
Integer Programming and IP
Proof Systems

Noah Fleming
University of California, San Diego

Linear Programming
Input: set of linear inequalities  
  

Ax ≥ b

Linear Programming

P

Input: set of linear inequalities  
  

Ax ≥ b

Which defines a polytope P = {x : Ax ≥ b}

cxLinear Programming

P

Input: set of linear inequalities  
 linear objective function  

Ax ≥ b
cx

cxLinear Programming

P

Input: set of linear inequalities  
 linear objective function  

Output: Solution

 Satisfying

 Maximizing

Ax ≥ b
cx

z ∈ ℝn

Az ≥ b
cz

cxLinear Programming

z P

Input: set of linear inequalities  
 linear objective function  

Output: Solution

 Satisfying

 Maximizing

Ax ≥ b
cx

z ∈ ℝn

Az ≥ b
cz

cx

Broadly applicable framework for optimization.

Efficiently solvable!

Linear Programming

z P

Input: set of linear inequalities  
 linear objective function  

Output: Solution

 Satisfying

 Maximizing

Ax ≥ b
cx

z ∈ ℝn

Az ≥ b
cz

cx

Broadly applicable framework for optimization.

Efficiently solvable!

Linear Programming

However, many important problems phrased most naturally as finding integer
solutions to a linear program

e.g. maxCut, maxSAT, maxClique, etc.

z P

Input: set of linear inequalities  
 linear objective function  

Output: Solution

 Satisfying

 Maximizing

Ax ≥ b
cx

z ∈ ℝn

Az ≥ b
cz

cxInteger Programming (IP)

P

Input: set of linear inequalities  
 linear objective function  

Output: Integer solution

 Satisfying

 Maximizing

Ax ≥ b
cx

z ∈ ℤn

Az ≥ b
cz

cx

z P

Input: set of linear inequalities  
 linear objective function  

Output: Integer solution

 Satisfying

 Maximizing

Ax ≥ b
cx

z ∈ ℤn

Az ≥ b
cz

Integer Programming (IP)

cx

Extremely general framework!

… but NP-complete.

z P

Input: set of linear inequalities  
 linear objective function  

Output: Integer solution

 Satisfying

 Maximizing

Ax ≥ b
cx

z ∈ ℤn

Az ≥ b
cz

Integer Programming (IP)

Nonetheless, Integer programs are solved
extremely fast in practice!

cx

P

Integer Programming (IP)

Nonetheless, Integer programs are solved
extremely fast in practice!

cx

P

Integer Programming (IP)

How? Branch-and-Cut!

Branch-and-Cut cx

P

Idea: Try to use linear programming to solve
integer programming!

Branch-and-Cut cx

P
Run a linear program

Idea: Try to use linear programming to solve
integer programming!

z

Branch-and-Cut cx

P
Run a linear program

If solution is integral, done!

Idea: Try to use linear programming to solve
integer programming!

z

Branch-and-Cut cx

P
Run a linear program

If solution is integral, done!

Otherwise, refine the polytope until an integer
solution can be found by linear programming 

Idea: Try to use linear programming to solve
integer programming!

z

Branch-and-Cut cx

P
Run a linear program

If solution is integral, done!

Otherwise, refine the polytope until an integer
solution can be found by linear programming 

 remove non-integer solutions by adding 
 additional constraints to
→

P

Idea: Try to use linear programming to solve
integer programming!

z

Branch-and-Cut cx

P
Run a linear program

If solution is integral, done!

Otherwise, refine the polytope until an integer
solution can be found by linear programming 

 remove non-integer solutions by adding 
 additional constraints to
→

P

Idea: Try to use linear programming to solve
integer programming!

z

Remove this point so better solutions can be found!

Branch-and-Cut cx

P
Run a linear program

If solution is integral, done!

Otherwise, refine the polytope until an integer
solution can be found by linear programming 

 remove non-integer solutions by adding 
 additional constraints to

Recuse

→
P

Idea: Try to use linear programming to solve
integer programming!

z

Remove this point so better solutions can be found!

Branch-and-Cut cx

P

Branch-and-Cut has two ways of removing non-
integer points from :

1. DPLL-style branching on linear inequalities

2. Cutting planes

P

Branch-and-Cut
Branch-and-Cut has two ways of removing non-
integer points from :

1. DPLL-style branching on linear inequalities

2. Cutting planes

P

Branching —“Break up into subpolytopes” P

cx

P

Branch-and-Cut
Branch-and-Cut has two ways of removing non-
integer points from :

1. DPLL-style branching on linear inequalities

2. Cutting planes

P

Branching —“Break up into subpolytopes”
1. Heuristically choose an integer-linear  

inequality

P

ax ≥ b

cx

P

Branch-and-Cut
Branch-and-Cut has two ways of removing non-
integer points from :

1. DPLL-style branching on linear inequalities

2. Cutting planes

P

Branching —“Break up into subpolytopes”
1. Heuristically choose an integer-linear  

inequality

2. Break into and

P

ax ≥ b

P P ∩ {ax ≥ b} P ∩ {ax ≤ b − 1}

cx

P

Branch-and-Cut
Branch-and-Cut has two ways of removing non-
integer points from :

1. DPLL-style branching on linear inequalities

2. Cutting planes

P

Branching —“Break up into subpolytopes”
1. Heuristically choose an integer-linear  

inequality

2. Break into and

P

ax ≥ b

P P ∩ {ax ≥ b} P ∩ {ax ≤ b − 1}

cx

ax ≥ bax ≤ b − 1

Branch-and-Cut
Branch-and-Cut has two ways of removing non-
integer points from :

1. DPLL-style branching on linear inequalities

2. Cutting planes

P

Branching —“Break up into subpolytopes”
1. Heuristically choose an integer-linear  

inequality

2. Break into and

P

ax ≥ b

P P ∩ {ax ≥ b} P ∩ {ax ≤ b − 1}

ax ≥ bax ≤ b − 1

cx

Branch-and-Cut
Branch-and-Cut has two ways of removing non-
integer points from :

1. DPLL-style branching on linear inequalities

2. Cutting planes

P

Branching —“Break up into subpolytopes”
1. Heuristically choose an integer-linear  

inequality

2. Break into and

P

ax ≥ b

P P ∩ {ax ≥ b} P ∩ {ax ≤ b − 1}

cx

Preserves integer
solutions! satisfies

 or
x ∈ ℤn

ax ≤ b − 1 ax ≥ b

P ∩ {ax ≥ b}P ∩ {ax ≤ b − 1}

Branch-and-Cut
Branch-and-Cut has two ways of removing non-
integer points from :

1. DPLL-style branching on linear inequalities

2. Cutting planes

P

Branching —“Break up into subpolytopes”
1. Heuristically choose an integer-linear  

inequality

2. Recurse on and

P

ax ≥ b

P ∩ {ax ≥ b} P ∩ {ax ≤ b − 1}

cx

P ∩ {ax ≥ b}P ∩ {ax ≤ b − 1}

Preserves integer
solutions! satisfies

 or
x ∈ ℤn

ax ≤ b − 1 ax ≥ b

Branch-and-Cut
Branch-and-Cut has two ways of removing non-
integer points from :

1. DPLL-style branching on linear inequalities

2. Cutting planes

P

Cutting Planes — “Remove corners of ”P

cx

P

Branch-and-Cut
Branch-and-Cut has two ways of removing non-
integer points from :

1. DPLL-style branching on linear inequalities

2. Cutting planes

P

Cutting Planes — “Remove corners of ”
1. Choose an integer-linear inequality , and  

s.t. every point in satisfies and divides

P

ax ≥ b d ∈ ℤ≥0

P ax ≥ b d a

cx

P

ax ≥ b

Branch-and-Cut
Branch-and-Cut has two ways of removing non-
integer points from :

1. DPLL-style branching on linear inequalities

2. Cutting planes

P

cx

P

ax ≥ b

Cutting Planes — “Remove corners of ”
1. Choose an integer-linear inequality , and  

s.t. every point in satisfies and divides

2. Add

P

ax ≥ b d ∈ ℤ≥0

P ax ≥ b d a

(a/d)x ≥ ⌈b/d⌉

Branch-and-Cut
Branch-and-Cut has two ways of removing non-
integer points from :

1. DPLL-style branching on linear inequalities

2. Cutting planes

P

cx

P

(a/d)x ≥ ⌈b/d⌉

Cutting Planes — “Remove corners of ”
1. Choose an integer-linear inequality , and  

s.t. every point in satisfies and divides

2. Add

P

ax ≥ b d ∈ ℤ≥0

P ax ≥ b d a

(a/d)x ≥ ⌈b/d⌉

Cutting Planes — “Remove corners of ”
1. Choose an integer-linear inequality , and  

s.t. every point in satisfies and divides

2. Add

P

ax ≥ b d ∈ ℤ≥0

P ax ≥ b d a

(a/d)x ≥ ⌈b/d⌉

Branch-and-Cut
Branch-and-Cut has two ways of removing non-
integer points from :

1. DPLL-style branching on linear inequalities

2. Cutting planes

P

cx

P

Preserves integer points in P

(a/d)x ≥ ⌈b/d⌉

Preserves integer points in P

Branch-and-Cut
Branch-and-Cut has two ways of removing non-
integer points from :

1. DPLL-style branching on linear inequalities

2. Cutting planes

P

cx

P

ax ≥ ⌈b⌉

Cutting Planes — “Remove corners of ”
1. Choose an integer-linear inequality , and  

s.t. every point in satisfies and divides

2. Add

P

ax ≥ b d ∈ ℤ≥0

P ax ≥ b d a

(a/d)x ≥ ⌈b/d⌉

Technically: these are
Gomory-Chvatal cutting
planes.  

