use linear programming to solve integer programming!

- 1. Solve the linear program.
- 2. If solution z is non-integral, refine polytope by:
 - i) Branching.
 - ii) Cutting.
- 3. Repeat.

Formalizing Modern IP Solvers

[Chvatal73] Introduced the **Cutting Planes** proof system to formalize cutting planes algorithms.

Formalizing Modern IP Solvers

[Chvatal73] Introduced the **Cutting Planes** proof system to formalize cutting planes algorithms.

Only captures the cutting part of branch-and-cut, not branching.

Formalizing Modern IP Solvers

[Chvatal73] Introduced the **Cutting Planes** proof system to formalize cutting planes algorithms.

- Only captures the cutting part of branch-and-cut, not branching.
- Even so, it is an important and heavily studied proof system!

Cutting Planes Proofs Suppose $Ax \ge b$ has no integer solutions

Suppose $Ax \ge b$ has **no integer solutions**

Analogous to running DPLL on unsatisfiable CNF

Suppose $Ax \ge b$ has **no integer solutions**

 \rightarrow **Prove** this fact using cutting planes!

Suppose $Ax \ge b$ has no integer solutions \rightarrow **Prove** this fact using cutting planes!

Rules

Derive new integer-inequalities from old ones by:

• Non-negative linear Combination:

$$ax \ge b, cx \ge d$$

$$(\alpha a + \beta c)x \ge \alpha b + \beta d'$$

Suppose $Ax \ge b$ has **no integer solutions** \rightarrow **Prove** this fact using cutting planes!

Rules

Derive new integer-inequalities from old ones by:

• Non-negative linear Combination:

$$ax \ge b, cx \ge d$$

$$(\alpha a + \beta c)x \ge \alpha b + \beta d'$$

Suppose $Ax \ge b$ has **no integer solutions** \rightarrow **Prove** this fact using cutting planes!

Rules

Derive new integer-inequalities from old ones by:

• Non-negative linear Combination:

$$ax \ge b, cx \ge d$$

$$(\alpha a + \beta c)x \ge \alpha b + \beta d'$$

Suppose $Ax \ge b$ has no integer solutions \rightarrow **Prove** this fact using cutting planes!

Rules

Derive new integer-inequalities from old ones by:

Non-negative linear Combination: Ο

 $ax \ge b, \ cx \ge d$ $(\alpha a + \beta c)x \ge \alpha b + \beta d$

Preserves all points in P

Suppose $Ax \ge b$ has **no integer solutions** \rightarrow **Prove** this fact using cutting planes! **Rules**

Derive new integer-inequalities from old ones by:

• Non-negative linear Combination:

$$(\alpha a + \beta c)x \ge \alpha b + \beta d'$$

ax > b. cx > d

• Cut:

$$\frac{ax \ge b}{(a/d)x \ge \lceil b/d \rceil}, \text{ if } d \in \mathbb{Z}^{\ge 0}$$

) divides a

Suppose $Ax \ge b$ has **no integer solutions** \rightarrow **Prove** this fact using cutting planes! **Rules**

Derive new integer-inequalities from old ones by:

• Non-negative linear Combination:

$$(\alpha a + \beta c)x \ge \alpha b + \beta d'$$

ax > b. cx > d

• Cut:

$$\frac{ax \ge b}{(a/d)x \ge \lceil b/d \rceil}, \text{ if } d \in \mathbb{Z}^{\ge 0}$$

) divides a

Suppose $Ax \ge b$ has no integer solutions \rightarrow **Prove** this fact using cutting planes! Rules

Derive new integer-inequalities from old ones by:

• Non-negative linear Combination:

$$(\alpha a + \beta c)x \ge \alpha b + \beta d'$$

ax > b. cx > d

Ο Cut:

$$\frac{ax \ge b}{(a/d)x \ge \lceil b/d \rceil}, \text{ if } d \in \mathbb{Z}^{\ge 0}$$

Suppose $Ax \ge b$ has no integer solutions \rightarrow **Prove** this fact using cutting planes! Rules

Derive new integer-inequalities from old ones by:

• Non-negative linear Combination:

$$(\alpha a + \beta c)x \ge \alpha b + \beta d'$$

ax > b. cx > d

Ο Cut:

$$\frac{ax \ge b}{(a/d)x \ge \lceil b/d \rceil}, \text{ if } d \in \mathbb{Z}^{\ge 0}$$

$\alpha, \beta \in \mathbb{Z}^{\geq 0}$

Cutting Planes Proof

Derivation of $0 \ge 1$ from $Ax \ge b$

' divides a o equivalently, the empty polytope

Suppose $Ax \ge b$ has **no integer solutions** \rightarrow **Prove** this fact using cutting planes! **Rules**

Derive new integer-inequalities from old ones by:

• Non-negative linear Combination:

$$(\alpha a + \beta c)x \ge \alpha b + \beta d'$$

ax > b. cx > d

• Cut:

$$\frac{ax \ge b}{(a/d)x \ge \lceil b/d \rceil}, \text{ if } d \in \mathbb{Z}^{\ge 0}$$

Derivation of $0 \ge 1$ from $Ax \ge b$

' divides $a \circ$ equivalently, the empty polytope

Suppose $Ax \ge b$ has **no integer solutions** \rightarrow **Prove** this fact using cutting planes! **Rules**

Derive new integer-inequalities from old ones by:

• Non-negative linear Combination:

$$(\alpha a + \beta c)x \ge \alpha b + \beta d'$$

ax > b. cx > d

• Cut:

$$\frac{ax \ge b}{(a/d)x \ge \lceil b/d \rceil}, \text{ if } d \in \mathbb{Z}^{\ge 0}$$

Cutting Planes Proof

Derivation of $0 \ge 1$ from $Ax \ge b$

' divides $a \circ$ equivalently, the empty polytope

Suppose $Ax \ge b$ has no integer solutions \rightarrow **Prove** this fact using cutting planes! Rules

Derive new integer-inequalities from old ones by:

• Non-negative linear Combination:

$$(\alpha a + \beta c)x \ge \alpha b + \beta d'$$

ax > b. cx > d

Cut: Ο

$$\frac{ax \ge b}{(a/d)x \ge \lceil b/d \rceil}, \text{ if } d \in \mathbb{Z}^{\ge 0}$$

- \bigcirc

$\alpha, \beta \in \mathbb{Z}^{\geq 0}$

 \bigcirc

Cutting Planes Proof

Derivation of $0 \ge 1$ from $Ax \ge b$

P

' divides a o equivalently, the empty polytope

 \bigcirc

Suppose $Ax \ge b$ has no integer solutions \rightarrow **Prove** this fact using cutting planes! \bigcirc **Rules**

Derive new integer-inequalities from old ones by:

• Non-negative linear Combination:

$$(\alpha a + \beta c)x \ge \alpha b + \beta d'$$

ax > b. cx > d

Cut: 0

$$\frac{ax \ge b}{(a/d)x \ge \lceil b/d \rceil}, \text{ if } d \in \mathbb{Z}^{\ge 0}$$

\bigcirc \bigcirc \bigcirc

$\alpha, \beta \in \mathbb{Z}^{\geq 0}$

Cutting Planes Proof

Derivation of $0 \ge 1$ from $Ax \ge b$

' divides a o equivalently, the empty polytope

Suppose $Ax \ge b$ has no integer solutions \rightarrow **Prove** this fact using cutting planes! Rules

Derive new integer-inequalities from old ones by:

• Non-negative linear Combination:

$$(\alpha a + \beta c)x \ge \alpha b + \beta d'$$

ax > b. cx > d

Cut: Ο

$$\frac{ax \ge b}{(a/d)x \ge \lceil b/d \rceil}, \text{ if } d \in \mathbb{Z}^{\ge 0}$$

 $\alpha, \beta \in \mathbb{Z}^{\geq 0}$

 \bigcirc

Cutting Planes Proof

 \bigcirc

Derivation of $0 \ge 1$ from $Ax \ge b$

' divides a o equivalently, the empty polytope

 \bigcirc

Suppose $Ax \ge b$ has no integer solutions \rightarrow **Prove** this fact using cutting planes! Rules

Derive new integer-inequalities from old ones by:

• Non-negative linear Combination:

$$(\alpha a + \beta c)x \ge \alpha b + \beta d'$$

ax > b. cx > d

Cut: Ο

$$\frac{ax \ge b}{(a/d)x \ge \lceil b/d \rceil}, \text{ if } d \in \mathbb{Z}^{\ge 0}$$

' divides a o equivalently, the empty polytope

Proving CNF Formulas

a system of linear inequalities — easy because integer programming is NPcomplete!

In order to talk about CP as a proof system, we need to encode CNF formulas as

Proving CNF Formulas

In order to talk about CP as a proof system, we need to encode CNF formulas as a system of linear inequalities — easy because integer programming is NPcomplete!

1. Convert clauses into inequalities:

$x_1 \lor \neg x_2 \lor \neg x_3 \lor x_4 \longrightarrow x_1 + (1 - x_2) + (1 - x_3) + x_4 \ge 1$

Proving CNF Formulas

In order to talk about CP as a proof system, we need to encode CNF formulas as a system of linear inequalities — easy because integer programming is NPcomplete!

1. Convert clauses into inequalities:

2. Add boolean constraints:

$x_1 \lor \neg x_2 \lor \neg x_3 \lor x_4 \longrightarrow x_1 + (1 - x_2) + (1 - x_3) + x_4 \ge 1$

 $x_i \ge 0$ and $x_i \le 1$

Lower bounds on Cutting Planes proc cutting planes algorithms

Lower bounds on Cutting Planes proofs \rightarrow lower bounds on the runtime of

Lower bounds on Cutting Planes proc cutting planes algorithms

- [Pudlak97] (also [BPR97] under restriction): Refuting that a graph has both a k -clique and a (k 1)-coloring requires exponential size Cutting Planes proofs
- Lower bounds on Cutting Planes proofs \rightarrow lower bounds on the runtime of

Lower bounds on Cutting Planes proofs \rightarrow lower bounds on the runtime of cutting planes algorithms

- O
- Cutting Planes refutations

[Pudlak97] (also [BPR97] under restriction): Refuting that a graph has both a k -clique and a (k - 1)-coloring requires exponential size Cutting Planes proofs • [FPPR17, HP17]: Uniformly random CNF formulas require exponential size

cutting planes algorithms

- ^o [Pudlak97] (also [BPR97] under restriction): Refuting that a graph has both a k -clique and a (k - 1)-coloring requires exponential size Cutting Planes proofs • [FPPR17, HP17]: Uniformly random CNF formulas require exponential size
- Cutting Planes refutations

and-cut)

Lower bounds on Cutting Planes proofs \rightarrow lower bounds on the runtime of

However... Cutting Planes does not capture modern algorithms for IP (branch-
- [BFI+18] Introduced Stabbing Planes to formalize branch-and-cut.
- DPLL querying integer linear inequalities!
- No Cutting Planes rule needed!

