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CX
Input: set of linear inequalities Ax > b
inear objective function cx
Output: Solution ze R" N\
oy % P
Satisfying Az > b
Maximizing CZ

o Broadly applicable framework for optimization.
o Efficiently solvable!

However, many important problems phrased most naturally as finding integer

solutions to a linear program
o e.g. maxCut, maxSAIl, maxClique, etc.
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Input: set of linear inequalities Ax > b
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Output: Integer solution z € Z"
Satisfying Az > b
Maximizing CZ

Extremely general framework!
... but NP-complete.
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Branch-and-Cut

Idea: Try to use linear programming to solve

CX

Integer programming!

Run a linear program
@
o [f solution is integral, done! Z\ r

o QOtherwise, refine the polytope until an integer
solution can be found by linear programming

— remove non-integer solutions by adding
additional constraints to P

O
Recuse Remove this point so better solutions can be found!
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1. DPLL-style branching on linear inequalities
P N b}

2. Cutting planes

Branching —“Break P up into subpolytopes”

1. Heuristically choose an integer-linear
inequality ax > b Preserves integer

2. Recurseon PN {ax>b}and PN {ax < b — 1} { solutions! x € Z" satisfies
ax <b-—1lorax>>b
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Branch-and-Cut

Branch-and-Cut has two ways of removing non-
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integer points from P:

1. DPLL-style branching on linear inequalities

Technically: these are
Gomory-Chvatal cutting
planes.

2. Cutting planes

Cutting Planes — “Remove corners of P”

— Other cutting planes
1. Choose an integer-linear inequality ax > b, and d €| have been considered as

s.t. every point in P satisfies ax > b and d divides a| well.

— What we talk about

2. Add (a/d)x > [b/d] Preserves integer points |
today applies to them as

well
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Idea: Try to use linear programming to solve
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Integer programming!

Branch and Cut Template

1. Solve the linear program.

2. If solution z Is non-integral, refine polytope by:

) Branching.
) Cutting. If the polytope is refined only
3. Repeat. by cutting, then this is known

as a cutting planes algorithm
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Formalizing Modern IP Solvers

[Chvatal73] Introduced the Cutting Planes proof system to formalize
cutting planes algorithms.

* Only captures the cutting part of branch-and-cut, not branching.

* Even so, it iIs an important and heavily studied proof system!
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Suppose Ax > b has no integer solutions

Analogous to running DPLL on unsatisfiable CNF
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Proving CNF Formulas

In order to talk about CP as a proof system, we need to encode CNF formulas as
a system of linear inequalities — easy because integer programming is NP-
complete!

1. Convert clauses into inequalities:
X1V—Ix2V—Ix3Vx4 —> X1+(1—X2)+(1—X3)+X421

2. Add boolean constraints:
x>0 and x; <1
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Cutting Planes Proofs

Lower bounds on Cutting Planes proofs — lower bounds on the runtime of
cutting planes algorithms

© [Pudlak97] (also [BPR97] under restriction): Refuting that a graph has both a k
-clique and a (k — 1)-coloring requires exponential size Cutting Planes proofs

o [FPPR17, HP17]: Uniformly random CNF formulas require exponential size
Cutting Planes refutations

However... Cutting Planes does not capture modern algorithms for IP (branch-
and-cut)
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|IBFI+18] Introduced Stabbing Planes to formalize branch-and-cut.
o DPLL querying integer linear inequalities!

o No Cutting Planes rule needed!
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std—y \ide hxﬁt—:/ y:xzt hx <t—1
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Stabbing Planes

Claim
The execution of a branch-and-cut solver produces a Stabbing Planes proof.

— Stabbing Planes rule simulates both branching and cutting!

Claim: Stabbing Planes simulates Cutting Planes proofs

Non-negative linear combinatiory

Cleb—V\ZXZb

% Pn{ax > b}

In SP query: ax <b—1

/|

PN {ax < b — 1} is empty! So this only increases the size by 1!
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Stabbing Planes

Claim
The execution of a branch-and-cut solver produces a Stabbing Planes proof.