 Other cutting planes
have been considered as
well.

 What we talk about
today applies to them as
well

→

→

Branch-and-Cut cx

P
Branch and Cut Template

1. Solve the linear program.

2. If solution is non-integral, refine polytope by:

i) Branching.

ii) Cutting.

3. Repeat.

z

Idea: Try to use linear programming to solve
integer programming!

Branch-and-Cut cx

P
Branch and Cut Template

1. Solve the linear program.

2. If solution is non-integral, refine polytope by:

i) Branching.

ii) Cutting.

3. Repeat.

z

z

Idea: Try to use linear programming to solve
integer programming!

Branch-and-Cut cx

P
Branch and Cut Template

1. Solve the linear program.

2. If solution is non-integral, refine polytope by:

i) Branching.

ii) Cutting.

3. Repeat.

z

z

Idea: Try to use linear programming to solve
integer programming!

1. Solve the linear program.

2. If solution is non-integral, refine polytope by:

i) Branching.

ii) Cutting.

3. Repeat.

z

Branch-and-Cut cx

P
Branch and Cut Template

Idea: Try to use linear programming to solve
integer programming!

1. Solve the linear program.

2. If solution is non-integral, refine polytope by:

i) Branching.

ii) Cutting.

3. Repeat.

z

Branch-and-Cut cx

P
Branch and Cut Template

Idea: Try to use linear programming to solve
integer programming!

1. Solve the linear program.

2. If solution is non-integral, refine polytope by:

i) Branching.

ii) Cutting.

3. Repeat.

z

Branch-and-Cut cx

Branch and Cut Template

Idea: Try to use linear programming to solve
integer programming!

1. Solve the linear program.

2. If solution is non-integral, refine polytope by:

i) Branching.

ii) Cutting.

3. Repeat.

z

Branch-and-Cut cx

Branch and Cut Template

Idea: Try to use linear programming to solve
integer programming!

1. Solve the linear program.

2. If solution is non-integral, refine polytope by:

i) Branching.

ii) Cutting.

3. Repeat.

z

Branch-and-Cut cx

Branch and Cut Template

Idea: Try to use linear programming to solve
integer programming!

1. Solve the linear program.

2. If solution is non-integral, refine polytope by:

i) Branching.

ii) Cutting.

3. Repeat.

z

Branch-and-Cut cx

Branch and Cut Template

Idea: Try to use linear programming to solve
integer programming!

Branch-and-Cut cx

Branch and Cut Template

1. Solve the linear program.

2. If solution is non-integral, refine polytope by:

i) Branching.

ii) Cutting.

3. Repeat.

z

Idea: Try to use linear programming to solve
integer programming!

Branch-and-Cut cx

Branch and Cut Template

1. Solve the linear program.

2. If solution is non-integral, refine polytope by:

i) Branching.

ii) Cutting.

3. Repeat.

z

Idea: Try to use linear programming to solve
integer programming!

If the polytope is refined only
by cutting, then this is known
as a cutting planes algorithm

Formalizing Modern IP Solvers
[Chvatal73] Introduced the Cutting Planes proof system to formalize
cutting planes algorithms.

Formalizing Modern IP Solvers
[Chvatal73] Introduced the Cutting Planes proof system to formalize
cutting planes algorithms.

• Only captures the cutting part of branch-and-cut, not branching.

Formalizing Modern IP Solvers
[Chvatal73] Introduced the Cutting Planes proof system to formalize
cutting planes algorithms.

• Only captures the cutting part of branch-and-cut, not branching.

• Even so, it is an important and heavily studied proof system!

Cutting Planes Proofs
Suppose has no integer solutions
Ax ≥ b

P

Cutting Planes Proofs
Suppose has no integer solutions
Ax ≥ b

P

Analogous to running DPLL on unsatisfiable CNF

Cutting Planes Proofs
Suppose has no integer solutions

 Prove this fact using cutting planes!
Ax ≥ b

→

P

Cutting Planes Proofs

Derive new integer-inequalities from old ones by:

Non-negative linear Combination:

Rules

Suppose has no integer solutions

 Prove this fact using cutting planes!

Ax ≥ b
→

ax ≥ b, cx ≥ d
(αa + βc)x ≥ αb + βd

, α, β ∈ ℤ≥0

P

Cutting Planes Proofs
ax ≥ b

cx ≥ d

Rules

Suppose has no integer solutions

 Prove this fact using cutting planes!

Ax ≥ b
→

PDerive new integer-inequalities from old ones by:

Non-negative linear Combination:
ax ≥ b, cx ≥ d

(αa + βc)x ≥ αb + βd
, α, β ∈ ℤ≥0

Cutting Planes Proofs
ax ≥ b

cx ≥ d

(αa + βc)x ≥ αb + βd

Rules

Suppose has no integer solutions

 Prove this fact using cutting planes!

Ax ≥ b
→

PDerive new integer-inequalities from old ones by:

Non-negative linear Combination:
ax ≥ b, cx ≥ d

(αa + βc)x ≥ αb + βd
, α, β ∈ ℤ≥0

Cutting Planes Proofs

Preserves all points in P

ax ≥ b

cx ≥ d

(αa + βc)x ≥ αb + βd

Rules

Suppose has no integer solutions

 Prove this fact using cutting planes!

Ax ≥ b
→

PDerive new integer-inequalities from old ones by:

Non-negative linear Combination:
ax ≥ b, cx ≥ d

(αa + βc)x ≥ αb + βd
, α, β ∈ ℤ≥0

Cutting Planes Proofs
ax ≥ b

Derive new integer-inequalities from old ones by:

Non-negative linear Combination:

Cut:

Rules

Suppose has no integer solutions

 Prove this fact using cutting planes!

Ax ≥ b
→

P

ax ≥ b, cx ≥ d
(αa + βc)x ≥ αb + βd

, α, β ∈ ℤ≥0

, if divides
ax ≥ b

(a/d)x ≥ ⌈b/d⌉
d ∈ ℤ≥0 a

Cutting Planes Proofs
(a/d)x ≥ ⌈b/d⌉

Rules

ax ≥ b, cx ≥ d
(αa + βc)x ≥ αb + βd

Suppose has no integer solutions

 Prove this fact using cutting planes!

Ax ≥ b
→

PDerive new integer-inequalities from old ones by:

Non-negative linear Combination:

Cut:

, if divides
ax ≥ b

(a/d)x ≥ ⌈b/d⌉
d ∈ ℤ≥0 a

ax ≥ b, cx ≥ d
(αa + βc)x ≥ αb + βd

, α, β ∈ ℤ≥0

Cutting Planes Proofs
ax ≥ ⌈b⌉

Preserves integer points in P

P
Rules

ax ≥ b, cx ≥ d
(αa + βc)x ≥ αb + βd

Suppose has no integer solutions

 Prove this fact using cutting planes!

Ax ≥ b
→

Derive new integer-inequalities from old ones by:

Non-negative linear Combination:

Cut:

, if divides
ax ≥ b

(a/d)x ≥ ⌈b/d⌉
d ∈ ℤ≥0 a

ax ≥ b, cx ≥ d
(αa + βc)x ≥ αb + βd

, α, β ∈ ℤ≥0

Cutting Planes Proofs

Rules

ax ≥ b, cx ≥ d
(αa + βc)x ≥ αb + βd

Suppose has no integer solutions

 Prove this fact using cutting planes!