[BFI+18] Introduced Stabbing Planes to formalize branch-and-cut.

Let $P = \{x : Ax \ge b\}$ be such that $P \cap \mathbb{Z}^n = \emptyset$.

[BFI+18] Introduced Stabbing Planes to formalize branch-and-cut.

Let $P = \{x : Ax \ge b\}$ be such that $P \cap \mathbb{Z}^n = \emptyset$.

Rule: query an arbitrary integer linear inequality

[BFI+18] Introduced Stabbing Planes to formalize branch-and-cut.

Let $P = \{x\}$

Rule: query

x :
$$Ax \ge b$$
} be such that $P \cap \mathbb{Z}^n = \emptyset$.
a an arbitrary **integer linear inequality**
ax ≤ *b* − 1
P ∩ {*ax* ≤ *b* − 1}

[BFI+18] Introduced Stabbing Planes to formalize branch-and-cut.

Let $P = \{x : Ax \ge b\}$ be such that $P \cap \mathbb{Z}^n = \emptyset$.

Rule: query an arbitrary integer linear inequality

[BFI+18] Introduced Stabbing Planes to formalize branch-and-cut.

Let $P = \{x : Ax \ge b\}$ be such that $P \cap \mathbb{Z}^n = \emptyset$.

Rule: query an arbitrary integer linear inequality

 \bigcirc

 \bigcirc

 \bigcirc

[BFI+18] Introduced Stabbing Planes to formalize branch-and-cut.

Let $P = \{x : Ax \ge b\}$ be such that

Rule: query an arbitrary integer linea

 \bigcirc

 \bigcirc

$$P \cap \mathbb{Z}^n = \emptyset.$$
r inequality

$$ax \ge b$$
}
 $hx \ge$

[BFI+18] Introduced Stabbing Planes to formalize branch-and-cut.

Let $P = \{x : Ax \ge b\}$ be such that $P \cap \mathbb{Z}^n = \emptyset$.

<u>Rule</u>: query an arbitrary integer linear inequality

 \bigcirc

 \bigcirc

 \bigcirc

[BFI+18] Introduced Stabbing Planes to formalize branch-and-cut.

Let $P = \{x : Ax \ge b\}$ be such that $P \cap \mathbb{Z}^n = \emptyset$.

<u>Rule</u>: query an arbitrary integer linear inequality

Proof that $P \cap \mathbb{Z}^n = \emptyset!$

Claim

Claim

→ Stabbing Planes rule simulates both branching and cutting!

Claim

 \rightarrow Stabbing Planes rule simulates both branching and cutting!

Claim: Stabbing Planes simulates Cutting Planes proofs

Claim

→ Stabbing Planes rule simulates both branching and cutting!

Claim: Stabbing Planes simulates Cutting Planes proofs

Non-negative linear combination:

Claim

→ Stabbing Planes rule simulates both branching and cutting!

Claim: Stabbing Planes simulates Cutting Planes proofs

Non-negative linear combination:

Claim

→ Stabbing Planes rule simulates both branching and cutting!

Claim: Stabbing Planes simulates Cutting Planes proofs

Non-negative linear combination: In SP query:

Claim

→ Stabbing Planes rule simulates both branching and cutting!

Claim: Stabbing Planes simulates Cutting Planes proofs

Non-negative linear combination.

 $ax \leq b$ –

In SP query:

Claim

→ Stabbing Planes rule simulates both branching and cutting!

Claim: Stabbing Planes simulates Cutting Planes proofs

Non-negative linear combination.

 $ax \leq b$

In SP query:

 $P \cap \{ax \leq b - 1\}$ is empty!

Claim

→ Stabbing Planes rule simulates both branching and cutting!

Claim: Stabbing Planes simulates Cutting Planes proofs

Non-negative linear combination.

 $ax \leq b$

In SP query:

 $P \cap \{ax \leq b - 1\}$ is empty!

Claim

→ Stabbing Planes rule simulates both branching and cutting!

Claim: Stabbing Planes simulates Cutting Planes proofs

Non-negative linear combination.

 $ax \leq b$

In SP query:

 $P \cap \{ax \leq b - 1\}$ is empty! So this only increases the size by 1!

Claim

 \rightarrow Stabbing Planes rule simulates both branching and cutting!

Claim: Stabbing Planes simulates Cutting Planes proofs

Cut:

Claim

→ Stabbing Planes rule simulates both branching and cutting!

Claim: Stabbing Planes simulates Cutting Planes proofs

Cut:

Claim

 \rightarrow Stabbing Planes rule simulates both branching and cutting!

Claim: Stabbing Planes simulates Cutting Planes proofs

Cut: **In SP** query:

Claim

 \rightarrow Stabbing Planes rule simulates both branching and cutting!

Claim: Stabbing Planes simulates Cutting Planes proofs

 $(a/d)x \leq \lceil b/d \rceil$

Cut:

In SP query:

Claim

→ Stabbing Planes rule simulates both branching and cutting!

Claim: Stabbing Planes simulates Cutting Planes proofs

 $(a/d)x \le \lceil b/d \rceil$

Cut:

In SP query:

$P \cap \{(a/d)x \leq \lfloor b/d \rfloor - 1\}$ is empty! So this only increases the size by 1!

