Integer Programming and IP
Proof Systems

Noah Fleming
University of California, San Diego

Linear Programming

Input: set of linear inequalities Ax > b

Linear Programming

Input: set of linear inequalities Ax > b

Which defines a polytope P = {x : Ax > b}

Linear Programming

Input: set of linear inequalities Ax > b
inear objective function cx

CX

Linear Programming

Input: set of linear inequalities Ax > b
inear objective function cx

Output: Solution ze R”
Satisfying Az > b
Maximizing CZ

CX

Linear Programming

Input: set of linear inequalities Ax > b
inear objective function cx

Output: Solution ze R”
Satisfying Az > b
Maximizing CZ

CX

Linear Programming

Input: set of linear inequalities Ax > b
inear objective function cx

Output: Solution ze R”
Satisfying Az > b
Maximizing CZ

o Broadly applicable framework for optimization.
o Efficiently solvable!

CX

Linear Programming

CX
Input: set of linear inequalities Ax > b
inear objective function cx
Output: Solution ze R" N\
oy % P
Satisfying Az > b
Maximizing CZ

o Broadly applicable framework for optimization.
o Efficiently solvable!

However, many important problems phrased most naturally as finding integer

solutions to a linear program
o e.g. maxCut, maxSAIl, maxClique, etc.

Integer Programming (IP)

Input: set of linear inequalities Ax > b
inear objective function cx

Output: Integer solution z € Z"
Satisfying Az > b
Maximizing CZ

CX

Integer Programming (IP)

Input: set of linear inequalities Ax > b
inear objective function cx

Output: Integer solution z € Z"
Satisfying Az > b
Maximizing CZ

CX

Integer Programming (IP)

Input: set of linear inequalities Ax > b
inear objective function cx

Output: Integer solution z € Z"
Satisfying Az > b
Maximizing CZ

Extremely general framework!
... but NP-complete.

CX

Integer Programming (IP)

Nonetheless, Integer programs are solved
extremely fast in practice!

CX

Integer Programming (IP)

Nonetheless, Integer programs are solved
extremely fast in practice!

How? Branch-and-Cut!

CX

Branch-and-Cut

Idea: Try to use linear programming to solve

Integer programming!

CX

Branch-and-Cut

Idea: Try to use linear programming to solve

Integer programming!

Run a linear program

CX

Branch-and-Cut

Idea: Try to use linear programming to solve

Integer programming!

Run a linear program

O |f solution is integral, done!

CX

Branch-and-Cut

Idea: Try to use linear programming to solve

Integer programming!

Run a linear program
O |f solution is integral, done!

o QOtherwise, refine the polytope until an integer
solution can be found by linear programming

CX

Branch-and-Cut

Idea: Try to use linear programming to solve

Integer programming!

Run a linear program
O |f solution is integral, done!

o QOtherwise, refine the polytope until an integer
solution can be found by linear programming

— remove non-integer solutions by adding
additional constraints to P

CX

Branch-and-Cut

Idea: Try to use linear programming to solve

CX

Integer programming!

Run a linear program
@
o [f solution is integral, done! Z\ r

o QOtherwise, refine the polytope until an integer
solution can be found by linear programming

— remove non-integer solutions by adding
additional constraints to P

Remove this point so better solutions can be found!

Branch-and-Cut

Idea: Try to use linear programming to solve

CX

Integer programming!

Run a linear program
@
o [f solution is integral, done! Z\ r

o QOtherwise, refine the polytope until an integer
solution can be found by linear programming

— remove non-integer solutions by adding
additional constraints to P

O
Recuse Remove this point so better solutions can be found!

Branch-and-Cut

Branch-and-Cut has two ways of removing non-
integer points from P:

1. DPLL-style branching on linear inequalities

2. Cutting planes

CX

Branch-and-Cut

Branch-and-Cut has two ways of removing non-
integer points from P:

1. DPLL-style branching on linear inequalities

2. Cutting planes

Branching —“Break P up into subpolytopes”

CX

Branch-and-Cut

Branch-and-Cut has two ways of removing non-
integer points from P:

1. DPLL-style branching on linear inequalities

2. Cutting planes

Branching —“Break P up into subpolytopes”

1. Heuristically choose an integer-linear
inequality ax > b

CX

Branch-and-Cut

Branch-and-Cut has two ways of removing non-
integer points from P:

1. DPLL-style branching on linear inequalities

2. Cutting planes

Branching —“Break P up into subpolytopes”
1. Heuristically choose an integer-linear

inequality ax > b
2. Break PintoPN{ax>bland PN {ax <b—1}

CX

Branch-and-Cut

Branch-and-Cut has two ways of removing non-
integer points from P:

CX

1. DPLL-style branching on linear inequalities

2. Cutting planes

Branching —“Break P up into subpolytopes”

1. Heuristically choose an integer-linear ax <b-1/ /Jax>b
inequality ax > b

2. Break PintoPN{ax>bland PN {ax <b—1}

Branch-and-Cut

Branch-and-Cut has two ways of removing non-
integer points from P:

CX

1. DPLL-style branching on linear inequalities

2. Cutting planes

Branching —“Break P up into subpolytopes”

1. Heuristically choose an integer-linear ax <b-1/ /Jax>b
inequality ax > b

2. Break PintoPN{ax>bland PN {ax <b—1}

Branch-and-Cut

Branch-and-Cut has two ways of removing non-
integer points from P:

CX

1. DPLL-style branching on linear inequalities
P N b}

2. Cutting planes

Branching —“Break P up into subpolytopes”

1. Heuristically choose an integer-linear
inequality ax > b Preserves integer

2. Break Pinto PN {ax > b} and PN {ax < b — 1} < solutions! x € Z" satisfies
ax <b-—1lorax>>b

Branch-and-Cut

Branch-and-Cut has two ways of removing non-
integer points from P:

CX

1. DPLL-style branching on linear inequalities
P N b}

2. Cutting planes

Branching —“Break P up into subpolytopes”

1. Heuristically choose an integer-linear
inequality ax > b Preserves integer

2. Recurseon PN {ax>b}and PN {ax < b — 1} { solutions! x € Z" satisfies
ax <b-—1lorax>>b

Branch-and-Cut

Branch-and-Cut has two ways of removing non-
integer points from P:

1. DPLL-style branching on linear inequalities

2. Cutting planes

Cutting Planes — “Remove corners of P”

CX

Branch-and-Cut

Branch-and-Cut has two ways of removing non-

CX

integer points from P:

1. DPLL-style branching on linear inequalities

2. Cutting planes

Cutting Planes — “Remove corners of P”

1. Choose an integer-linear inequality ax > b, and d € 72V

s.t. every point in P satisfies ax > b and d divides a <
ax -~

Branch-and-Cut

Branch-and-Cut has two ways of removing non-

CX

integer points from P:

1. DPLL-style branching on linear inequalities

2. Cutting planes

Cutting Planes — “Remove corners of P”

1. Choose an integer-linear inequality ax > b, and d € 72V
s.t. every point in P satisfies ax > b and d divides a

2. Add (a/d)x > [bld)

ax > b

Branch-and-Cut

Branch-and-Cut has two ways of removing non-

CX

integer points from P:
1. DPLL-style branching on linear inequalities

2. Cutting planes

Cutting Planes — “Remove corners of P”

1. Choose an integer-linear inequality ax > b, and d € 72V
s.t. every point in P satisfies ax > b and d divides a (@/d)x = |b/d]

2. Add (a/d)x > [bld)

Branch-and-Cut

Branch-and-Cut has two ways of removing non-

CX

integer points from P:
1. DPLL-style branching on linear inequalities

2. Cutting planes

Cutting Planes — “Remove corners of P”

1. Choose an integer-linear inequality ax > b, and d € 72V
s.t. every point in P satisfies ax > b and d divides a (@/d)x = |b/d]

2. Add (a/d)x > [b/d] Preserves integer points in P

Branch-and-Cut

Branch-and-Cut has two ways of removing non-

CX

integer points from P:

1. DPLL-style branching on linear inequalities

Technically: these are
Gomory-Chvatal cutting
planes.