Ax ≥ b
→

P

Cutting Planes Proof 
Derivation of from

equivalently, the empty polytope
0 ≥ 1 Ax ≥ b

Derive new integer-inequalities from old ones by:

Non-negative linear Combination:

Cut:

, if divides
ax ≥ b

(a/d)x ≥ ⌈b/d⌉
d ∈ ℤ≥0 a

ax ≥ b, cx ≥ d
(αa + βc)x ≥ αb + βd

, α, β ∈ ℤ≥0

Cutting Planes Proofs

Rules

ax ≥ b, cx ≥ d
(αa + βc)x ≥ αb + βd

Suppose has no integer solutions

 Prove this fact using cutting planes!

Ax ≥ b
→

PDerive new integer-inequalities from old ones by:

Non-negative linear Combination:

Cut:
Cutting Planes Proof 
Derivation of from

equivalently, the empty polytope
0 ≥ 1 Ax ≥ b

, if divides
ax ≥ b

(a/d)x ≥ ⌈b/d⌉
d ∈ ℤ≥0 a

ax ≥ b, cx ≥ d
(αa + βc)x ≥ αb + βd

, α, β ∈ ℤ≥0

Cutting Planes Proofs

Rules

Suppose has no integer solutions

 Prove this fact using cutting planes!

Ax ≥ b
→

P

Cutting Planes Proof 
Derivation of from

equivalently, the empty polytope
0 ≥ 1 Ax ≥ b

, if divides
ax ≥ b

(a/d)x ≥ ⌈b/d⌉
d ∈ ℤ≥0 a

ax ≥ b, cx ≥ d
(αa + βc)x ≥ αb + βd

Derive new integer-inequalities from old ones by:

Non-negative linear Combination:

Cut:

ax ≥ b, cx ≥ d
(αa + βc)x ≥ αb + βd

, α, β ∈ ℤ≥0

Cutting Planes Proofs

Rules

ax ≥ b, cx ≥ d
(αa + βc)x ≥ αb + βd

Suppose has no integer solutions

 Prove this fact using cutting planes!

Ax ≥ b
→

PDerive new integer-inequalities from old ones by:

Non-negative linear Combination:

Cut:
Cutting Planes Proof 
Derivation of from

equivalently, the empty polytope
0 ≥ 1 Ax ≥ b

, if divides
ax ≥ b

(a/d)x ≥ ⌈b/d⌉
d ∈ ℤ≥0 a

ax ≥ b, cx ≥ d
(αa + βc)x ≥ αb + βd

, α, β ∈ ℤ≥0

Cutting Planes Proofs

Rules

ax ≥ b, cx ≥ d
(αa + βc)x ≥ αb + βd

Suppose has no integer solutions

 Prove this fact using cutting planes!

Ax ≥ b
→ P

Derive new integer-inequalities from old ones by:

Non-negative linear Combination:

Cut:
Cutting Planes Proof 
Derivation of from

equivalently, the empty polytope
0 ≥ 1 Ax ≥ b

, if divides
ax ≥ b

(a/d)x ≥ ⌈b/d⌉
d ∈ ℤ≥0 a

ax ≥ b, cx ≥ d
(αa + βc)x ≥ αb + βd

, α, β ∈ ℤ≥0

Cutting Planes Proofs

Rules

ax ≥ b, cx ≥ d
(αa + βc)x ≥ αb + βd

Suppose has no integer solutions

 Prove this fact using cutting planes!

Ax ≥ b
→ P

Derive new integer-inequalities from old ones by:

Non-negative linear Combination:

Cut:
Cutting Planes Proof 
Derivation of from

equivalently, the empty polytope
0 ≥ 1 Ax ≥ b

, if divides
ax ≥ b

(a/d)x ≥ ⌈b/d⌉
d ∈ ℤ≥0 a

ax ≥ b, cx ≥ d
(αa + βc)x ≥ αb + βd

, α, β ∈ ℤ≥0

Cutting Planes Proofs

Rules

ax ≥ b, cx ≥ d
(αa + βc)x ≥ αb + βd

Suppose has no integer solutions

 Prove this fact using cutting planes!

Ax ≥ b
→

∅Derive new integer-inequalities from old ones by:

Non-negative linear Combination:

Cut:
Cutting Planes Proof 
Derivation of from

equivalently, the empty polytope
0 ≥ 1 Ax ≥ b

, if divides
ax ≥ b

(a/d)x ≥ ⌈b/d⌉
d ∈ ℤ≥0 a

ax ≥ b, cx ≥ d
(αa + βc)x ≥ αb + βd

, α, β ∈ ℤ≥0

Proving CNF Formulas
In order to talk about CP as a proof system, we need to encode CNF formulas as
a system of linear inequalities — easy because integer programming is NP-
complete!

Proving CNF Formulas
In order to talk about CP as a proof system, we need to encode CNF formulas as
a system of linear inequalities — easy because integer programming is NP-
complete!

1. Convert clauses into inequalities:

  x1 ∨ ¬x2 ∨ ¬x3 ∨ x4 → x1 + (1 − x2) + (1 − x3) + x4 ≥ 1

Proving CNF Formulas
In order to talk about CP as a proof system, we need to encode CNF formulas as
a system of linear inequalities — easy because integer programming is NP-
complete!

1. Convert clauses into inequalities:

  

2. Add boolean constraints:

 and

x1 ∨ ¬x2 ∨ ¬x3 ∨ x4 → x1 + (1 − x2) + (1 − x3) + x4 ≥ 1

xi ≥ 0 xi ≤ 1

Cutting Planes Proofs
Lower bounds on Cutting Planes proofs lower bounds on the runtime of
cutting planes algorithms

→

Cutting Planes Proofs
Lower bounds on Cutting Planes proofs lower bounds on the runtime of
cutting planes algorithms

[Pudlak97] (also [BPR97] under restriction): Refuting that a graph has both a
-clique and a -coloring requires exponential size Cutting Planes proofs

→

k
(k − 1)

Cutting Planes Proofs
Lower bounds on Cutting Planes proofs lower bounds on the runtime of
cutting planes algorithms

[Pudlak97] (also [BPR97] under restriction): Refuting that a graph has both a
-clique and a -coloring requires exponential size Cutting Planes proofs

[FPPR17, HP17]: Uniformly random CNF formulas require exponential size
Cutting Planes refutations

→

k
(k − 1)

Cutting Planes Proofs
Lower bounds on Cutting Planes proofs lower bounds on the runtime of
cutting planes algorithms

[Pudlak97] (also [BPR97] under restriction): Refuting that a graph has both a
-clique and a -coloring requires exponential size Cutting Planes proofs

[FPPR17, HP17]: Uniformly random CNF formulas require exponential size
Cutting Planes refutations

→

k
(k − 1)

However… Cutting Planes does not capture modern algorithms for IP (branch-
and-cut)

The Stabbing Planes Proof System
[BFI+18] Introduced Stabbing Planes to formalize branch-and-cut.

DPLL querying integer linear inequalities!

No Cutting Planes rule needed!

The Stabbing Planes Proof System
[BFI+18] Introduced Stabbing Planes to formalize branch-and-cut.

Let be such that .P = {x : Ax ≥ b} P ∩ ℤn = ∅

The Stabbing Planes Proof System
[BFI+18] Introduced Stabbing Planes to formalize branch-and-cut.

Let be such that .P = {x : Ax ≥ b} P ∩ ℤn = ∅

P

Rule: query an arbitrary integer linear inequality

The Stabbing Planes Proof System
[BFI+18] Introduced Stabbing Planes to formalize branch-and-cut.

Let be such that .P = {x : Ax ≥ b} P ∩ ℤn = ∅

P
ax ≥ b

ax ≤ b − 1 ax ≥ b

ax ≤ b − 1

Rule: query an arbitrary integer linear inequality

P ∩ {ax ≥ b}P ∩ {ax ≤ b − 1}

The Stabbing Planes Proof System
[BFI+18] Introduced Stabbing Planes to formalize branch-and-cut.

Let be such that .P = {x : Ax ≥ b} P ∩ ℤn = ∅

Rule: query an arbitrary integer linear inequality

P

ax ≤ b − 1 ax ≥ b

ax ≤ b − 1

P ∩ {ax ≤ b − 1}

ax ≥ b

P ∩ {ax ≥ b}

The Stabbing Planes Proof System
[BFI+18] Introduced Stabbing Planes to formalize branch-and-cut.

Let be such that .P = {x : Ax ≥ b} P ∩ ℤn = ∅

Rule: query an arbitrary integer linear inequality

P

ax ≤ b − 1 ax ≥ b

ax ≤ b − 1

P ∩ {ax ≤ b − 1}

ax ≥ b

P ∩ {ax ≥ b}

The Stabbing Planes Proof System

Because are integral, preserves integer points!a, b

[BFI+18] Introduced Stabbing Planes to formalize branch-and-cut.

