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Broadly applicable framework for optimization.
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However, many important problems phrased most naturally as finding integer 
solutions to a linear program


e.g. maxCut, maxSAT, maxClique, etc.
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Extremely general framework!

… but NP-complete.
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Integer Programming (IP)

How? Branch-and-Cut! 
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If solution is integral, done!

Otherwise, refine the polytope until an integer 
solution can be found by linear programming 

 remove non-integer solutions by adding 
     additional constraints to 

Recuse

→
P

Idea: Try to use linear programming to solve 
integer programming!

z

Remove this point so better solutions can be found!
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Branch-and-Cut
Branch-and-Cut has two ways of removing non-
integer points from :
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Cutting Planes — “Remove corners of ” 
1. Choose an integer-linear inequality , and  

s.t. every point in  satisfies  and  divides 
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Technically: these are 
Gomory-Chvatal cutting 
planes.  

 Other cutting planes 
have been considered as 
well. 


 What we talk about 
today applies to them as 
well

→

→
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Branch and Cut Template

1. Solve the linear program.


2. If solution  is non-integral, refine polytope by:

i) Branching.

ii) Cutting.


3.  Repeat.

z

Idea: Try to use linear programming to solve 
integer programming!

If the polytope is refined only 
by cutting, then this is known 
as a cutting planes algorithm
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[Chvatal73] Introduced the Cutting Planes proof system to formalize 
cutting planes algorithms. 


• Only captures the cutting part of branch-and-cut, not branching.


• Even so, it is an important and heavily studied proof system!
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Proving CNF Formulas
In order to talk about CP as a proof system, we need to encode CNF formulas as 
a system of linear inequalities — easy because integer programming is NP-
complete!

1. Convert clauses into inequalities: 

                

2. Add boolean constraints:

              and     

x1 ∨ ¬x2 ∨ ¬x3 ∨ x4 → x1 + (1 − x2) + (1 − x3) + x4 ≥ 1

xi ≥ 0 xi ≤ 1
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However… Cutting Planes does not capture modern algorithms for IP (branch-
and-cut)
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Claim 
The execution of a branch-and-cut solver produces a Stabbing Planes proof.

 Stabbing Planes rule simulates both branching and cutting!→
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. Does there always exist an 

SP proof of size  and depth ?

Q
s d
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One direction: Cutting Planes

Can prove Tseitin [DT20]!
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Cutting Planes Proves Tseitin!

Tseitin Formulas: Let  be a graph,  be such that 
 is odd. For each  we have a variable .  

Tseitin : for each vertex , a constraint 

G = (V, E) σ : V → {0,1}
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Cutting Planes Proves Tseitin!

High Level: 

1. Exhibit a quasipolynomial size Stabbing Planes proof of Tseitin

2. Translate that proof into Cutting Planes

Thm[DT20]: There are quasipolynomial size Cutting Planes proofs of TseitinG,σ



Stabbing Planes Proves Tseitin
Thm[BFI+18]: There are quasipolynomial size Stabbing Planes proofs of TseitinG,σ
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Stabbing Planes Proves Tseitin

1. We describe an algorithm that, given an assignment , finds a 
falsified constraint of Tseitin 


2. “Implement” the algorithm in Stabbing Planes
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Thm[BFI+18]: There are quasipolynomial size Stabbing Planes proofs of TseitinG,σ
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3. Either  or 
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U = U1 ∪ U2

σ(U1) ≠ κU1
mod 2
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mod 2
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 At each leaf we know value of  and , so we can recurse 

a b
→ a b {0,…, |E |}
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Implementation in Stabbing Planes

1. Pick a balanced partition 

2. Query:   

 

3. Either  or 
; recurse on that one. 

U = U1 ∪ U2

σ(U1) ≠ κU1
mod 2

σ(U2) ≠ κU2
mod 2

a = Σe∈[U1,U2]ye b = Σe∈[U1,V∖U]ye

To implement in SP we need to perform the queries  and 

 Observe that the possible values of  and  are in 

 We can determine the value of  and  in  depth trees 
 At each leaf we know value of  and , so we can recurse 

a b
→ a b {0,…, |E |}
→ a b log |E |
→ a b

Complexity:  
SP proofs are binary trees 
depth   size O(log2 n) → 2O(log2 n)
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In fact, almost every SP proof can be translated into CP!
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Cutting Planes Proves Tseitin!
Thm [FGI+21] 
Any Stabbing Planes proof with coefficients at most  (SP*) can be 
translated into Cutting Planes with a quasi-polynomial blow-up in the size.

2𝗉𝗈𝗅𝗒𝗅𝗈𝗀 n

Idea:  
1. Turn the proof SP* into a facelike SP proof — one that branches on the faces 
of the current polytope (causes a quasipolynomial blow-up)

2. Show that facelike SP proofs are equivalent to Cutting Planes proofs