2. Cutting planes

Cutting Planes — “Remove corners of P”

— Other cutting planes
1. Choose an integer-linear inequality ax > b, and d €| have been considered as

s.t. every point in P satisfies ax > b and d divides a| well.

— What we talk about

2. Add (a/d)x > [b/d] Preserves integer points |
today applies to them as

well

Branch-and-Cut

Idea: Try to use linear programming to solve

Integer programming!

Branch and Cut Template

1. Solve the linear program.

2. If solution z Is non-integral, refine polytope by:
) Branching.
i) Cutting.

3. Repeat.

CX

Branch-and-Cut

Idea: Try to use linear programming to solve

Integer programming!

Branch and Cut Template

1. Solve the linear program.

2. If solution z Is non-integral, refine polytope by:
) Branching.
i) Cutting.

3. Repeat.

CX

Branch-and-Cut

Idea: Try to use linear programming to solve

Integer programming!

Branch and Cut Template

1. Solve the linear program.

2. If solution Z is non-integral, refine polytope by:
) Branching.
i) Cutting.

3. Repeat.

CX

Branch-and-Cut

Idea: Try to use linear programming to solve

Integer programming!

Branch and Cut Template

1. Solve the linear program.

2. If solution Z is non-integral, refine polytope by:
) Branching.
i) Cutting.

3. Repeat.

CX

Branch-and-Cut

Idea: Try to use linear programming to solve

Integer programming!

Branch and Cut Template

1. Solve the linear program.

2. If solution Z is non-integral, refine polytope by:
) Branching.
i) Cutting.

3. Repeat.

CX

Branch-and-Cut

Idea: Try to use linear programming to solve

Integer programming!

Branch and Cut Template

1. Solve the linear program.

2. If solution Z is non-integral, refine polytope by:
) Branching.
i) Cutting.

3. Repeat.

CX

Branch-and-Cut

Idea: Try to use linear programming to solve

Integer programming!

Branch and Cut Template

1. Solve the linear program.

2. If solution Z is non-integral, refine polytope by:
) Branching.
i) Cutting.

3. Repeat.

CX

Branch-and-Cut

Idea: Try to use linear programming to solve

Integer programming!

Branch and Cut Template

1. Solve the linear program.

2. If solution Z is non-integral, refine polytope by:
) Branching.
i) Cutting.

3. Repeat.

CX

Branch-and-Cut

Idea: Try to use linear programming to solve

Integer programming!

Branch and Cut Template

1. Solve the linear program.

2. If solution Z is non-integral, refine polytope by:
) Branching.
i) Cutting.

3. Repeat.

CX

Branch-and-Cut

Idea: Try to use linear programming to solve

Integer programming!

Branch and Cut Template

1. Solve the linear program.

2. If solution z Is non-integral, refine polytope by:
) Branching.
i) Cutting.

3. Repeat.

CX

Branch-and-Cut

Idea: Try to use linear programming to solve

CX

Integer programming!

Branch and Cut Template

1. Solve the linear program.

2. If solution z Is non-integral, refine polytope by:

) Branching.
) Cutting. If the polytope is refined only
3. Repeat. by cutting, then this is known

as a cutting planes algorithm

Formalizing Modern IP Solvers

[Chvatal73] Introduced the Cutting Planes proof system to formalize
cutting planes algorithms.

Formalizing Modern IP Solvers

[Chvatal73] Introduced the Cutting Planes proof system to formalize
cutting planes algorithms.

* Only captures the cutting part of branch-and-cut, not branching.

Formalizing Modern IP Solvers

[Chvatal73] Introduced the Cutting Planes proof system to formalize
cutting planes algorithms.

* Only captures the cutting part of branch-and-cut, not branching.

* Even so, it iIs an important and heavily studied proof system!

Cutting Planes Proofs

Suppose Ax > b has no integer solutions

Cutting Planes Proofs

Suppose Ax > b has no integer solutions

Analogous to running DPLL on unsatisfiable CNF

Cutting Planes Proofs

Suppose Ax > b has no integer solutions
— Prove this fact using cutting planes!

Cutting Planes Proofs

Suppose Ax > b has no integer solutions

— Prove this fact using cutting planes!

Rules

Derive new integer-inequalities from old ones by:

© Non-negative linear Combination:
ax > b, cx > d 0
a,p € /=

(aa + fc)x > ab + Bd

Cutting Planes Proofs

Suppose Ax > b has no integer solutions

— Prove this fact using cutting planes!

Rules

Derive new integer-inequalities from old ones by:

© Non-negative linear Combination:
ax > b, cx > d

— — = a,pe 7 x>d
(aa + fc)x > ab + fd b -

Cutting Planes Proofs

(aa + fc)x > ab + fd

Suppose Ax > b has no integer solutions

— Prove this fact using cutting planes!

Rules

Derive new integer-inequalities from old ones by:

© Non-negative linear Combination:
ax > b, cx > d

— — = a,pe 7 x>d
(aa + fc)x > ab + fd b -

Cutting Planes Proofs

(aa + fc)x > ab + fd

Suppose Ax > b has no integer solutions

— Prove this fact using cutting planes!

Rules

Derive new integer-inequalities from old ones by:

© Non-negative linear Combination:
ax > b, cx > d

— — = a,pe 7 x>d
(aa + fc)x > ab + fd b -

Preserves all points in P

Cutting Planes Proofs

Suppose Ax > b has no integer solutions

— Prove this fact using cutting planes!

Rules

Derive new integer-inequalities from old ones by:

© Non-negative linear Combination:
ax > b, cx > d 0
a,p € /=

(aa + fc)x > ab + Bd
O Cut:
ax > b

— = ifd e Z2divides a
(ald)x > |bld]

ax > b

Cutting Planes Proofs

Suppose Ax > b has no integer solutions (a/ld)x > [bld]
— Prove this fact using cutting planes!

Rules

Derive new integer-inequalities from old ones by:

© Non-negative linear Combination:
ax > b, cx > d 0
a,p € /=

(aa + Bc)x > ab + pd
O Cut:
ax > b

— = ifd e Z2divides a
(ald)x > |bld]

Cutting Planes Proofs

Suppose Ax > b has no integer solutions ax > |D]
— Prove this fact using cutting planes!

Rules

Derive new integer-inequalities from old ones by:

© Non-negative linear Combination:
ax > b, cx > d 0
a,p € /=

(aa + Bc)x > ab + pd
O Cut:
ax > b

(ald)x > [bld]|

fd € 7=" divides a Preserves integer points in P

Cutting Planes Proofs

Suppose Ax > b has no integer solutions

— Prove this fact using cutting planes!