Let be such that .P = {x : Ax ≥ b} P ∩ ℤn = ∅

Rule: query an arbitrary integer linear inequality

P
ax ≤ b − 1

P ∩ {ax ≤ b − 1}

ax ≥ b

The Stabbing Planes Proof System
[BFI+18] Introduced Stabbing Planes to formalize branch-and-cut.

Let be such that .P = {x : Ax ≥ b} P ∩ ℤn = ∅

Rule: query an arbitrary integer linear inequality

P
ax ≤ b − 1

cx ≤ d − 1

cx ≥ d

cx ≤ d − 1 cx ≥ d

P ∩ {ax ≤ b − 1}

ax ≥ b

The Stabbing Planes Proof System
[BFI+18] Introduced Stabbing Planes to formalize branch-and-cut.

Let be such that .P = {x : Ax ≥ b} P ∩ ℤn = ∅

Rule: query an arbitrary integer linear inequality

P
ax ≤ b − 1

∅

∅ ∅

cx ≤ d − 1 cx ≥ d

cx ≤ d − 1

cx ≥ d

P ∩ {ax ≤ b − 1}

ax ≥ b

The Stabbing Planes Proof System
[BFI+18] Introduced Stabbing Planes to formalize branch-and-cut.

Let be such that .P = {x : Ax ≥ b} P ∩ ℤn = ∅

Rule: query an arbitrary integer linear inequality

P
ax ≤ b − 1

∅ ∅

cx ≤ d − 1 cx ≥ d

P ∩ {ax ≥ b}P ∩ {ax ≤ b − 1}

ax ≥ b

The Stabbing Planes Proof System
[BFI+18] Introduced Stabbing Planes to formalize branch-and-cut.

Let be such that .P = {x : Ax ≥ b} P ∩ ℤn = ∅

Rule: query an arbitrary integer linear inequality

P

hx ≥ t

ax ≤ b − 1

∅ ∅

cx ≤ d − 1 cx ≥ d hx ≤ t − 1 hx ≥ t hx ≤ t − 1

P ∩ {ax ≥ b}P ∩ {ax ≤ b − 1}

ax ≥ b

The Stabbing Planes Proof System
[BFI+18] Introduced Stabbing Planes to formalize branch-and-cut.

Let be such that .P = {x : Ax ≥ b} P ∩ ℤn = ∅

Rule: query an arbitrary integer linear inequality

P

P ∩ {ax ≥ b}

ax ≤ b − 1

P ∩ {ax ≤ b − 1}

∅ ∅

cx ≤ d − 1 cx ≥ d

∅ ∅

hx ≤ t − 1 hx ≥ t

ax ≥ b

∅

The Stabbing Planes Proof System
[BFI+18] Introduced Stabbing Planes to formalize branch-and-cut.

Let be such that .P = {x : Ax ≥ b} P ∩ ℤn = ∅

Rule: query an arbitrary integer linear inequality

P

P ∩ {ax ≥ b}

ax ≤ b − 1

P ∩ {ax ≤ b − 1}

∅ ∅

cx ≤ d − 1 cx ≥ d

∅ ∅

hx ≤ t − 1 hx ≥ t

Proof that !P ∩ ℤn = ∅

ax ≥ b

The Stabbing Planes Proof System
[BFI+18] Introduced Stabbing Planes to formalize branch-and-cut.

Stabbing Planes
Claim 
The execution of a branch-and-cut solver produces a Stabbing Planes proof.

Stabbing Planes
Claim 
The execution of a branch-and-cut solver produces a Stabbing Planes proof.

 Stabbing Planes rule simulates both branching and cutting!→

Stabbing Planes
Claim 
The execution of a branch-and-cut solver produces a Stabbing Planes proof.

 Stabbing Planes rule simulates both branching and cutting!→

Claim: Stabbing Planes simulates Cutting Planes proofs

Stabbing Planes
Claim 
The execution of a branch-and-cut solver produces a Stabbing Planes proof.

 Stabbing Planes rule simulates both branching and cutting!→

P

Claim: Stabbing Planes simulates Cutting Planes proofs

Non-negative linear combination:

Stabbing Planes
Claim 
The execution of a branch-and-cut solver produces a Stabbing Planes proof.

 Stabbing Planes rule simulates both branching and cutting!→

ax ≥ b P

Claim: Stabbing Planes simulates Cutting Planes proofs

Non-negative linear combination:

Stabbing Planes
Claim 
The execution of a branch-and-cut solver produces a Stabbing Planes proof.

 Stabbing Planes rule simulates both branching and cutting!→

ax ≥ b P

Claim: Stabbing Planes simulates Cutting Planes proofs

Non-negative linear combination:

In SP query: 

Stabbing Planes
Claim 
The execution of a branch-and-cut solver produces a Stabbing Planes proof.

 Stabbing Planes rule simulates both branching and cutting!→

ax ≥ b P

Claim: Stabbing Planes simulates Cutting Planes proofs

Non-negative linear combination:

ax ≤ b − 1In SP query: 

In SP query: 

Stabbing Planes
Claim 
The execution of a branch-and-cut solver produces a Stabbing Planes proof.

 Stabbing Planes rule simulates both branching and cutting!→

ax ≥ b P

Claim: Stabbing Planes simulates Cutting Planes proofs

Non-negative linear combination:

ax ≤ b − 1

 is empty!P ∩ {ax ≤ b − 1}

In SP query: 

Stabbing Planes
Claim 
The execution of a branch-and-cut solver produces a Stabbing Planes proof.

 Stabbing Planes rule simulates both branching and cutting!→

ax ≥ b P

Claim: Stabbing Planes simulates Cutting Planes proofs

Non-negative linear combination:

ax ≤ b − 1

 is empty!P ∩ {ax ≤ b − 1}

ax ≥ bax ≤ b − 1

∅ P ∩ {ax ≥ b}

In SP query: 

Stabbing Planes
Claim 
The execution of a branch-and-cut solver produces a Stabbing Planes proof.

 Stabbing Planes rule simulates both branching and cutting!→

ax ≥ b P

Claim: Stabbing Planes simulates Cutting Planes proofs

Non-negative linear combination:

ax ≤ b − 1

 is empty! So this only increases the size by 1!P ∩ {ax ≤ b − 1}

ax ≥ bax ≤ b − 1

∅ P ∩ {ax ≥ b}

Stabbing Planes
Claim 
The execution of a branch-and-cut solver produces a Stabbing Planes proof.

 Stabbing Planes rule simulates both branching and cutting!→

ax ≥ b P

Claim: Stabbing Planes simulates Cutting Planes proofs

Cut:

Stabbing Planes
Claim 
The execution of a branch-and-cut solver produces a Stabbing Planes proof.

 Stabbing Planes rule simulates both branching and cutting!→

(a/d)x ≥ ⌈b/d⌉P

Claim: Stabbing Planes simulates Cutting Planes proofs

Cut:

Stabbing Planes
Claim 
The execution of a branch-and-cut solver produces a Stabbing Planes proof.

 Stabbing Planes rule simulates both branching and cutting!→

(a/d)x ≥ ⌈b/d⌉P

Claim: Stabbing Planes simulates Cutting Planes proofs

Cut:

In SP query: 

Stabbing Planes
Claim 
The execution of a branch-and-cut solver produces a Stabbing Planes proof.

 Stabbing Planes rule simulates both branching and cutting!→

(a/d)x ≥ ⌈b/d⌉P

Claim: Stabbing Planes simulates Cutting Planes proofs

Cut:
(a/d)x ≤ ⌈b/d⌉ − 1In SP query: 

Stabbing Planes
Claim 
The execution of a branch-and-cut solver produces a Stabbing Planes proof.

 Stabbing Planes rule simulates both branching and cutting!→

(a/d)x ≥ ⌈b/d⌉P

Claim: Stabbing Planes simulates Cutting Planes proofs

Cut:
(a/d)x ≤ ⌈b/d⌉ − 1In SP query: 

 is empty! So this only increases the size by 1!P ∩ {(a/d)x ≤ ⌈b/d⌉ − 1}

Stabbing Planes
Claim 
The execution of a branch-and-cut solver produces a Stabbing Planes proof.

 Stabbing Planes rule simulates both branching and cutting!→

(a/d)x ≥ ⌈b/d⌉P

Claim: Stabbing Planes simulates Cutting Planes proofs

Cut:
(a/d)x ≤ ⌈b/d⌉ − 1In SP query: 

 is empty! So this only increases the size by 1!P ∩ {(a/d)x ≤ ⌈b/d⌉ − 1}

(a/d)x ≥ ⌈b/d⌉(a/d)x ≤ ⌈b/d⌉ − 1

∅

Stabbing Planes
Claim 
The execution of a branch-and-cut solver produces a Stabbing Planes proof.