The execution of a branch-and-cut solver produces a Stabbing Planes proof.

 $(a/d)x \ge \lceil b/d \rceil$

Claim

→ Stabbing Planes rule simulates both branching and cutting!

Claim: Stabbing Planes simulates Cutting Planes proofs

 $(a/d)x \le \lceil b/d \rceil$

Cut:

In SP query:

$P \cap \{(a/d)x \leq \lfloor b/d \rfloor - 1\}$ is empty! So this only increases the size by 1!

Claim

→ Stabbing Planes rule simulates both branching and cutting!

Claim: Stabbing Planes simulates Cutting Planes proofs

Resulting Stabbing Planes Proof:

Claim

→ Stabbing Planes rule simulates both branching and cutting!

Claim: Stabbing Planes simulates Cutting Planes proofs

Resulting Stabbing Planes Proof:

If the CP proof had size *s*, depth *d*

 \rightarrow SP proof has size *s*, depth *s*

Claim

→ Stabbing Planes rule simulates both branching and cutting!

Claim: Stabbing Planes simulates Cutting Planes proofs

Resulting Stabbing Planes Proof:

If the CP proof had size *s*, depth *d*

 \rightarrow SP proof has size *s*, depth *s*

The execution of a branch-and-cut solver produces a Stabbing Planes proof.

Q. Does there always exist an SP proof of size *s* and depth *d*?

Comparison of Proof Systems

Comparison of Proof Systems

One direction: Cutting Planes Can prove Tseitin [DT20]!

PCR

Cutting Planes Proves Tseitin!

The Tseitin formulas are the canonical family of formulas hard to prove in many **algebraic** proof systems — e.g. PCR from last time
The Tseitin formulas are the canonical family of formulas hard to prove in many **algebraic** proof systems — e.g. PCR from last time

Tseitin Formulas: Let G = (V, E) be a graph, $\sigma : V \to \{0, 1\}$ be such that $\sum_{v \in V} \sigma(v)$ is odd.

algebraic proof systems — e.g. PCR from last time

 $\sum_{v \in V} \sigma(v)$ is odd. For each $e \in E$ we have a variable x_{ρ} .

- The Tseitin formulas are the canonical family of formulas hard to prove in many
- **Tseitin Formulas:** Let G = (V, E) be a graph, $\sigma : V \rightarrow \{0, 1\}$ be such that

algebraic proof systems — e.g. PCR from last time

 $\sum_{v \in V} \sigma(v)$ is odd. For each $e \in E$ we have a variable x_e . Tseitin_{G,\sigma}: for each vertex $v \in V$, a constraint $\bigoplus_{v \in e} x_e = \sigma(v)$

- The Tseitin formulas are the canonical family of formulas hard to prove in many
- **Tseitin Formulas:** Let G = (V, E) be a graph, $\sigma : V \rightarrow \{0, 1\}$ be such that

algebraic proof systems — e.g. PCR from last time

 $\sum_{v \in V} \sigma(v)$ is odd. For each $e \in E$ we have a variable x_e . Tseitin_{*G*, σ}: for each vertex $v \in V$, a constraint $\bigoplus_{v \in e} x_e = \sigma(v)$

- The Tseitin formulas are the canonical family of formulas hard to prove in many
- **Tseitin Formulas:** Let G = (V, E) be a graph, $\sigma : V \to \{0, 1\}$ be such that

algebraic proof systems — e.g. PCR from last time

 $\sum_{v \in V} \sigma(v)$ is odd. For each $e \in E$ we have a variable x_e . Tseitin_{G,\sigma}: for each vertex $v \in V$, a constraint $\bigoplus_{v \in e} x_e = \sigma(v)$

- The Tseitin formulas are the canonical family of formulas hard to prove in many
- **Tseitin Formulas:** Let G = (V, E) be a graph, $\sigma : V \rightarrow \{0, 1\}$ be such that

Thm[DT20]: There are quasipolynomial size Cutting Planes proofs of Tseitin_{G,σ}

High Level:

- 1. Exhibit a quasipolynomial size Stabbing Planes proof of Tseitin
- 2. Translate that proof into Cutting Planes

abbing Planes proof of Tseitin Planes

Stabbing Planes Proves Tseitin

Thm[BFI+18]: There are quasipolynomial size Stabbing Planes proofs of Tseitin_{G, σ}

Stabbing Planes Proves Tseitin

Thm[BFI+18]: There are quasipolynomial size Stabbing Planes proofs of Tseitin_{G,σ}

1. We describe an algorithm that, giv falsified constraint of $\text{Tseitin}_{G,\sigma}(y)$

1. We describe an algorithm that, given an assignment $y \in \{0,1\}^n$, finds a

Stabbing Planes Proves Tseitin

Thm[BFI+18]: There are quasipolynomial size Stabbing Planes proofs of Tseitin_{G, σ}

- falsified constraint of Tseitin_{G. σ}(y)
- **2.** "Implement" the algorithm in Stabbing Planes

1. We describe an algorithm that, given an assignment $y \in \{0,1\}^n$, finds a

Algorithm for Finding Falsified Clause Given: $y \in \{0,1\}^n$ to the variables of Tseitin_{*G*, σ}

Algorithm for Finding Falsified Clause Given: $y \in \{0,1\}^n$ to the variables of Tseitin_{*G*, σ} **Goal:** find $v \in V$ such that $\bigoplus_{e \in v} y_e \neq \sigma(v) - a$ falsified constraint