Rules

Derive new integer-inequalities from old ones by:

© Non-negative linear Combination:
ax > b, cx > d 0
a,p € /=

(@a + pc)x 2 ab + fd Cutting Planes Proof

O Cut:
Derivation of 0 > 1 from Ax > b
fd € 7>" divides a o equivalently, the empty polytope

ax > b
(ald)x > [bld]|

Cutting Planes Proofs

Suppose Ax > b has no integer solutions

— Prove this fact using cutting planes!

Rules

Derive new integer-inequalities from old ones by:

© Non-negative linear Combination:
ax > b, cx > d 0
a,p € /=

(@a + pc)x 2 ab + fd Cutting Planes Proof

O Cut:
Derivation of 0 > 1 from Ax > b
fd € 7>" divides a o equivalently, the empty polytope

ax > b
(ald)x > [bld]|

Cutting Planes Proofs

Suppose Ax > b has no integer solutions

— Prove this fact using cutting planes!

Rules

Derive new integer-inequalities from old ones by:

© Non-negative linear Combination:
ax > b, cx > d 0
a,p € /=

(@a + pc)x 2 ab + fd Cutting Planes Proof

O Cut:
Derivation of 0 > 1 from Ax > b
fd € 7>" divides a o equivalently, the empty polytope

ax > b
(ald)x > [bld]|

Cutting Planes Proofs

Suppose Ax > b has no integer solutions

— Prove this fact using cutting planes!

Rules

Derive new integer-inequalities from old ones by:

© Non-negative linear Combination:
ax > b, cx > d 0
a,p € /=

(@a + pc)x 2 ab + fd Cutting Planes Proof

O Cut:
Derivation of 0 > 1 from Ax > b
fd € 7>" divides a o equivalently, the empty polytope

ax > b
(ald)x > [bld]|

Cutting Planes Proofs

Suppose Ax > b has no integer solutions
— Prove this fact using cutting planes! ————

Rules
Derive new integer-inequalities from old ones by:

© Non-negative linear Combination:
ax > b, cx > d 0
a,p € /=

(@a + pc)x 2 ab + fd Cutting Planes Proof

O Cut:
Derivation of 0 > 1 from Ax > b
fd € 7>" divides a o equivalently, the empty polytope

ax > b
(ald)x > [bld]|

Cutting Planes Proofs

Suppose Ax > b has no integer solutions
— Prove this fact using cutting planes! —_—

Rules
Derive new integer-inequalities from old ones by:

© Non-negative linear Combination:
ax > b, cx > d 0
a,p € /=

(@a + pc)x 2 ab + fd Cutting Planes Proof

O Cut:
Derivation of 0 > 1 from Ax > b
fd € 7>" divides a o equivalently, the empty polytope

ax > b
(ald)x > [bld]|

Cutting Planes Proofs

Suppose Ax > b has no integer solutions

— Prove this fact using cutting planes!

Rules

Derive new integer-inequalities from old ones by:

© Non-negative linear Combination:
ax > b, cx > d 0
a,p € /=

(@a + pc)x 2 ab + fd Cutting Planes Proof

O Cut:
Derivation of 0 > 1 from Ax > b
fd € 7>" divides a o equivalently, the empty polytope

ax > b
(ald)x > [bld]|

Proving CNF Formulas

In order to talk about CP as a proof system, we need to encode CNF formulas as
a system of linear inequalities — easy because integer programming is NP-
complete!

Proving CNF Formulas

In order to talk about CP as a proof system, we need to encode CNF formulas as
a system of linear inequalities — easy because integer programming is NP-
complete!

1. Convert clauses into inequalities:
X1V—Ix2V—Ix3Vx4 —> X1+(1—X2)+(1—X3)+X421

Proving CNF Formulas

In order to talk about CP as a proof system, we need to encode CNF formulas as
a system of linear inequalities — easy because integer programming is NP-
complete!

1. Convert clauses into inequalities:
X1V—Ix2V—Ix3Vx4 —> X1+(1—X2)+(1—X3)+X421

2. Add boolean constraints:
x>0 and x; <1

Cutting Planes Proofs

Lower bounds on Cutting Planes proofs — lower bounds on the runtime of
cutting planes algorithms

Cutting Planes Proofs

Lower bounds on Cutting Planes proofs — lower bounds on the runtime of
cutting planes algorithms

© [Pudlak97] (also [BPR97] under restriction): Refuting that a graph has both a k
-clique and a (k — 1)-coloring requires exponential size Cutting Planes proofs

Cutting Planes Proofs

Lower bounds on Cutting Planes proofs — lower bounds on the runtime of

cutting planes algorithms

O [Pudlak97] (also [BPR97] under restriction): Refuting that a graph has both a k
-clique and a (k — 1)-coloring requires exponential size Cutting Planes proofs

o [FPPR17, HP17]: Uniformly random CNF formulas require exponential size
Cutting Planes refutations

Cutting Planes Proofs

Lower bounds on Cutting Planes proofs — lower bounds on the runtime of
cutting planes algorithms

© [Pudlak97] (also [BPR97] under restriction): Refuting that a graph has both a k
-clique and a (k — 1)-coloring requires exponential size Cutting Planes proofs

o [FPPR17, HP17]: Uniformly random CNF formulas require exponential size
Cutting Planes refutations

However... Cutting Planes does not capture modern algorithms for IP (branch-
and-cut)

The Stabbing Planes Proof System

|IBFI+18] Introduced Stabbing Planes to formalize branch-and-cut.

The Stabbing Planes Proof System

|IBFI+18] Introduced Stabbing Planes to formalize branch-and-cut.
o DPLL querying integer linear inequalities!

o No Cutting Planes rule needed!

The Stabbing Planes Proof System

|IBFI+18] Introduced Stabbing Planes to formalize branch-and-cut.

let P = {x:Ax > b} besuchthat PN Z" = @.

The Stabbing Planes Proof System

|IBFI+18] Introduced Stabbing Planes to formalize branch-and-cut.

let P = {x:Ax > b} besuchthat PN Z" = @.

Rule: query an arbitrary integer linear inequality

@

The Stabbing Planes Proof System

|IBFI+18] Introduced Stabbing Planes to formalize branch-and-cut.

let P = {x:Ax > b} besuchthat PN Z" = @.

Rule: query an arbitrary integer linear inequality

ax§i>y/ ‘\Qiib
Pniax<b-1} Pn{ax > b}

ax < b—1 ax>b

The Stabbing Planes Proof System

|IBFI+18] Introduced Stabbing Planes to formalize branch-and-cut.

let P = {x:Ax > b} besuchthat PN Z" = @.

Rule: query an arbitrary integer linear inequality

ax§i>y/ ‘\Qiib
Pniax<b-1} Pn{ax > b}

ax < b—1 ax>b

The Stabbing Planes Proof System

|IBFI+18] Introduced Stabbing Planes to formalize branch-and-cut.

let P = {x:Ax > b} besuchthat PN Z" = @.

Rule: query an arbitrary integer linear inequality

ax§i>y/ ‘\Qiib
Pniax<b-1} Pn{ax > b}

ax < b—1 ax>b

Because a, b are integral, preserves integer points!