 Stabbing Planes rule simulates both branching and cutting!→

Claim: Stabbing Planes simulates Cutting Planes proofs

Resulting Stabbing Planes Proof:

∅
∅

∅ ∅

Stabbing Planes
Claim 
The execution of a branch-and-cut solver produces a Stabbing Planes proof.

 Stabbing Planes rule simulates both branching and cutting!→

Claim: Stabbing Planes simulates Cutting Planes proofs

Resulting Stabbing Planes Proof:

∅
∅

∅ ∅

If the CP proof had size , depth  

 SP proof has size , depth

s d
→ s s

Stabbing Planes
Claim 
The execution of a branch-and-cut solver produces a Stabbing Planes proof.

 Stabbing Planes rule simulates both branching and cutting!→

Claim: Stabbing Planes simulates Cutting Planes proofs

Resulting Stabbing Planes Proof:

∅
∅

∅ ∅

If the CP proof had size , depth  

 SP proof has size , depth

s d
→ s s

. Does there always exist an

SP proof of size and depth ?

Q
s d

Comparison of Proof Systems

Stabbing Planes

Cutting Planes

Resolution

PCR

Comparison of Proof Systems

Stabbing Planes

Cutting Planes

Resolution

PCR

One direction: Cutting Planes

Can prove Tseitin [DT20]!

The Tseitin formulas are the canonical family of formulas hard to prove in many
algebraic proof systems — e.g. PCR from last time

Cutting Planes Proves Tseitin!

Tseitin Formulas: Let be a graph, be such that
 is odd.

G = (V, E) σ : V → {0,1}
Σv∈Vσ(v)

The Tseitin formulas are the canonical family of formulas hard to prove in many
algebraic proof systems — e.g. PCR from last time

Cutting Planes Proves Tseitin!

The Tseitin formulas are the canonical family of formulas hard to prove in many
algebraic proof systems — e.g. PCR from last time

Cutting Planes Proves Tseitin!

Tseitin Formulas: Let be a graph, be such that
 is odd. For each we have a variable .  

G = (V, E) σ : V → {0,1}
Σv∈Vσ(v) e ∈ E xe

The Tseitin formulas are the canonical family of formulas hard to prove in many
algebraic proof systems — e.g. PCR from last time

Cutting Planes Proves Tseitin!

Tseitin Formulas: Let be a graph, be such that
 is odd. For each we have a variable .  

Tseitin : for each vertex , a constraint

G = (V, E) σ : V → {0,1}
Σv∈Vσ(v) e ∈ E xe

G,σ v ∈ V ⊕v∈e xe = σ(v)

The Tseitin formulas are the canonical family of formulas hard to prove in many
algebraic proof systems — e.g. PCR from last time

1

0x1

x2
0

x3

Cutting Planes Proves Tseitin!

Tseitin Formulas: Let be a graph, be such that
 is odd. For each we have a variable .  

Tseitin : for each vertex , a constraint

G = (V, E) σ : V → {0,1}
Σv∈Vσ(v) e ∈ E xe

G,σ v ∈ V ⊕v∈e xe = σ(v)

The Tseitin formulas are the canonical family of formulas hard to prove in many
algebraic proof systems — e.g. PCR from last time

1

0x1

x2
0

x3
  
 

x1 ⊕ x2 = 1
x1 ⊕ x3 = 0
x2 ⊕ x3 = 0

Cutting Planes Proves Tseitin!

Tseitin Formulas: Let be a graph, be such that
 is odd. For each we have a variable .  

Tseitin : for each vertex , a constraint

G = (V, E) σ : V → {0,1}
Σv∈Vσ(v) e ∈ E xe

G,σ v ∈ V ⊕v∈e xe = σ(v)

Cutting Planes Proves Tseitin!

High Level:

1. Exhibit a quasipolynomial size Stabbing Planes proof of Tseitin

2. Translate that proof into Cutting Planes

Thm[DT20]: There are quasipolynomial size Cutting Planes proofs of TseitinG,σ

Stabbing Planes Proves Tseitin
Thm[BFI+18]: There are quasipolynomial size Stabbing Planes proofs of TseitinG,σ

Stabbing Planes Proves Tseitin

1. We describe an algorithm that, given an assignment , finds a
falsified constraint of Tseitin

y ∈ {0,1}n

G,σ(y)

Thm[BFI+18]: There are quasipolynomial size Stabbing Planes proofs of TseitinG,σ

Stabbing Planes Proves Tseitin

1. We describe an algorithm that, given an assignment , finds a
falsified constraint of Tseitin

2. “Implement” the algorithm in Stabbing Planes

y ∈ {0,1}n

G,σ(y)

Thm[BFI+18]: There are quasipolynomial size Stabbing Planes proofs of TseitinG,σ

Algorithm for Finding Falsified Clause

G = (V, E)

Given: to the variables of Tseitiny ∈ {0,1}n
G,σ

Algorithm for Finding Falsified Clause
Given: to the variables of Tseitiny ∈ {0,1}n

G,σ

G = (V, E)

Goal: find such that — a falsified constraintv ∈ V ⊕e∈v ye ≠ σ(v)

Algorithm for Finding Falsified Clause

G = (V, E)

Goal: find such that — a falsified constraintv ∈ V ⊕e∈v ye ≠ σ(v)
Algorithm proceeds in rounds:

• Each round maintains: U ⊆ V

Given: to the variables of Tseitiny ∈ {0,1}n
G,σ

Algorithm for Finding Falsified Clause

G = (V, E)

Goal: find such that — a falsified constraintv ∈ V ⊕e∈v ye ≠ σ(v)
Algorithm proceeds in rounds:

• Each round maintains: U ⊆ V

U

Given: to the variables of Tseitiny ∈ {0,1}n
G,σ

Algorithm for Finding Falsified Clause

G = (V, E)

Goal: find such that — a falsified constraintv ∈ V ⊕e∈v ye ≠ σ(v)
Algorithm proceeds in rounds:

• Each round maintains: and U ⊆ V κU = Σe∈E[U,V∖U] ye

U

Given: to the variables of Tseitiny ∈ {0,1}n
G,σ

Algorithm for Finding Falsified Clause

G = (V, E)

Goal: find such that — a falsified constraintv ∈ V ⊕e∈v ye ≠ σ(v)
Algorithm proceeds in rounds:

• Each round maintains: and U ⊆ V κU = Σe∈E[U,V∖U] ye

U

Edges with one endpoint in one in U V∖U

Given: to the variables of Tseitiny ∈ {0,1}n
G,σ

Algorithm proceeds in rounds:

• Each round maintains: and U ⊆ V κU = Σe∈E[U,V∖U] ye

Algorithm for Finding Falsified Clause

G = (V, E)

Goal: find such that — a falsified constraintv ∈ V ⊕e∈v ye ≠ σ(v)

U

E[U, V∖U]

Edges with one endpoint in one in U V∖U

Given: to the variables of Tseitiny ∈ {0,1}n
G,σ

Algorithm proceeds in rounds:

• Each round maintains: and s.t. U ⊆ V κU = Σe∈E[U,V∖U] ye σ(U) ≠ κU mod 2

Algorithm for Finding Falsified Clause

G = (V, E)

Goal: find such that — a falsified constraintv ∈ V ⊕e∈v ye ≠ σ(v)

U

E[U, V∖U]

Given: to the variables of Tseitiny ∈ {0,1}n
G,σ

Edges with one endpoint in one in U V∖U

Algorithm proceeds in rounds:

• Each round maintains: and s.t. U ⊆ V κU = Σe∈E[U,V∖U] ye σ(U) ≠ κU mod 2

Algorithm for Finding Falsified Clause

G = (V, E)

Goal: find such that — a falsified constraintv ∈ V ⊕e∈v ye ≠ σ(v)

U

E[U, V∖U]

Given: to the variables of Tseitiny ∈ {0,1}n
G,σ σ(U) := Σv∈Uσ(v)

Edges with one endpoint in one in U V∖U

Algorithm proceeds in rounds:

• Each round maintains: and s.t. U ⊆ V κU = Σe∈E[U,V∖U] ye σ(U) ≠ κU mod 2

Algorithm for Finding Falsified Clause

G = (V, E)

Goal: find such that — a falsified constraintv ∈ V ⊕e∈v ye ≠ σ(v)

U

E[U, V∖U]

Given: to the variables of Tseitiny ∈ {0,1}n
G,σ σ(U) := Σv∈Uσ(v)

Edges with one endpoint in one in U V∖U

 There is a falsified constraint in !
⟹ U

Algorithm proceeds in rounds:

• Each round maintains: and s.t. U ⊆ V κU = Σe∈E[U,V∖U] ye σ(U) ≠ κU mod 2

Algorithm for Finding Falsified Clause

G = (V, E)

Goal: find such that — a falsified constraintv ∈ V ⊕e∈v ye ≠ σ(v)

U

E[U, V∖U]

Given: to the variables of Tseitiny ∈ {0,1}n
G,σ σ(U) := Σv∈Uσ(v)

Edges with one endpoint in one in U V∖U

 There is a falsified constraint in !