• Each round maintains: $U \subseteq V$

• Each round maintains: $U \subseteq V$

• Each round maintains: $U \subseteq V$ and $\kappa_U = \sum_{e \in E[U, V \setminus U]} y_e$

• Each round maintains: $U \subseteq V$ and $\kappa_U = \sum_{e \in E[U,V \setminus U]} y_e$

• Each round maintains: $U \subseteq V$ and $\kappa_U = \sum_{e \in E[U, V \setminus U]} y_e$

• Each round maintains: $U \subseteq V$ and $\kappa_U = \sum_{e \in E[U, V \setminus U]} y_e$ s.t. $\sigma(U) \neq \kappa_U \mod 2$

Algorithm for Finding Falsified Clause $\sigma(U) := \sum_{v \in U} \sigma(v)$ Given: $y \in \{0,1\}^n$ to the variables of Tseitin_{*G*, σ} **Goal:** find $v \in V$ such that $\bigoplus_{e \in v} y_e \neq \sigma(v) - a$ falsified constraint Algorithm proceeds in rounds: Edges with one endpoint in U one in $V \setminus U$ • Each round maintains: $U \subseteq V$ and $\kappa_U = \sum_{e \in E[U, V \setminus U]} y_e$ s.t. $\sigma(U) \neq \kappa_U \mod 2$ G = (V, E)

 \implies There is a falsified constraint in U!

- \implies There is a falsified constraint in U! For U to be satisfiable we need $\Sigma_{v \in U} \sigma(v) \equiv \Sigma_{v \in U} \Sigma_{v \in e} y_e \mod 2$

 \implies There is a falsified constraint in U! For U to be satisfiable we need $\sigma(U) \equiv \sum_{v \in U} \sum_{v \in e} y_e \mod 2$

$$\Rightarrow \text{ There is a falsified constraint in}$$

For U to be satisfiable we need
$$\sigma(U) \equiv \sum_{v \in U} \sum_{v \in e} y_e \mod 2$$
$$\equiv 2 \sum_{u,v \in E} y_{uv} + \sum_{e \in E[U,V \setminus U]} y_e \mod 2$$

$$\Rightarrow \text{ There is a falsified constraint in}$$
For U to be satisfiable we need
$$\sigma(U) \equiv \sum_{v \in U} \sum_{v \in e} y_e \mod 2$$

$$\equiv 2 \sum_{u,v \in E} y_{uv} + \sum_{e \in E[U,V \setminus U]} y_e \mod 2$$

$$\equiv 0 + \kappa_U \mod 2$$

Algorithm for Finding Falsified Clause $\sigma(U) := \sum_{v \in U} \sigma(v)$ Given: $y \in \{0,1\}^n$ to the variables of Tseitin_{*G*, σ} **Goal:** find $v \in V$ such that $\bigoplus_{e \in v} y_e \neq \sigma(v) - a$ falsified constraint Algorithm proceeds in rounds: Edges with one endpoint in U one in $V \setminus U$ • Each round maintains: $U \subseteq V$ and $\kappa_U = \sum_{e \in E[U, V \setminus U]} y_e$ s.t. $\sigma(U) \neq \kappa_U \mod 2$ • Initially U = V and $\kappa_U = 0$ E G = (V, E)

- Initially U = V and $\kappa_U = 0$
- \rightarrow Each round we divide U in half

• Each round maintains: $U \subseteq V$ and $\kappa_U = \sum_{e \in E[U, V \setminus U]} y_e$ s.t. $\sigma(U) \neq \kappa_U \mod 2$

- Initially U = V and $\kappa_U = 0$
- \rightarrow Each round we divide U in half

 \rightarrow Once $U = \{v\}$

Algorithm for Finding Falsified Clause

Algorithm proceeds in rounds: Edges with one endpoint in U one in $V \setminus U$

• Each round maintains: $U \subseteq V$ and $\kappa_U = \sum_{e \in E[U,V \setminus U]} y_e$ s.t. $\sigma(U) \neq \kappa_U \mod 2$

- Initially U = V and $\kappa_U = 0$
- \rightarrow Each round we divide U in half
- \rightarrow Once $U = \{v\}$ we have a vertex such that $\sigma(v) \neq (\kappa_v = \sum_{e:v \in e} y_e) \mod 2$, a falsified constraint!

Algorithm for Finding Falsified Clause Algorithm proceeds in rounds: Edges with one endpoint in U one in $V \setminus U$ • Each round maintains: $U \subseteq V$ and $\kappa_U = \sum_{e \in E[U,V \setminus U]} y_e$ s.t. $\sigma(U) \neq \kappa_U \mod 2$ G = (V, E)

Algorithm for Finding Falsified Clause Given: $y \in \{0,1\}^n$ to the variables of Tseitin_{*G*, σ} **Goal:** find $v \in V$ such that $\bigoplus_{e \in v} y_e \neq \sigma(v) - a$ falsified constraint Algorithm proceeds in rounds: Edges with one endpoint in U one in $V \setminus U$ • Each round maintains: $U \subseteq V$ and $\kappa_U = \sum_{e \in E[U, V \setminus U]} y_e$ s.t. $\sigma(U) \neq \kappa_U \mod 2$ G = (V, E)