The Stabbing Planes Proof System

|IBFI+18] Introduced Stabbing Planes to formalize branch-and-cut.

let P = {x:Ax > b} besuchthat PN Z" = @.

Rule: query an arbitrary integer linear inequality

@
ax<li/ %‘b

Pn{ax<b-1}

The Stabbing Planes Proof System

|IBFI+18] Introduced Stabbing Planes to formalize branch-and-cut.

let P = {x: Ax > b} besuchthat PN Z" = @. cx>d

Rule: query an arbitrary integer linear inequality

axﬁly %‘b
Pniax<b-1)} cx<d-1

cx <d y \:‘x>d

The Stabbing Planes Proof System

|IBFI+18] Introduced Stabbing Planes to formalize branch-and-cut.

let P = {x: Ax > b} besuchthat PN Z" = @. cx > d
0 o OO O

Rule: query an arbitrary integer linear inequality
ax < V@WAIQ

cx <d y \:‘x>d

The Stabbing Planes Proof System

|IBFI+18] Introduced Stabbing Planes to formalize branch-and-cut.

let P = {x:Ax > b} besuchthat PN Z" = @.

Rule: query an arbitrary integer linear inequality

axﬁly %‘b
Pniax<b-1} Pn{ax > b}

cxﬁd—y \:(de

The Stabbing Planes Proof System

|IBFI+18] Introduced Stabbing Planes to formalize branch-and-cut.

let P = {x:Ax > b} besuchthat PN Z" = @.

Rule: query an arbitrary integer linear inequality

std—y \ide hxﬁt—:/ y:xzt hx <t—1

hx >t

The Stabbing Planes Proof System

|IBFI+18] Introduced Stabbing Planes to formalize branch-and-cut.

let P = {x:Ax > b} besuchthat PN Z" = @.

Rule: query an arbitrary integer linear inequality

The Stabbing Planes Proof System

|IBFI+18] Introduced Stabbing Planes to formalize branch-and-cut.

let P = {x:Ax > b} besuchthat PN Z" = @.

Rule: query an arbitrary integer linear inequality

Pawsn) Proofthat PN Z" = O

Stabbing Planes

Claim
The execution of a branch-and-cut solver produces a Stabbing Planes proof.

Stabbing Planes

Claim
The execution of a branch-and-cut solver produces a Stabbing Planes proof.

— Stabbing Planes rule simulates both branching and cutting!

Stabbing Planes

Claim
The execution of a branch-and-cut solver produces a Stabbing Planes proof.

— Stabbing Planes rule simulates both branching and cutting!

Claim: Stabbing Planes simulates Cutting Planes proofs

Stabbing Planes

Claim
The execution of a branch-and-cut solver produces a Stabbing Planes proof.

— Stabbing Planes rule simulates both branching and cutting!

Claim: Stabbing Planes simulates Cutting Planes proofs

Non-negative linear combination:

Stabbing Planes

Claim
The execution of a branch-and-cut solver produces a Stabbing Planes proof.

— Stabbing Planes rule simulates both branching and cutting!

Claim: Stabbing Planes simulates Cutting Planes proofs

Non-negative linear combination:

Stabbing Planes

Claim
The execution of a branch-and-cut solver produces a Stabbing Planes proof.

— Stabbing Planes rule simulates both branching and cutting!

Claim: Stabbing Planes simulates Cutting Planes proofs

Non-negative linear combination:

In SP query:

Stabbing Planes

Claim
The execution of a branch-and-cut solver produces a Stabbing Planes proof.

— Stabbing Planes rule simulates both branching and cutting!

Claim: Stabbing Planes simulates Cutting Planes proofs

Non-negative linear combinatiory

In SP query: ax <b—1

Stabbing Planes

Claim
The execution of a branch-and-cut solver produces a Stabbing Planes proof.

— Stabbing Planes rule simulates both branching and cutting!

Claim: Stabbing Planes simulates Cutting Planes proofs

Non-negative linear combinatiory

In SP query: ax <b—1

/|

Pni{ax < b -1} isempty!

Stabbing Planes

Claim
The execution of a branch-and-cut solver produces a Stabbing Planes proof.

— Stabbing Planes rule simulates both branching and cutting!

Claim: Stabbing Planes simulates Cutting Planes proofs

Non-negative linear combinatiory

axﬁb—Wbe

% Pn{ax > b}

In SP query: ax <b—1

/|

Pni{ax < b—1}isempty!

Stabbing Planes

Claim
The execution of a branch-and-cut solver produces a Stabbing Planes proof.

— Stabbing Planes rule simulates both branching and cutting!

Claim: Stabbing Planes simulates Cutting Planes proofs

Non-negative linear combinatiory

Cleb—V\ZXZb

% Pn{ax > b}

In SP query: ax <b—1

/|

PN {ax < b — 1} is empty! So this only increases the size by 1!

Stabbing Planes

Claim
The execution of a branch-and-cut solver produces a Stabbing Planes proof.

— Stabbing Planes rule simulates both branching and cutting!

Claim: Stabbing Planes simulates Cutting Planes proofs

Cut:

Stabbing Planes

Claim
The execution of a branch-and-cut solver produces a Stabbing Planes proof.

— Stabbing Planes rule simulates both branching and cutting!

Claim: Stabbing Planes simulates Cutting Planes proofs

Cut:

(ald)x > [bld¥

Stabbing Planes

Claim
The execution of a branch-and-cut solver produces a Stabbing Planes proof.

— Stabbing Planes rule simulates both branching and cutting!

Claim: Stabbing Planes simulates Cutting Planes proofs

Cut:
In SP query:

(ald)x > [bld¥

Stabbing Planes

Claim
The execution of a branch-and-cut solver produces a Stabbing Planes proof.

— Stabbing Planes rule simulates both branching and cutting!

Claim: Stabbing Planes simulates Cutting Planes proofs

Cut:
In SP query: (ald)x < [bld]| — 1

(ald)x > [bldT

Stabbing Planes

Claim
The execution of a branch-and-cut solver produces a Stabbing Planes proof.

— Stabbing Planes rule simulates both branching and cutting!

Claim: Stabbing Planes simulates Cutting Planes proofs

Cut:
In SP query: (ald)x < [bld]| — 1

(ald)x > [bld¥

PN {(a/d)x < [b/d]| — 1} is empty! So this only increases the size by 1!

Stabbing Planes

Claim
The execution of a branch-and-cut solver produces a Stabbing Planes proof.

— Stabbing Planes rule simulates both branching and cutting!

Claim: Stabbing Planes simulates Cutting Planes proofs

Cut:
In SP query: (ald)x < [bld]| — 1

(ald)x < [bld] — 1 (ald)x > [bld)

(ald)x > [bldT

PN {(a/d)x < [b/d]| — 1} is empty! So this only increases the size by 1!

Stabbing Planes

Claim
The execution of a branch-and-cut solver produces a Stabbing Planes proof.

— Stabbing Planes rule simulates both branching and cutting!

Claim: Stabbing Planes simulates Cutting Planes proofs

Resulting Stabbing Planes Proof:
D

Stabbing Planes

Claim
The execution of a branch-and-cut solver produces a Stabbing Planes proof.

— Stabbing Planes rule simulates both branching and cutting!

Claim: Stabbing Planes simulates Cutting Planes proofs

Resulting Stabbing Planes Proof:
D

| %
If the CP proof had size s, depth d /\

— SP proof has size s, depth s % %

Stabbing Planes

Claim
The execution of a branch-and-cut solver produces a Stabbing Planes proof.