For to be satisfiable we need  

 

⟹ U
U

Σv∈Uσ(v) ≡ Σv∈UΣv∈eye mod 2

Algorithm proceeds in rounds:

• Each round maintains: and s.t. U ⊆ V κU = Σe∈E[U,V∖U] ye σ(U) ≠ κU mod 2

Algorithm for Finding Falsified Clause

G = (V, E)

Goal: find such that — a falsified constraintv ∈ V ⊕e∈v ye ≠ σ(v)

U

E[U, V∖U]

Given: to the variables of Tseitiny ∈ {0,1}n
G,σ σ(U) := Σv∈Uσ(v)

Edges with one endpoint in one in U V∖U

 There is a falsified constraint in !

For to be satisfiable we need  

 

⟹ U
U

σ(U) ≡ Σv∈UΣv∈eye mod 2

Algorithm proceeds in rounds:

• Each round maintains: and s.t. U ⊆ V κU = Σe∈E[U,V∖U] ye σ(U) ≠ κU mod 2

Algorithm for Finding Falsified Clause

G = (V, E)

Goal: find such that — a falsified constraintv ∈ V ⊕e∈v ye ≠ σ(v)

U

E[U, V∖U]

Given: to the variables of Tseitiny ∈ {0,1}n
G,σ σ(U) := Σv∈Uσ(v)

Edges with one endpoint in one in U V∖U

≡ 2 ∑
u,v∈E

yuv + ∑
e∈E[U,V∖U]

ye mod 2

 There is a falsified constraint in !

For to be satisfiable we need  

 

⟹ U
U

σ(U) ≡ Σv∈UΣv∈eye mod 2

Algorithm proceeds in rounds:

• Each round maintains: and s.t. U ⊆ V κU = Σe∈E[U,V∖U] ye σ(U) ≠ κU mod 2

Algorithm for Finding Falsified Clause

G = (V, E)

Goal: find such that — a falsified constraintv ∈ V ⊕e∈v ye ≠ σ(v)

U

E[U, V∖U]

Given: to the variables of Tseitiny ∈ {0,1}n
G,σ σ(U) := Σv∈Uσ(v)

Edges with one endpoint in one in U V∖U

≡ 0 + ∑
e∈E[U,V∖U]

ye mod 2

 There is a falsified constraint in !

For to be satisfiable we need  

 

⟹ U
U

σ(U) ≡ Σv∈UΣv∈eye mod 2

≡ 2 ∑
u,v∈E

yuv + ∑
e∈E[U,V∖U]

ye mod 2

Algorithm proceeds in rounds:

• Each round maintains: and s.t. U ⊆ V κU = Σe∈E[U,V∖U] ye σ(U) ≠ κU mod 2

Algorithm for Finding Falsified Clause

G = (V, E)

Goal: find such that — a falsified constraintv ∈ V ⊕e∈v ye ≠ σ(v)

U

E[U, V∖U]

Given: to the variables of Tseitiny ∈ {0,1}n
G,σ σ(U) := Σv∈Uσ(v)

Edges with one endpoint in one in U V∖U

≡ 0 + κU mod 2

 There is a falsified constraint in !

For to be satisfiable we need  

 

⟹ U
U

σ(U) ≡ Σv∈UΣv∈eye mod 2

≡ 2 ∑
u,v∈E

yuv + ∑
e∈E[U,V∖U]

ye mod 2

Algorithm proceeds in rounds:

• Each round maintains: and s.t.

• Initially and

U ⊆ V κU = Σe∈E[U,V∖U] ye σ(U) ≠ κU mod 2
U = V κU = 0

Algorithm for Finding Falsified Clause

G = (V, E)

U

E[U, V∖U]

Goal: find such that — a falsified constraintv ∈ V ⊕e∈v ye ≠ σ(v)
Given: to the variables of Tseitiny ∈ {0,1}n

G,σ σ(U) := Σv∈Uσ(v)

Edges with one endpoint in one in U V∖U

Algorithm proceeds in rounds:

• Each round maintains: and s.t.

• Initially and

 Each round we divide in half

U ⊆ V κU = Σe∈E[U,V∖U] ye σ(U) ≠ κU mod 2
U = V κU = 0

→ U

Algorithm for Finding Falsified Clause

G = (V, E)

Goal: find such that — a falsified constraintv ∈ V ⊕e∈v ye ≠ σ(v)

U

E[U, V∖U]

Edges with one endpoint in one in U V∖U

Given: to the variables of Tseitiny ∈ {0,1}n
G,σ

Algorithm proceeds in rounds:

• Each round maintains: and s.t.

• Initially and

 Each round we divide in half

 Once

U ⊆ V κU = Σe∈E[U,V∖U] ye σ(U) ≠ κU mod 2
U = V κU = 0

→ U
→ U = {v}

Algorithm for Finding Falsified Clause

G = (V, E)

Goal: find such that — a falsified constraintv ∈ V ⊕e∈v ye ≠ σ(v)
Edges with one endpoint in one in U V∖U

v

Given: to the variables of Tseitiny ∈ {0,1}n
G,σ

Algorithm proceeds in rounds:

• Each round maintains: and s.t.

• Initially and

 Each round we divide in half

 Once we have a vertex such  

 that ,  
 a falsified constraint!

U ⊆ V κU = Σe∈E[U,V∖U] ye σ(U) ≠ κU mod 2
U = V κU = 0

→ U
→ U = {v}

σ(v) ≠ (κv = Σe:v∈eye) mod 2

Algorithm for Finding Falsified Clause

G = (V, E)

Goal: find such that — a falsified constraintv ∈ V ⊕e∈v ye ≠ σ(v)
Edges with one endpoint in one in U V∖U

v

Given: to the variables of Tseitiny ∈ {0,1}n
G,σ

1.

Algorithm for Finding Falsified Clause

G = (V, E)

Goal: find such that — a falsified constraintv ∈ V ⊕e∈v ye ≠ σ(v)
Algorithm proceeds in rounds:

• Each round maintains: and s.t. U ⊆ V κU = Σe∈E[U,V∖U] ye σ(U) ≠ κU mod 2
Edges with one endpoint in one in U V∖U

U

Given: to the variables of Tseitiny ∈ {0,1}n
G,σ

1. Pick a balanced partition  U = U1 ∪ U2

Algorithm for Finding Falsified Clause

G = (V, E)

Goal: find such that — a falsified constraintv ∈ V ⊕e∈v ye ≠ σ(v)
Algorithm proceeds in rounds:

• Each round maintains: and s.t. U ⊆ V κU = Σe∈E[U,V∖U] ye σ(U) ≠ κU mod 2
Edges with one endpoint in one in U V∖U

U

Given: to the variables of Tseitiny ∈ {0,1}n
G,σ

1. Pick a balanced partition  U = U1 ∪ U2

Algorithm for Finding Falsified Clause

G = (V, E)

Goal: find such that — a falsified constraintv ∈ V ⊕e∈v ye ≠ σ(v)

U1
U2

Algorithm proceeds in rounds:

• Each round maintains: and s.t. U ⊆ V κU = Σe∈E[U,V∖U] ye σ(U) ≠ κU mod 2
Edges with one endpoint in one in U V∖U

Given: to the variables of Tseitiny ∈ {0,1}n
G,σ

1. Pick a balanced partition

2. Query:  

 
 

U = U1 ∪ U2

a = Σe∈[U1,U2]ye

Algorithm for Finding Falsified Clause

G = (V, E)

Goal: find such that — a falsified constraintv ∈ V ⊕e∈v ye ≠ σ(v)

U1
U2

a

Edges with one endpoint in one in U V∖UAlgorithm proceeds in rounds:

• Each round maintains: and s.t. U ⊆ V κU = Σe∈E[U,V∖U] ye σ(U) ≠ κU mod 2

Given: to the variables of Tseitiny ∈ {0,1}n
G,σ

1. Pick a balanced partition

2. Query:  

 
 

U = U1 ∪ U2

Algorithm for Finding Falsified Clause

G = (V, E)

Goal: find such that — a falsified constraintv ∈ V ⊕e∈v ye ≠ σ(v)
Edges with one endpoint in one in U V∖U

U1
U2

a = Σe∈[U1,U2]ye b = Σe∈[U1,V∖U]ye

a b

Algorithm proceeds in rounds:

• Each round maintains: and s.t. U ⊆ V κU = Σe∈E[U,V∖U] ye σ(U) ≠ κU mod 2

Given: to the variables of Tseitiny ∈ {0,1}n
G,σ

1. Pick a balanced partition

2. Query:  

 
 
 

U = U1 ∪ U2

κU1
= a + b

Algorithm for Finding Falsified Clause

G = (V, E)

Goal: find such that — a falsified constraintv ∈ V ⊕e∈v ye ≠ σ(v)
Edges with one endpoint in one in U V∖U

U1
U2

a = Σe∈[U1,U2]ye b = Σe∈[U1,V∖U]ye

a b

Algorithm proceeds in rounds:

• Each round maintains: and s.t. U ⊆ V κU = Σe∈E[U,V∖U] ye σ(U) ≠ κU mod 2

Given: to the variables of Tseitiny ∈ {0,1}n
G,σ

1. Pick a balanced partition

2. Query:  

 
 
 

U = U1 ∪ U2

κU1
= a + b

Algorithm for Finding Falsified Clause

G = (V, E)

Goal: find such that — a falsified constraintv ∈ V ⊕e∈v ye ≠ σ(v)
Edges with one endpoint in one in U V∖U

U1
U2

a = Σe∈[U1,U2]ye b = Σe∈[U1,V∖U]ye

κU1

Algorithm proceeds in rounds:

• Each round maintains: and s.t. U ⊆ V κU = Σe∈E[U,V∖U] ye σ(U) ≠ κU mod 2

Given: to the variables of Tseitiny ∈ {0,1}n
G,σ

1. Pick a balanced partition

2. Query:  

 
 
 

U = U1 ∪ U2

Algorithm for Finding Falsified Clause
Goal: find such that — a falsified constraintv ∈ V ⊕e∈v ye ≠ σ(v)

Edges with one endpoint in one in U V∖U

a = Σe∈[U1,U2]ye b = Σe∈[U1,V∖U]ye

G = (V, E)

U1
U2

 and κU1
= a + b κU2

= a +(κU − b)

Algorithm proceeds in rounds:

• Each round maintains: and s.t. U ⊆ V κU = Σe∈E[U,V∖U] ye σ(U) ≠ κU mod 2

Given: to the variables of Tseitiny ∈ {0,1}n
G,σ

a

1. Pick a balanced partition

2. Query:  

 
 
 

U = U1 ∪ U2

 and κU1
= a + b κU2

= a +(κU − b)

Algorithm for Finding Falsified Clause
Goal: find such that — a falsified constraintv ∈ V ⊕e∈v ye ≠ σ(v)

Edges with one endpoint in one in U V∖U

a = Σe∈[U1,U2]ye b = Σe∈[U1,V∖U]ye

G = (V, E)

U1
U2

Algorithm proceeds in rounds:

• Each round maintains: and s.t. U ⊆ V κU = Σe∈E[U,V∖U] ye σ(U) ≠ κU mod 2

Given: to the variables of Tseitiny ∈ {0,1}n
G,σ

a

κU

1. Pick a balanced partition

2. Query:  

 
 
 

U = U1 ∪ U2

 and κU1
= a + b κU2

= a +(κU − b)

Algorithm for Finding Falsified Clause
Goal: find such that — a falsified constraintv ∈ V ⊕e∈v ye ≠ σ(v)

Edges with one endpoint in one in U V∖U

a = Σe∈[U1,U2]ye b = Σe∈[U1,V∖U]ye

G = (V, E)

U1
U2

Algorithm proceeds in rounds:

• Each round maintains: and s.t. U ⊆ V κU = Σe∈E[U,V∖U] ye σ(U) ≠ κU mod 2

Given: to the variables of Tseitiny ∈ {0,1}n
G,σ

a
b

κU

1. Pick a balanced partition

2. Query:  

 
 
 

U = U1 ∪ U2

 and κU1
= a + b κU2

= a +(κU − b)

Algorithm for Finding Falsified Clause
Goal: find such that — a falsified constraintv ∈ V ⊕e∈v ye ≠ σ(v)

Edges with one endpoint in one in U V∖U

a = Σe∈[U1,U2]ye b = Σe∈[U1,V∖U]ye

G = (V, E)

U1
U2

Algorithm proceeds in rounds:

• Each round maintains: and s.t. U ⊆ V κU = Σe∈E[U,V∖U] ye σ(U) ≠ κU mod 2

Given: to the variables of Tseitiny ∈ {0,1}n
G,σ

κU2

1. Pick a balanced partition

2. Query:  

 
 

3. Because , either 
 or  

U = U1 ∪ U2

σ(U) ≠ κU mod 2
σ(U1) ≠ κU1

mod 2 σ(U2) ≠ κU2
mod 2

Algorithm for Finding Falsified Clause
Goal: find such that — a falsified constraintv ∈ V ⊕e∈v ye ≠ σ(v)

Edges with one endpoint in one in U V∖U

a = Σe∈[U1,U2]ye b = Σe∈[U1,V∖U]ye

 and κU1
= a + b κU2

= a +(κU − b)

G = (V, E)

U1
U2

Algorithm proceeds in rounds:

• Each round maintains: and s.t. U ⊆ V κU = Σe∈E[U,V∖U] ye σ(U) ≠ κU mod 2

Given: to the variables of Tseitiny ∈ {0,1}n
G,σ

1. Pick a balanced partition

2. Query:  

 
 

3. Because , either 
 or  

 recurse on that one. 

U = U1 ∪ U2

σ(U) ≠ κU mod 2
σ(U1) ≠ κU1

mod 2 σ(U2) ≠ κU2
mod 2

→

Algorithm for Finding Falsified Clause
Goal: find such that — a falsified constraintv ∈ V ⊕e∈v ye ≠ σ(v)

Edges with one endpoint in one in U V∖U

a = Σe∈[U1,U2]ye b = Σe∈[U1,V∖U]ye

 and κU1
= a + b κU2

= a +(κU − b)

G = (V, E)

U1
U2

Algorithm proceeds in rounds:

• Each round maintains: and s.t. U ⊆ V κU = Σe∈E[U,V∖U] ye σ(U) ≠ κU mod 2

Given: to the variables of Tseitiny ∈ {0,1}n
G,σ

1. Pick a balanced partition

2. Query:  

 
 

3. Because , either 
 or  

 recurse on that one. 

U = U1 ∪ U2

σ(U) ≠ κU mod 2
σ(U1) ≠ κU1

mod 2 σ(U2) ≠ κU2
mod 2

→

Algorithm for Finding Falsified Clause
Goal: find such that — a falsified constraintv ∈ V ⊕e∈v ye ≠ σ(v)

Edges with one endpoint in one in U V∖U

a = Σe∈[U1,U2]ye b = Σe∈[U1,V∖U]ye

 and κU1
= a + b κU2

= a +(κU − b)

G = (V, E)

U1

Algorithm proceeds in rounds:

• Each round maintains: and s.t. U ⊆ V κU = Σe∈E[U,V∖U] ye σ(U) ≠ κU mod 2

U

Given: to the variables of Tseitiny ∈ {0,1}n
G,σ

Implementation in Stabbing Planes

1. Pick a balanced partition

2. Query:  

 

3. Either or
; recurse on that one. 

U = U1 ∪ U2

σ(U1) ≠ κU1
mod 2

σ(U2) ≠ κU2
mod 2

a = Σe∈[U1,U2]ye b = Σe∈[U1,V∖U]ye

Implementation in Stabbing Planes
To implement in SP we need to perform the queries and
a b

1. Pick a balanced partition

2. Query:  

 

3. Either or
; recurse on that one. 

U = U1 ∪ U2

σ(U1) ≠ κU1
mod 2

σ(U2) ≠ κU2
mod 2

a = Σe∈[U1,U2]ye b = Σe∈[U1,V∖U]ye

Implementation in Stabbing Planes
To implement in SP we need to perform the queries and

 Observe that the possible values of and are in
a b

→ a b {0,…, |E |}

1. Pick a balanced partition

2. Query:  

 

3. Either or
; recurse on that one. 

U = U1 ∪ U2

σ(U1) ≠ κU1
mod 2

σ(U2) ≠ κU2
mod 2

a = Σe∈[U1,U2]ye b = Σe∈[U1,V∖U]ye

Implementation in Stabbing Planes
To implement in SP we need to perform the queries and

 Observe that the possible values of and are in

 We can determine the value of and in depth SP trees

a b
→ a b {0,…, |E |}
→ a b log |E |

1. Pick a balanced partition

2. Query:  

 