Algorithm for Finding Falsified Clause Given: $y \in \{0,1\}^n$ to the variables of Tseitin_{*G*, σ} **Goal:** find $v \in V$ such that $\bigoplus_{e \in v} y_e \neq \sigma(v) - a$ falsified constraint Algorithm proceeds in rounds: Edges with one endpoint in U one in $V \setminus U$ • Each round maintains: $U \subseteq V$ and $\kappa_U = \sum_{e \in E[U, V \setminus U]} y_e$ s.t. $\sigma(U) \neq \kappa_U \mod 2$ 1. Pick a balanced partition $U = U_1 \cup U_2$ G = (V, E)

Algorithm for Finding Falsified Clause Given: $y \in \{0,1\}^n$ to the variables of Tseitin_{*G*, σ} **Goal:** find $v \in V$ such that $\bigoplus_{e \in v} y_e \neq \sigma(v) - a$ falsified constraint Algorithm proceeds in rounds: Edges with one endpoint in U one in $V \setminus U$ • Each round maintains: $U \subseteq V$ and $\kappa_U = \sum_{e \in E[U, V \setminus U]} y_e$ s.t. $\sigma(U) \neq \kappa_U \mod 2$ 1. Pick a balanced partition $U = U_1 \cup U_2$ G = (V, E)

- 1. Pick a balanced partition $U = U_1 \cup U_2$
- 2. Query:

$$a = \sum_{e \in [U_1, U_2]} y_e$$

Algorithm for Finding Falsified Clause Algorithm proceeds in rounds: Edges with one endpoint in U one in $V \setminus U$ • Each round maintains: $U \subseteq V$ and $\kappa_U = \sum_{e \in E[U, V \setminus U]} y_e$ s.t. $\sigma(U) \neq \kappa_U \mod 2$ G = (V, E)

Given: $y \in \{0,1\}^n$ to the variables of Tseitin_{*G*, σ} **Goal:** find $v \in V$ such that $\bigoplus_{e \in v} y_e \neq \sigma(v) - a$ falsified constraint 1. Pick a balanced partition $U = U_1 \cup U_2$ 2. Query: $a = \sum_{e \in [U_1, U_2]} y_e$ $b = \sum_{e \in [U_1, V \setminus U]} y_e$

Algorithm for Finding Falsified Clause Algorithm proceeds in rounds: Edges with one endpoint in U one in $V \setminus U$ • Each round maintains: $U \subseteq V$ and $\kappa_U = \sum_{e \in E[U, V \setminus U]} y_e$ s.t. $\sigma(U) \neq \kappa_U \mod 2$ G = (V, E)

Given: $y \in \{0,1\}^n$ to the variables of Tseitin_{*G*, σ} **Goal:** find $v \in V$ such that $\bigoplus_{e \in v} y_e \neq \sigma(v) - a$ falsified constraint 1. Pick a balanced partition $U = U_1 \cup U_2$ 2. Query: $a = \sum_{e \in [U_1, U_2]} y_e$ $b = \sum_{e \in [U_1, V \setminus U]} y_e$ $\kappa_{U_1} = a + b$

Algorithm for Finding Falsified Clause Algorithm proceeds in rounds: Edges with one endpoint in U one in $V \setminus U$ • Each round maintains: $U \subseteq V$ and $\kappa_U = \sum_{e \in E[U, V \setminus U]} y_e$ s.t. $\sigma(U) \neq \kappa_U \mod 2$ G = (V, E)

Given: $y \in \{0,1\}^n$ to the variables of Tseitin_{*G*, σ} **Goal:** find $v \in V$ such that $\bigoplus_{e \in v} y_e \neq \sigma(v) - a$ falsified constraint 1. Pick a balanced partition $U = U_1 \cup U_2$ 2. Query: $a = \sum_{e \in [U_1, U_2]} y_e$ $b = \sum_{e \in [U_1, V \setminus U]} y_e$ $\kappa_{U_1} = a + b$

Algorithm for Finding Falsified Clause Algorithm proceeds in rounds: Edges with one endpoint in U one in $V \setminus U$ • Each round maintains: $U \subseteq V$ and $\kappa_U = \sum_{e \in E[U, V \setminus U]} y_e$ s.t. $\sigma(U) \neq \kappa_U \mod 2$ κ_{U} G = (V, E)

Given: $y \in \{0,1\}^n$ to the variables of Tseitin_{*G*, σ} **Goal:** find $v \in V$ such that $\bigoplus_{e \in v} y_e \neq \sigma(v) - a$ falsified constraint 1. Pick a balanced partition $U = U_1 \cup U_2$ 2. Query: $a = \sum_{e \in [U_1, U_2]} y_e$ $b = \sum_{e \in [U_1, V \setminus U]} y_e$ $\kappa_{U_1} = a + b$ and $\kappa_{U_2} = a + (\kappa_U - b)$

Algorithm for Finding Falsified Clause Algorithm proceeds in rounds: Edges with one endpoint in U one in $V \setminus U$ • Each round maintains: $U \subseteq V$ and $\kappa_U = \sum_{e \in E[U, V \setminus U]} y_e$ s.t. $\sigma(U) \neq \kappa_U \mod 2$ U_1 G = (V, E)

Given: $y \in \{0,1\}^n$ to the variables of Tseitin_{*G*, σ} **Goal:** find $v \in V$ such that $\bigoplus_{e \in v} y_e \neq \sigma(v) - a$ falsified constraint 1. Pick a balanced partition $U = U_1 \cup U_2$ 2. Query: $a = \sum_{e \in [U_1, U_2]} y_e$ $b = \sum_{e \in [U_1, V \setminus U]} y_e$ $\kappa_{U_1} = a + b$ and $\kappa_{U_2} = a + (\kappa_U - b)$