— Stabbing Planes rule simulates both branching and cutting!

Claim: Stabbing Planes simulates Cutting Planes proofs

Resulting Stabbing Planes Proof:
> (). Does there always exist an
... SP proof of size s and depth d?

| D
If the CP proof had size s, depth d /\

— SP proof has size s, depth s % %

Comparison of Proof Systems

Stabbing Planes

PCR| ~=-=-""- Cutting Planes

\ [

Resolution

Comparison of Proof Systems

Stabbing Planes

PCR| -=-=7-"- Cutting Planes

\ [

One direction: Cutting Planes

Can prove Tseitin [DT20]!

Cutting Planes Proves Tseitin!

The Tseitin formulas are the canonical family of formulas hard to prove in many
algebraic proof systems — e.g. PCR from last time

Cutting Planes Proves Tseitin!

The Tseitin formulas are the canonical family of formulas hard to prove in many
algebraic proof systems — e.g. PCR from last time

Tseitin Formulas: Let G = (V, E) beagraph,c : V — {0,1} be such that
2.,y0(v) is odd.

Cutting Planes Proves Tseitin!

The Tseitin formulas are the canonical family of formulas hard to prove in many
algebraic proof systems — e.g. PCR from last time

Tseitin Formulas: Let G = (V, E) beagraph,c : V — {0,1} be such that
2.,y0(v) is odd. For each e € E we have a variable x,.

Cutting Planes Proves Tseitin!

The Tseitin formulas are the canonical family of formulas hard to prove in many
algebraic proof systems — e.g. PCR from last time

Tseitin Formulas: Let G = (V, E) beagraph,c : V — {0,1} be such that
2.,y0(v) is odd. For each e € E we have a variable x,.

for each vertex v € V, aconstraint @ ., x, = o(v)

Cutting Planes Proves Tseitin!

The Tseitin formulas are the canonical family of formulas hard to prove in many
algebraic proof systems — e.g. PCR from last time

Tseitin Formulas: Let G = (V, E) beagraph,c : V — {0,1} be such that
2.,y0(v) is odd. For each e € E we have a variable x,.

for each vertex v € V, aconstraint @ ., x, = o(v)
x; A9
0 X3

Cutting Planes Proves Tseitin!

The Tseitin formulas are the canonical family of formulas hard to prove in many
algebraic proof systems — e.g. PCR from last time

Tseitin Formulas: Let G = (V, E) beagraph,c : V — {0,1} be such that
2.,y0(v) is odd. For each e € E we have a variable x,.

for each vertex v € V, aconstraint @ ., x, = o(v)

x; A9 g

o X D X, =
X3 X1®X3=O
’x2 Xz@)@,:o

Cutting Planes Proves Tseitin!

Thm[DT20]: There are quasipolynomial size Cutting Planes proofs of TseitinG, -

High Level:
1. EXxhibit a quasipolynomial size Stabbing Planes proof of Tseitin
2. Translate that proof into Cutting Planes

Stabbing Planes Proves Tseltin

Thm([BFI+18]: There are quasipolynomial size Stabbing Planes proofs of TseitinG’ -

Stabbing Planes Proves Tseltin

Thm([BFI+18]: There are quasipolynomial size Stabbing Planes proofs of TseitinG’ -

1. We describe an algorithm that, given an assignment y € {0,1}", finds a
falsified constraint of Tseiting ()

Stabbing Planes Proves Tseltin

Thm([BFI+18]: There are quasipolynomial size Stabbing Planes proofs of TseitinG’ -

1. We describe an algorithm that, given an assignment y € {0,1}", finds a
falsified constraint of Tseiting ()
2. “Implement” the algorithm in Stabbing Planes

Algorithm for Finding Falsified Clause

Given: y € {0,1}" to the variables of Tseiting ,,

G=(V,E)

Algorithm for Finding Falsified Clause

Given: y € {0,1}" to the variables of Tseiting ,,
Goal: find v € Vsuchthat @, ., y, # o(v) — afalsified constraint

G=(V,E)

Algorithm for Finding Falsified Clause

Given: y € {0,1}" to the variables of Tseiting ,,
Goal: find v € Vsuchthat @, ., y, # o(v) — afalsified constraint

Algorithm proceeds In rounds:
« Each round maintains: U C V

G=(V,E)

Algorithm for Finding Falsified Clause

Given: y € {0,1}" to the variables of Tseiting ,,
Goal: find v € Vsuchthat @, ., y, # o(v) — afalsified constraint

Algorithm proceeds In rounds:
« Each round maintains: U C V

G=(V,E)

Algorithm for Finding Falsified Clause

Given: y € {0,1}" to the variables of Tseiting ,,
Goal: find v € Vsuchthat @, ., y, # o(v) — afalsified constraint

Algorithm proceeds In rounds:
- Each round maintains: U € Vand k; = Z,cpv\] Ve

G=(V,E)

Algorithm for Finding Falsified Clause

Given: y € {0,1}" to the variables of Tseiting ,,
Goal: find v € Vsuchthat @, ., y, # o(v) — afalsified constraint

Algorithm proceeds in rounds: | Edges with one endpoint in U one in V\U
- Each round maintains: U € Vand k; = Z,cpv\] Ve

G=(V,E)

Algorithm for Finding Falsified Clause

Given: y € {0,1}" to the variables of Tseiting ,,
Goal: find v € Vsuchthat @, ., y, # o(v) — afalsified constraint

Algorithm proceeds in rounds: | Edges with one endpoint in U one in V\U
- Each round maintains: U C Vand k; = Z,cpv\ g Ve

EIU,V

G=(V,E)

Algorithm for Finding Falsified Clause

Given: y € {0,1}" to the variables of Tseiting ,,
Goal: find v € Vsuchthat @, ., y, # o(v) — afalsified constraint

Algorithm proceeds in rounds: | Edges with one endpoint in U one in V\U
» Each round maintains: U C Vand k;; = Z,c g\ 1) Ve St 0(U) # Ky mod 2

EIU,V

G=(V,E)

Algorithm for Finding Falsified Clause

Given: y € {0,1}" to the variables of Tseiting ,, o(U) =2 .yo(v)
Goal: find v € Vsuchthat @, ., y, # o(v) — a falsified constraint

Algorithm proceeds in rounds: | Edges with one endpoint in U one in V\U
» Each round maintains: U € Vand ki = 2, cprp\ vy Ve St o(U) # k;; mod 2

EIU,V

G=(V,E)

Algorithm for Finding Falsified Clause

Given: y € {0,1}" to the variables of Tseiting ,, o(U) =2 .yo(v)
Goal: find v € Vsuchthat @, ., y, # o(v) — a falsified constraint

Algorithm proceeds in rounds: | Edges with one endpoint in U one in V\U
» Each round maintains: U € Vand ki = 2, cprp\ vy Ve St o(U) # k;; mod 2

—> There is a falsified constraint in U! E[U,V

G=(V,E)

Algorithm for Finding Falsified Clause

Given: y € {0,1}" to the variables of Tseiting ,, o(U) =2 .yo(v)
Goal: find v € Vsuchthat @, ., y, # o(v) — a falsified constraint