— Stabbing Planes rule simulates both branching and cutting!

Claim: Stabbing Planes simulates Cutting Planes proofs

Resulting Stabbing Planes Proof:
> (). Does there always exist an
... SP proof of size s and depth d?

| D
If the CP proof had size s, depth d /\

— SP proof has size s, depth s % %
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One direction: Cutting Planes

Can prove Tseitin [DT20]!
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Cutting Planes Proves Tseitin!

The Tseitin formulas are the canonical family of formulas hard to prove in many
algebraic proof systems — e.g. PCR from last time

Tseitin Formulas: Let G = (V, E) beagraph,c : V — {0,1} be such that
2.,y0(v) is odd. For each e € E we have a variable x,.

for each vertex v € V, aconstraint @ ., x, = o(v)

x; A9 g
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Cutting Planes Proves Tseitin!

Thm[DT20]: There are quasipolynomial size Cutting Planes proofs of TseitinG, -

High Level:
1. EXxhibit a quasipolynomial size Stabbing Planes proof of Tseitin
2. Translate that proof into Cutting Planes
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Thm([BFI+18]: There are quasipolynomial size Stabbing Planes proofs of TseitinG’ -

1. We describe an algorithm that, given an assignment y € {0,1}", finds a
falsified constraint of Tseiting ()
2. “Implement” the algorithm in Stabbing Planes
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Given: y € {0,1}" to the variables of Tseiting ,,
Goal: find v € Vsuchthat @, ., y, # o(v) — afalsified constraint

Algorithm proceeds in rounds: | Edges with one endpoint in U one in V\U
» Each round maintains: U C Vand ki = Z,c g\ 1) Ve St 0(U) # Ky mod 2

» Initially U = Vand k;; = 0
— Each round we divide U in half

— Once U = {v} we have a vertex such

that o(v) # (k, = 2,.,c,Y,) mod 2,
a falsified constraint!
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To implement in SP we need to perform the queries a and b
— Observe that the possible values of @ and b are in {0,..., | E| }

— We can determine the value of @ and b in log | E | depth trees

— At each leaf we know value of a and b, so we can recurse
l v
a = Zee[Ul,Uz]ye b = Zee[Ul,V\U]ye
3. Either o(U;) # k;, mod 2 or

o(U,) # Ky, mod 2; recurse on that one. b=0,b=1,..,b=max

1. Pick a balanced partition U = U, U U,
2. Query:
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Implementation in Stabbing Planes

To implement in SP we need to perform the queries a and b
— Observe that the possible values of @ and b are in {0,..., | E| }

— We can determine the value of @ and b in log | E | depth trees
— At each leaf we know value of a and b, so we can recurse

1. Pick a balanced partiton U = U; U U, || Complexity:
2. Query: SP proofs are binary trees

2 : O(log2 n)
q — Zee[Ul,Uz]ye b= ,ciu o depth O(log“n) — size 2

3. Either o(U;) # k;, mod 2 or

o(U,) # Ky, mod 2; recurse on that one.



Cutting Planes Proves Tseitin!

Thm: There are quasipolynomial size Cutting Planes proofs of Tseitin

High Level:
1. EXxhibit a quasipolynomial size Stabbing Planes proof of Tseitin
2. Translate that proof into Cutting Planes

In fact, almost every SP proof can be translated into CP!
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Cutting Planes Proves Tseitin!

Thm [FGl+21]

Any Stabbing Planes proof with coefficients at most 2P°Y'°8 ” (SP*) can be
translated into Cutting Planes with a quasi-polynomial blow-up in the size.

ldea:

1. Turn the proof SP* into a facelike SP proof — one that branches on the faces
of the current polytope (causes a quasipolynomial blow-up)

2. Show that facelike SP proofs are equivalent to Cutting Planes proofs