Algorithm for Finding Falsified Clause Algorithm proceeds in rounds: Edges with one endpoint in U one in $V \setminus U$ • Each round maintains: $U \subseteq V$ and $\kappa_U = \sum_{e \in E[U, V \setminus U]} y_e$ s.t. $\sigma(U) \neq \kappa_U \mod 2$ κ_U G = (V, E)

Given: $y \in \{0,1\}^n$ to the variables of Tseitin_{*G*, σ} **Goal:** find $v \in V$ such that $\bigoplus_{e \in v} y_e \neq \sigma(v) - a$ falsified constraint 1. Pick a balanced partition $U = U_1 \cup U_2$ 2. Query: $a = \sum_{e \in [U_1, U_2]} y_e$ $b = \sum_{e \in [U_1, V \setminus U]} y_e$ $\kappa_{U_1} = a + b \text{ and } \kappa_{U_2} = a + (\kappa_U - b)$

Algorithm for Finding Falsified Clause Algorithm proceeds in rounds: Edges with one endpoint in U one in $V \setminus U$ • Each round maintains: $U \subseteq V$ and $\kappa_U = \sum_{e \in E[U, V \setminus U]} y_e$ s.t. $\sigma(U) \neq \kappa_U \mod 2$ κ_U U_1 G = (V, E)

Given: $y \in \{0,1\}^n$ to the variables of Tseitin_{*G*, σ} **Goal:** find $v \in V$ such that $\bigoplus_{e \in v} y_e \neq \sigma(v) - a$ falsified constraint 1. Pick a balanced partition $U = U_1 \cup U_2$ 2. Query: $b = \sum_{e \in [U_1, V \setminus U]} y_e$ $a = \sum_{e \in [U_1, U_2]} y_e$ $\kappa_{U_1} = a + b$ and $\kappa_{U_2} = a + (\kappa_U - b)$

Algorithm for Finding Falsified Clause Algorithm proceeds in rounds: Edges with one endpoint in U one in $V \setminus U$ • Each round maintains: $U \subseteq V$ and $\kappa_U = \sum_{e \in E[U, V \setminus U]} y_e$ s.t. $\sigma(U) \neq \kappa_U \mod 2$ KU2 G = (V, E)

Given: $y \in \{0,1\}^n$ to the variables of Tseitin_{*G*, σ} **Goal:** find $v \in V$ such that $\bigoplus_{e \in v} y_e \neq \sigma(v) - a$ falsified constraint 1. Pick a balanced partition $U = U_1 \cup U_2$ 2. Query: $a = \sum_{e \in [U_1, U_2]} y_e$ $b = \sum_{e \in [U_1, V \setminus U]} y_e$ $\kappa_{U_1} = a + b$ and $\kappa_{U_2} = a + (\kappa_U - b)$ 3. Because $\sigma(U) \neq \kappa_U \mod 2$, either $\sigma(U_1) \neq \kappa_{U_1} \mod 2 \text{ or } \sigma(U_2) \neq \kappa_{U_2} \mod 2$

Algorithm for Finding Falsified Clause Algorithm proceeds in rounds: Edges with one endpoint in U one in $V \setminus U$ • Each round maintains: $U \subseteq V$ and $\kappa_U = \sum_{e \in E[U, V \setminus U]} y_e$ s.t. $\sigma(U) \neq \kappa_U \mod 2$ G = (V, E)

Given: $y \in \{0,1\}^n$ to the variables of Tseitin_{*G*, σ} **Goal:** find $v \in V$ such that $\bigoplus_{e \in v} y_e \neq \sigma(v) - a$ falsified constraint 1. Pick a balanced partition $U = U_1 \cup U_2$ 2. Query: $a = \sum_{e \in [U_1, U_2]} y_e$ $b = \sum_{e \in [U_1, V \setminus U]} y_e$ $\kappa_{U_1} = a + b$ and $\kappa_{U_2} = a + (\kappa_U - b)$ 3. Because $\sigma(U) \neq \kappa_U \mod 2$, either $\sigma(U_1) \neq \kappa_{U_1} \mod 2 \text{ or } \sigma(U_2) \neq \kappa_{U_2} \mod 2$ \rightarrow recurse on that one.

Algorithm for Finding Falsified Clause Algorithm proceeds in rounds: Edges with one endpoint in U one in $V \setminus U$ • Each round maintains: $U \subseteq V$ and $\kappa_U = \sum_{e \in E[U, V \setminus U]} y_e$ s.t. $\sigma(U) \neq \kappa_U \mod 2$ G = (V, E)

Given: $y \in \{0,1\}^n$ to the variables of Tseitin_{*G*, σ} **Goal:** find $v \in V$ such that $\bigoplus_{e \in v} y_e \neq \sigma(v) - a$ falsified constraint 1. Pick a balanced partition $U = U_1 \cup U_2$ 2. Query: $a = \sum_{e \in [U_1, U_2]} y_e \qquad b = \sum_{e \in [U_1, V \setminus U]} y_e$ $\kappa_{U_1} = a + b$ and $\kappa_{U_2} = a + (\kappa_U - b)$ 3. Because $\sigma(U) \neq \kappa_U \mod 2$, either $\sigma(U_1) \neq \kappa_{U_1} \mod 2 \text{ or } \sigma(U_2) \neq \kappa_{U_2} \mod 2$ \rightarrow recurse on that one.