Algorithm proceeds in rounds: | Edges with one endpoint in U one in V\U
» Each round maintains: U € Vand ki = 2, cprp\ vy Ve St o(U) # k;; mod 2

—> There is a falsified constraint in U! E[U,V

For U to be satisfiable we need
Z:\/EUG(V) = z“\/EUZ\/E.eye mod 2

G=(V,E)

Algorithm for Finding Falsified Clause

Given: y € {0,1}" to the variables of Tseiting ,, o(U) =2 .yo(v)
Goal: find v € Vsuchthat @, ., y, # o(v) — a falsified constraint

Algorithm proceeds in rounds: | Edges with one endpoint in U one in V\U
» Each round maintains: U € Vand ki = 2, cprp\ vy Ve St o(U) # k;; mod 2

—> There is a falsified constraint in U! E[U,V

For U to be satisfiable we need
o(U) = 2 2.y, mod 2

G=(V,E)

Algorithm for Finding Falsified Clause

Given: y € {0,1}" to the variables of Tseiting ,, o(U) =2 .yo(v)
Goal: find v € Vsuchthat @, ., y, # o(v) — a falsified constraint

Algorithm proceeds in rounds: | Edges with one endpoint in U one in V\U
» Each round maintains: U € Vand ki = 2, cprp\ vy Ve St o(U) # k;; mod 2

—> There is a falsified constraint in U! E[U,V

For U to be satisfiable we need
o(U) = 2 2.y, mod 2

EZZtu+ Z y, mod 2

u,veE ecE[U,V\U]

G=(V,E)

Algorithm for Finding Falsified Clause

Given: y € {0,1}" to the variables of Tseiting ,, o(U) =2 .yo(v)
Goal: find v € Vsuchthat @, ., y, # o(v) — a falsified constraint

Algorithm proceeds in rounds: | Edges with one endpoint in U one in V\U
» Each round maintains: U € Vand ki = 2, cprp\ vy Ve St o(U) # k;; mod 2

—> There is a falsified constraint in U! E[U,V

For U to be satisfiable we need
o(U) = 2 2.y, mod 2

Z y, mod 2

ecE|U,V\U]

Z y, mod 2

ecE[U,V\U] G = (Va E)

Algorithm for Finding Falsified Clause

Given: y € {0,1}" to the variables of Tseiting ,, o(U) =2 .yo(v)
Goal: find v € Vsuchthat @, ., y, # o(v) — a falsified constraint

Algorithm proceeds in rounds: | Edges with one endpoint in U one in V\U
» Each round maintains: U € Vand ki = 2, cprp\ vy Ve St o(U) # k;; mod 2

—> There is a falsified constraint in U! E[U,V

For U to be satisfiable we need
o(U) = 2 2.y, mod 2

EZZtu+ Z y, mod 2

u,vek ecE|U,V\U]
= 0 + x; mod 2

G=(V,E)

Algorithm for Finding Falsified Clause

Given: y € {0,1}" to the variables of Tseiting ,, o(U) =2 .yo(v)
Goal: find v € Vsuchthat @, ., y, # o(v) — a falsified constraint
Algorithm proceeds in rounds: | Edges with one endpoint in U one in V\U

» Each round maintains: U € Vand ki = 2, cprp\ vy Ve St o(U) # k;; mod 2

e |nitially U = Vandk;, = 0
Y U E[U.V

G=(V,E)

Algorithm for Finding Falsified Clause

Given: y € {0,1}" to the variables of Tseiting ,,
Goal: find v € Vsuchthat @, ., y, # o(v) — afalsified constraint

Algorithm proceeds in rounds: | Edges with one endpoint in U one in V\U
» Each round maintains: U C Vand ki = Z,c g\ 1) Ve St 0(U) # Ky mod 2

» Initially U = Vand k;; = 0

— Each round we divide U in half

EIU,V

G=(V,E)

Algorithm for Finding Falsified Clause

Given: y € {0,1}" to the variables of Tseiting ,,
Goal: find v € Vsuchthat @, ., y, # o(v) — afalsified constraint

Algorithm proceeds in rounds: | Edges with one endpoint in U one in V\U
» Each round maintains: U C Vand ki = Z,c g\ 1) Ve St 0(U) # Ky mod 2

e Initially U = Vand k;; = 0
— Each round we divide U in half
— Once U = {v}

G=(V,E)

Algorithm for Finding Falsified Clause

Given: y € {0,1}" to the variables of Tseiting ,,
Goal: find v € Vsuchthat @, ., y, # o(v) — afalsified constraint

Algorithm proceeds in rounds: | Edges with one endpoint in U one in V\U
» Each round maintains: U C Vand ki = Z,c g\ 1) Ve St 0(U) # Ky mod 2

» Initially U = Vand k;; = 0
— Each round we divide U in half

— Once U = {v} we have a vertex such

that o(v) # (k, = 2,.,c,Y,) mod 2,
a falsified constraint!

G=(V,E)

Algorithm for Finding Falsified Clause

Given: y € {0,1}" to the variables of Tseiting ,,
Goal: find v € Vsuchthat @, ., y, # o(v) — afalsified constraint

Algorithm proceeds in rounds: | Edges with one endpoint in U one in V\U

» Each round maintains: U C Vand k;; = 2, c g\ 1) Ve St 0(U) # Ky mod 2
1.

G=(V,E)

Algorithm for Finding Falsified Clause

Given: y € {0,1}" to the variables of Tseiting ,,
Goal: find v € Vsuchthat @, ., y, # o(v) — afalsified constraint

Algorithm proceeds in rounds: | Edges with one endpoint in U one in V\U
» Each round maintains: U C Vand k;; = 2, c g\ 1) Ve St 0(U) # Ky mod 2
1. Pick a balanced partition U = U, U U,

G=(V,E)

Algorithm for Finding Falsified Clause

Given: y € {0,1}" to the variables of Tseiting ,,
Goal: find v € Vsuchthat @, ., y, # o(v) — afalsified constraint

Algorithm proceeds in rounds: | Edges with one endpoint in U one in V\U
» Each round maintains: U C Vand k;; = 2, c g\ 1) Ve St 0(U) # Ky mod 2
1. Pick a balanced partition U = U, U U,

G=(V,E)

Algorithm for Finding Falsified Clause

Given: y € {0,1}" to the variables of Tseiting ,,
Goal: find v € Vsuchthat @, ., y, # o(v) — afalsified constraint

Algorithm proceeds in rounds: | Edges with one endpoint in U one in V\U

» Each round maintains: U C Vand k;; = 2, c g\ 1) Ve St 0(U) # Ky mod 2
1. Pick a balanced partition U = U, U U,

2. Query:

G=(V,E)

Algorithm for Finding Falsified Clause

Given: y € {0,1}" to the variables of Tseiting ,,
Goal: find v € Vsuchthat @, ., y, # o(v) — afalsified constraint

Algorithm proceeds in rounds: | Edges with one endpoint in U one in V\U
» Each round maintains: U C Vand k;; = 2, c g\ 1) Ve St 0(U) # Ky mod 2
1. Pick a balanced partition U = U, U U,

2. Query:
a = Zee[Ul,Uz]ye b = Zee[Ul,V\U]ye

G=(V,E)

Algorithm for Finding Falsified Clause

Given: y € {0,1}" to the variables of Tseiting ,,
Goal: find v € Vsuchthat @, ., y, # o(v) — afalsified constraint