3. Either or
; recurse on that one. 

U = U1 ∪ U2

σ(U1) ≠ κU1
mod 2

σ(U2) ≠ κU2
mod 2

a = Σe∈[U1,U2]ye b = Σe∈[U1,V∖U]ye

Implementation in Stabbing Planes

1. Pick a balanced partition

2. Query:  

 

3. Either or
; recurse on that one. 

U = U1 ∪ U2

σ(U1) ≠ κU1
mod 2

σ(U2) ≠ κU2
mod 2

a = Σe∈[U1,U2]ye b = Σe∈[U1,V∖U]ye

a ≥ |E | /2a ≤ |E | /2 − 1

To implement in SP we need to perform the queries and

 Observe that the possible values of and are in

 We can determine the value of and in depth SP trees

a b
→ a b {0,…, |E |}
→ a b log |E |

Implementation in Stabbing Planes

1. Pick a balanced partition

2. Query:  

 

3. Either or
; recurse on that one. 

U = U1 ∪ U2

σ(U1) ≠ κU1
mod 2

σ(U2) ≠ κU2
mod 2

a = Σe∈[U1,U2]ye b = Σe∈[U1,V∖U]ye

a ≥ |E | /2a ≤ |E | /2 − 1
a ≥ 3 |E | /4a ≤ 3 |E | /4 − 1

To implement in SP we need to perform the queries and

 Observe that the possible values of and are in

 We can determine the value of and in depth SP trees

a b
→ a b {0,…, |E |}
→ a b log |E |

Implementation in Stabbing Planes

1. Pick a balanced partition

2. Query:  

 

3. Either or
; recurse on that one. 

U = U1 ∪ U2

σ(U1) ≠ κU1
mod 2

σ(U2) ≠ κU2
mod 2

a = Σe∈[U1,U2]ye b = Σe∈[U1,V∖U]ye

a ≥ |E | /2a ≤ |E | /2 − 1
a ≥ 3 |E | /4a ≤ 3 |E | /4 − 1

To implement in SP we need to perform the queries and

 Observe that the possible values of and are in

 We can determine the value of and in depth SP trees

a b
→ a b {0,…, |E |}
→ a b log |E |

Implementation in Stabbing Planes

1. Pick a balanced partition

2. Query:  

 

3. Either or
; recurse on that one. 

U = U1 ∪ U2

σ(U1) ≠ κU1
mod 2

σ(U2) ≠ κU2
mod 2

a = Σe∈[U1,U2]ye b = Σe∈[U1,V∖U]ye
a = 0, a = 1,…, a = max

a

To implement in SP we need to perform the queries and

 Observe that the possible values of and are in

 We can determine the value of and in depth trees

a b
→ a b {0,…, |E |}
→ a b log |E |

Implementation in Stabbing Planes

1. Pick a balanced partition

2. Query:  

 

3. Either or
; recurse on that one. 

U = U1 ∪ U2

σ(U1) ≠ κU1
mod 2

σ(U2) ≠ κU2
mod 2

a = Σe∈[U1,U2]ye b = Σe∈[U1,V∖U]ye

b = 0, b = 1,…, b = max

a

bbb b b

To implement in SP we need to perform the queries and

 Observe that the possible values of and are in

 We can determine the value of and in depth trees 

a b
→ a b {0,…, |E |}
→ a b log |E |

Implementation in Stabbing Planes

1. Pick a balanced partition

2. Query:  

 

3. Either or
; recurse on that one. 

U = U1 ∪ U2

σ(U1) ≠ κU1
mod 2

σ(U2) ≠ κU2
mod 2

a = Σe∈[U1,U2]ye b = Σe∈[U1,V∖U]ye

b = 0, b = 1,…, b = max

a

bbb b b

To implement in SP we need to perform the queries and

 Observe that the possible values of and are in

 We can determine the value of and in depth trees 
 At each leaf we know value of and , so we can recurse

a b
→ a b {0,…, |E |}
→ a b log |E |
→ a b

Implementation in Stabbing Planes

1. Pick a balanced partition

2. Query:  

 

3. Either or
; recurse on that one. 

U = U1 ∪ U2

σ(U1) ≠ κU1
mod 2

σ(U2) ≠ κU2
mod 2

a = Σe∈[U1,U2]ye b = Σe∈[U1,V∖U]ye

To implement in SP we need to perform the queries and

 Observe that the possible values of and are in

 We can determine the value of and in depth trees 
 At each leaf we know value of and , so we can recurse

a b
→ a b {0,…, |E |}
→ a b log |E |
→ a b

Complexity:
• roundslog |V |

Implementation in Stabbing Planes

1. Pick a balanced partition

2. Query:  

 

3. Either or
; recurse on that one. 

U = U1 ∪ U2

σ(U1) ≠ κU1
mod 2

σ(U2) ≠ κU2
mod 2

a = Σe∈[U1,U2]ye b = Σe∈[U1,V∖U]ye

To implement in SP we need to perform the queries and

 Observe that the possible values of and are in

 We can determine the value of and in depth trees 
 At each leaf we know value of and , so we can recurse

a b
→ a b {0,…, |E |}
→ a b log |E |
→ a b

Complexity:
• rounds

• Each round takes two depth  

trees

log |V |

≤ log |E |

Implementation in Stabbing Planes

1. Pick a balanced partition

2. Query:  

 

3. Either or
; recurse on that one. 

U = U1 ∪ U2

σ(U1) ≠ κU1
mod 2

σ(U2) ≠ κU2
mod 2

a = Σe∈[U1,U2]ye b = Σe∈[U1,V∖U]ye

To implement in SP we need to perform the queries and

 Observe that the possible values of and are in

 We can determine the value of and in depth trees 
 At each leaf we know value of and , so we can recurse

a b
→ a b {0,…, |E |}
→ a b log |E |
→ a b

Complexity:
• rounds

• Each round takes two depth  

trees

 total depth:  

log |V |

≤ log |E |
→ 2 log |E | log |V |

= O(log2 n)

Implementation in Stabbing Planes

1. Pick a balanced partition

2. Query:  

 

3. Either or
; recurse on that one. 

U = U1 ∪ U2

σ(U1) ≠ κU1
mod 2

σ(U2) ≠ κU2
mod 2

a = Σe∈[U1,U2]ye b = Σe∈[U1,V∖U]ye

To implement in SP we need to perform the queries and

 Observe that the possible values of and are in

 We can determine the value of and in depth trees 
 At each leaf we know value of and , so we can recurse

a b
→ a b {0,…, |E |}
→ a b log |E |
→ a b

Complexity:
SP proofs are binary trees 
depth size O(log2 n) → 2O(log2 n)

Cutting Planes Proves Tseitin!
Thm: There are quasipolynomial size Cutting Planes proofs of Tseitin

High Level:

1. Exhibit a quasipolynomial size Stabbing Planes proof of Tseitin

2. Translate that proof into Cutting Planes

In fact, almost every SP proof can be translated into CP!

Cutting Planes Proves Tseitin!
Thm: There are quasipolynomial size Cutting Planes proofs of Tseitin

High Level:

1. Exhibit a quasipolynomial size Stabbing Planes proof of Tseitin

2. Translate that proof into Cutting Planes
Thm [FGI+21] 
Any Stabbing Planes proof with coefficients at most (SP*) can be
translated into Cutting Planes with a quasi-polynomial blow-up in the size.

2𝗉𝗈𝗅𝗒𝗅𝗈𝗀n

Cutting Planes Proves Tseitin!

Idea:  
1. Turn the proof SP* into a facelike SP proof — one that branches on the faces
of the current polytope

Thm [FGI+21] 
Any Stabbing Planes proof with coefficients at most (SP*) can be
translated into Cutting Planes with a quasi-polynomial blow-up in the size.

2𝗉𝗈𝗅𝗒𝗅𝗈𝗀 n

Cutting Planes Proves Tseitin!

Idea:  
1. Turn the proof SP* into a facelike SP proof — one that branches on the faces
of the current polytope (causes a quasipolynomial blow-up)

Thm [FGI+21] 
Any Stabbing Planes proof with coefficients at most (SP*) can be
translated into Cutting Planes with a quasi-polynomial blow-up in the size.

2𝗉𝗈𝗅𝗒𝗅𝗈𝗀 n

Cutting Planes Proves Tseitin!
Thm [FGI+21] 
Any Stabbing Planes proof with coefficients at most (SP*) can be
translated into Cutting Planes with a quasi-polynomial blow-up in the size.

2𝗉𝗈𝗅𝗒𝗅𝗈𝗀 n

Idea:  
1. Turn the proof SP* into a facelike SP proof — one that branches on the faces
of the current polytope (causes a quasipolynomial blow-up)

2. Show that facelike SP proofs are equivalent to Cutting Planes proofs