Algorithm for Finding Falsified Clause Algorithm proceeds in rounds: Edges with one endpoint in U one in $V \setminus U$ • Each round maintains: $U \subseteq V$ and $\kappa_U = \sum_{e \in E[U, V \setminus U]} y_e$ s.t. $\sigma(U) \neq \kappa_U \mod 2$ G = (V, E)

- To implement in SP we need to perform the queries *a* and *b* \rightarrow Observe that the possible values of a and b are in $\{0, \dots, E\}$

- \rightarrow Observe that the possible values of a and b are in $\{0, \ldots, |E|\}$
- \rightarrow We can determine the value of a and b in $\log |E|$ depth SP trees

- \rightarrow Observe that the possible values of a and b are in $\{0, \dots, |E|\}$
- \rightarrow We can determine the value of a and b in $\log |E|$ depth SP trees

$$a \le |E|/2 - 1 \qquad a \ge |E|/2$$

$$UU_2$$

$$U] \mathcal{Y}_{e}$$

To implement in SP we need to perform the queries *a* and *b*

- \rightarrow Observe that the possible values of a and b are in $\{0, \ldots, |E|\}$
- \rightarrow We can determine the value of a and b in $\log |E|$ depth SP trees

$a \le |E|/2 - 1$ $a \ge |E|/2$ $a \le 3|E|/4 - 1$ $a \ge 3|E|/4$

To implement in SP we need to perform the queries *a* and *b*

- \rightarrow Observe that the possible values of a and b are in $\{0, \ldots, |E|\}$
- \rightarrow We can determine the value of a and b in $\log |E|$ depth SP trees

 $a \le |E|/2 - 1$ $a \le 3|E|/4 - 1$ $a \ge |E|/2$ $a \ge 3 |E|/4$

- \rightarrow Observe that the possible values of a and b are in $\{0, \ldots, |E|\}$
- \rightarrow We can determine the value of a and b in $\log |E|$ depth trees

To implement in SP we need to perform the queries a and b

- \rightarrow Observe that the possible values of *a* and *b* are in $\{0, \dots, |E|\}$
- \rightarrow We can determine the value of a and b in $\log |E|$ depth trees

The queries a and b

- \rightarrow Observe that the possible values of a and b are in $\{0, \dots, |E|\}$
- \rightarrow We can determine the value of a and b in $\log |E|$ depth trees
- \rightarrow At each leaf we know value of a and b, so we can recurse

- \rightarrow Observe that the possible values of a and b are in $\{0, \ldots, |E|\}$
- \rightarrow We can determine the value of a and b in $\log |E|$ depth trees
- \rightarrow At each leaf we know value of a and b, so we can recurse

- \rightarrow Observe that the possible values of a and b are in $\{0, \ldots, |E|\}$
- \rightarrow We can determine the value of a and b in $\log |E|$ depth trees
- \rightarrow At each leaf we know value of a and b, so we can recurse

- $\log |V|$ rounds
- Each round takes two depth $\leq \log |E|$ trees

- \rightarrow Observe that the possible values of a and b are in $\{0, \ldots, |E|\}$
- \rightarrow We can determine the value of a and b in $\log |E|$ depth trees
- \rightarrow At each leaf we know value of a and b, so we can recurse

- \rightarrow Observe that the possible values of a and b are in $\{0, \ldots, |E|\}$
- \rightarrow We can determine the value of a and b in $\log |E|$ depth trees
- \rightarrow At each leaf we know value of a and b, so we can recurse

Thm: There are quasipolynomial size Cutting Planes proofs of Tseitin

High Level:

- Exhibit a quasipolynomial size Stabbing Planes proof of Tseitin
- 2. Translate that proof into Cutting Planes

In fact, almost every SP proof can be translated into CP!

Thm: There are quasipolynomial size Cutting Planes proofs of Tseitin

High Level:

- Exhibit a quasipolynomial size Stabbing Planes proof of Tseitin
- 2. Translate that proof into Cutting Planes **Thm** [FGI+21] Any Stabbing Planes proof with coefficients at most $2^{\text{polylog}n}$ (SP*) can be translated into Cutting Planes with a quasi-polynomial blow-up in the size.

Thm [FGI+21]

Idea:

of the current polytope

Any Stabbing Planes proof with coefficients at most $2^{\text{polylog } n}$ (SP*) can be translated into Cutting Planes with a quasi-polynomial blow-up in the size.

1. Turn the proof SP* into a facelike SP proof — one that branches on the faces

Thm [FGI+21]

Idea:

of the current polytope (causes a quasipolynomial blow-up)

Any Stabbing Planes proof with coefficients at most $2^{\text{polylog } n}$ (SP*) can be translated into Cutting Planes with a quasi-polynomial blow-up in the size.

1. Turn the proof SP* into a facelike SP proof — one that branches on the faces

Thm [FGI+21]

Idea:

of the current polytope (causes a quasipolynomial blow-up)

Any Stabbing Planes proof with coefficients at most $2^{\text{polylog } n}$ (SP*) can be translated into Cutting Planes with a quasi-polynomial blow-up in the size.

1. Turn the proof SP* into a facelike SP proof — one that branches on the faces 2. Show that facelike SP proofs are equivalent to Cutting Planes proofs