Algorithm proceeds in rounds: | Edges with one endpoint in U one in V\U
» Each round maintains: U C Vand k;; = 2, c g\ 1) Ve St 0(U) # Ky mod 2
1. Pick a balanced partition U = U, U U,

2. Query:
a = Zee[Ul,Uz]ye b = Zee[Ul,V\U]ye

KU1=CZ+19

G=(V,E)

Algorithm for Finding Falsified Clause

Given: y € {0,1}" to the variables of Tseiting ,,
Goal: find v € Vsuchthat @, ., y, # o(v) — afalsified constraint

Algorithm proceeds in rounds: | Edges with one endpoint in U one in V\U
» Each round maintains: U C Vand k;; = 2, c g\ 1) Ve St 0(U) # Ky mod 2
1. Pick a balanced partition U = U, U U,

2. Query:
a = Zee[Ul,Uz]ye b = Zee[Ul,V\U]ye

KU1=CZ+19

G=(V,E)

Algorithm for Finding Falsified Clause

Given: y € {0,1}" to the variables of Tseiting ,,
Goal: find v € Vsuchthat @, ., y, # o(v) — afalsified constraint

Algorithm proceeds in rounds: | Edges with one endpoint in U one in V\U
» Each round maintains: U C Vand k;; = 2, c g\ 1) Ve St 0(U) # Ky mod 2
1. Pick a balanced partition U = U, U U,

2. Query:
a = Zee[Ul,Uz]ye b = Zee[Ul,V\U]ye

K‘Ul:d-l-bandKUz:Cl-l-(K‘U—b)

G=(V,E)

Algorithm for Finding Falsified Clause

Given: y € {0,1}" to the variables of Tseiting ,,
Goal: find v € Vsuchthat @, ., y, # o(v) — afalsified constraint

Algorithm proceeds in rounds: | Edges with one endpoint in U one in V\U
» Each round maintains: U C Vand k;; = 2, c g\ 1) Ve St 0(U) # Ky mod 2
1. Pick a balanced partition U = U, U U,

2. Query:
a = Zee[Ul,Uz]ye b = Zee[Ul,V\U]ye

K‘Ul:d-l-bandKUz:Cl-l-(K‘U—b)

G=(V,E)

Algorithm for Finding Falsified Clause

Given: y € {0,1}" to the variables of Tseiting ,,
Goal: find v € Vsuchthat @, ., y, # o(v) — afalsified constraint

Algorithm proceeds in rounds: | Edges with one endpoint in U one in V\U
» Each round maintains: U C Vand k;; = 2, c g\ 1) Ve St 0(U) # Ky mod 2
1. Pick a balanced partition U = U, U U,

2. Query:
a = Zee[Ul,Uz]ye b = Zee[Ul,V\U]ye

KU1=Cl+bandKU2=Cl+(K‘U—)

G=(V,E)

Algorithm for Finding Falsified Clause

Given: y € {0,1}" to the variables of Tseiting ,,
Goal: find v € Vsuchthat @, ., y, # o(v) — afalsified constraint

Algorithm proceeds in rounds: | Edges with one endpoint in U one in V\U
» Each round maintains: U C Vand k;; = 2, c g\ 1) Ve St 0(U) # Ky mod 2
1. Pick a balanced partition U = U, U U,

2. Query:
a = Zee[Ul,Uz]ye b = Zee[Ul,V\U]ye

KU1=Cl+bandKU2=Cl+(K‘U—)

G=(V,E)

Algorithm for Finding Falsified Clause

Given: y € {0,1}" to the variables of Tseiting ,,
Goal: find v € Vsuchthat @, ., y, # o(v) — afalsified constraint

Algorithm proceeds in rounds: | Edges with one endpoint in U one in V\U
» Each round maintains: U C Vand k;; = 2, c g\ 1) Ve St 0(U) # Ky mod 2
1. Pick a balanced partition U = U, U U,

2. Query:
a = Zee[Ul,Uz]ye b = Zee[Ul,V\U]ye

K‘Ul:d-l-bandKUz:Cl-l-(K‘U—b)

3. Because o(U) # k;; mod 2, either

U(Ul) # KUl mod 2 or U(Uz) # KU2 mod 2
G=(V,E)

Algorithm for Finding Falsified Clause

Given: y € {0,1}" to the variables of Tseiting ,,
Goal: find v € Vsuchthat @, ., y, # o(v) — afalsified constraint

Algorithm proceeds in rounds: | Edges with one endpoint in U one in V\U
» Each round maintains: U C Vand k;; = 2, c g\ 1) Ve St 0(U) # Ky mod 2
1. Pick a balanced partition U = U, U U,

2. Query:
a = Zee[Ul,Uz]ye b = Zee[Ul,V\U]ye U
2

KUI — Cl+bandKU2 — Cl-l—(K‘U—b)
3. Because o(U) # k;; mod 2, either
U(Ul) # KUl mod 2 or U(Uz) # KU2 mod 2

— recurse on that one. G=(V,E)

Algorithm for Finding Falsified Clause

Given: y € {0,1}" to the variables of Tseiting ,,
Goal: find v € Vsuchthat @, ., y, # o(v) — afalsified constraint

Algorithm proceeds in rounds: | Edges with one endpoint in U one in V\U
» Each round maintains: U C Vand k;; = 2, c g\ 1) Ve St 0(U) # Ky mod 2
1. Pick a balanced partition U = U, U U,

2. Query:
a = Zee[Ul,Uz]ye b = Zee[Ul,V\U]ye

KUI — Cl+bandKU2 — Cl-l—(K‘U—b)
3. Because o(U) # k;; mod 2, either
U(Ul) # KUl mod 2 or U(Uz) # KU2 mod 2

— recurse on that one. G=(V,E)

Implementation in Stabbing Planes

1. Pick a balanced partition U = U, U U,
2. Query:

a = Zee[Ul,Uz]ye b = Zee[Ul,V\U]ye

3. Either o(U;) # k;, mod 2 or
o(U,) # Ky, mod 2; recurse on that one.

Implementation in Stabbing Planes

To implement in SP we need to perform the queries a and b

1. Pick a balanced partition U = U, U U,
2. Query:

a = Zee[Ul,Uz]ye b = Zee[Ul,V\U]ye

3. Either o(U;) # k;, mod 2 or
o(U,) # Ky, mod 2; recurse on that one.

Implementation in Stabbing Planes

To implement in SP we need to perform the queries a and b

— Observe that the possible values of @ and b are in {0,..., | E| }

1. Pick a balanced partition U = U, U U,
2. Query:

a = Zee[Ul,Uz]ye b = Zee[Ul,V\U]ye

3. Either o(U;) # k;, mod 2 or
o(U,) # Ky, mod 2; recurse on that one.

Implementation in Stabbing Planes

To implement in SP we need to perform the queries a and b
— Observe that the possible values of @ and b are in {0,..., | E| }

— We can determine the value of a and b in log | E'| depth SP trees

1. Pick a balanced partition U = U, U U,
2. Query:

a = Zee[Ul,Uz]ye b = Zee[Ul,V\U]ye

3. Either o(U;) # k;, mod 2 or

o(U,) # Ky, mod 2; recurse on that one.

Implementation in Stabbing Planes

To implement in SP we need to perform the queries a and b
— Observe that the possible values of @ and b are in {0,..., | E| }

— We can determine the value of a and b in log | E'| depth SP trees
a < |E|/2-1 a>|E|/2

1. Pick a balanced partition U = U, U U,
2. Query:

a = Zee[Ul,Uz]ye b = Zee[Ul,V\U]ye

3. Either o(U;) # k;, mod 2 or

o(U,) # Ky, mod 2; recurse on that one.

Implementation in Stabbing Planes

To implement in SP we need to perform the queries a and b
— Observe that the possible values of @ and b are in {0,..., | E| }

— We can determine the value of a and b in log | E'| depth SP trees

a < \E\/z—y>z<\E\/2
1. Pick a balanced partition U = U; U U, a<3|E|/4 - a>3|E|/4

2. Query:

a = Zee[Ul,Uz]ye b = Zee[Ul,V\U]ye

3. Either o(U;) # k;, mod 2 or

o(U,) # Ky, mod 2; recurse on that one.

Implementation in Stabbing Planes

To implement in SP we need to perform the queries a and b
— Observe that the possible values of @ and b are in {0,..., | E| }

— We can determine the value of a and b in log | E'| depth SP trees
a < |E|/2-1 a>|E|/2
a>3|E|/4

1. Pick a balanced partiton U = U, U U, ¢ <3 ‘E.J‘f‘l""*t /
2. Query: g

a = Zee[Ul,Uz]ye b = Zee[Ul,V\U]ye

3. Either o(U;) # k;, mod 2 or

o(U,) # Ky, mod 2; recurse on that one.

Implementation in Stabbing Planes

To implement in SP we need to perform the queries a and b
— Observe that the possible values of @ and b are in {0,..., | E| }

— We can determine the value of @ and b in log | E | depth trees

1. Pick a balanced partition U = U, U U,
2. Query:

a=0,a=1,...,a =max
a = Zee[Ul,Uz]ye b = Zee[Ul,V\U]ye

3. Either o(U;) # k;, mod 2 or

o(U,) # Ky, mod 2; recurse on that one.

Implementation in Stabbing Planes

To implement in SP we need to perform the queries a and b
— Observe that the possible values of @ and b are in {0,..., | E| }

— We can determine the value of @ and b in log | E | depth trees

1. Pick a balanced partition U = U, U U,
2. Query:

a = Zee[Ul,Uz]ye b = Zee[Ul,V\U]ye

3. Elther G(Ul) + K‘U1 mod 2 or
o(U,) # Ky, mod 2; recurse on that one. b=0,b=1,...,b=max

YAVAGY%

Implementation in Stabbing Planes

To implement in SP we need to perform the queries a and b
— Observe that the possible values of @ and b are in {0,..., | E| }

— We can determine the value of @ and b in log | E | depth trees

— At each leaf we know value of a and b, so we can recurse
l v
a = Zee[Ul,Uz]ye b = Zee[Ul,V\U]ye
3. Either o(U;) # k;, mod 2 or

o(U,) # Ky, mod 2; recurse on that one. b=0,b=1,..,b=max

1. Pick a balanced partition U = U, U U,
2. Query:

Implementation in Stabbing Planes

To implement in SP we need to perform the queries a and b
— Observe that the possible values of @ and b are in {0,..., | E| }

— We can determine the value of @ and b in log | E | depth trees
— At each leaf we know value of a and b, so we can recurse

1. Pick a balanced partition U = U, U U, Complexity:
2. Query: » log| V| rounds

a = Zee[Ul,Uz]ye b = Zee[Ul,V\U]ye

3. Either o(U;) # k;, mod 2 or

o(U,) # Ky, mod 2; recurse on that one.

Implementation in Stabbing Planes

To implement in SP we need to perform the queries a and b
— Observe that the possible values of @ and b are in {0,..., | E| }

— We can determine the value of @ and b in log | E | depth trees
— At each leaf we know value of a and b, so we can recurse

1. Pick a balanced partition U = U, U U, Complexity:
2. Query: » log| V| rounds

a4 = Eee[Ul,Uz]ye b=1%, (U WU De * Each round takes two depth

< log| E|trees
3. Either o(U;) # k;, mod 2 or

o(U,) # Ky, mod 2; recurse on that one.

Implementation in Stabbing Planes

To implement in SP we need to perform the queries a and b
— Observe that the possible values of @ and b are in {0,..., | E| }

— We can determine the value of @ and b in log | E | depth trees
— At each leaf we know value of a and b, so we can recurse

1. Pick a balanced partition U = U, U U, Complexity:
2. Query: » log| V| rounds

a4 = Eee[Ul,Uz]ye b=1%, (U WU De * Each round takes two depth

| < log| E|trees
3. Either o(U) # ky, mod 2 or — total depth: 2log | E'|log | V|

o(U,) # Ky, mod 2; recurse on that one. — O(log? n)

Implementation in Stabbing Planes

To implement in SP we need to perform the queries a and b
— Observe that the possible values of @ and b are in {0,..., | E| }

— We can determine the value of @ and b in log | E | depth trees
— At each leaf we know value of a and b, so we can recurse

1. Pick a balanced partiton U = U; U U, || Complexity:
2. Query: SP proofs are binary trees

2 : O(log2 n)
q — Zee[Ul,Uz]ye b= ,ciu o depth O(log“n) — size 2

3. Either o(U;) # k;, mod 2 or

o(U,) # Ky, mod 2; recurse on that one.

Cutting Planes Proves Tseitin!

Thm: There are quasipolynomial size Cutting Planes proofs of Tseitin

High Level:
1. EXxhibit a quasipolynomial size Stabbing Planes proof of Tseitin
2. Translate that proof into Cutting Planes

In fact, almost every SP proof can be translated into CP!

Cutting Planes Proves Tseitin!

Thm: There are quasipolynomial size Cutting Planes proofs of Tseitin

High Level:
1. EXxhibit a quasipolynomial size Stabbing Planes proof of Tseitin
2. Translate that proof into Cutting Planes

Thm [FGl+21]

Any Stabbing Planes proof with coefficients at most 2P°Y/°8" (SP*) can be
translated into Cutting Planes with a quasi-polynomial blow-up in the size.

Cutting Planes Proves Tseitin!

Thm [FGl+21]

Any Stabbing Planes proof with coefficients at most 2P°Y'°8 ” (SP*) can be
translated into Cutting Planes with a quasi-polynomial blow-up in the size.

ldea:
1. Turn the proof SP* into a facelike SP proof — one that branches on the faces
of the current polytope

Cutting Planes Proves Tseitin!

Thm [FGl+21]

Any Stabbing Planes proof with coefficients at most 2P°Y'°8 ” (SP*) can be
translated into Cutting Planes with a quasi-polynomial blow-up in the size.

ldea:
1. Turn the proof SP* into a facelike SP proof — one that branches on the faces
of the current polytope (causes a quasipolynomial blow-up)

Cutting Planes Proves Tseitin!

Thm [FGl+21]

Any Stabbing Planes proof with coefficients at most 2P°Y'°8 ” (SP*) can be
translated into Cutting Planes with a quasi-polynomial blow-up in the size.

ldea:

1. Turn the proof SP* into a facelike SP proof — one that branches on the faces
of the current polytope (causes a quasipolynomial blow-up)

2. Show that facelike SP proofs are equivalent to Cutting Planes proofs

