
Department of Computer Science 6 King’s College Rd, Toronto
University of Toronto M5S 3G4, Canada
http://learning.cs.toronto.edu fax: +1 416 978 1455

Copyright c© N. Srivastava 2015.

May 28, 2015

UTML TR 2015–

Unsupervised Learning of Visual
Representations using Videos

Nitish Srivastava
Department of Computer Science, University of Toronto

Abstract

This is a review of unsupervised learning applied to videos with the aim of
learning visual representations. We look at different realizations of the notion
of temporal coherence across various models. We try to understand the chal-
lenges being faced, the strengths and weaknesses of different approaches and
identify directions for future work.

Unsupervised Learning of Visual Representations using
Videos

Nitish Srivastava
Department of Computer Science, University of Toronto

1 Introduction

Videos are a virtually unlimited source of rich visual information. However, videos when represented

as a temporal sequence of pixel intensities lie in an extremely high-dimensional space where distinct

factors of variation such as illumination, pose, view point, camera motion, object motion, object

identity and object attributes are heavily entangled. We would like to discover computations which

can disentangle these factors to produce a representation that is equivariant (or invariant) to subsets

of these factors. The hope is that such a representation would provide a generic and expressive

interface between low-level visual inputs and high-level “AI”. This would make it easy to solve tasks

in the AI-set which require access to visual stimuli.

1.1 Motivation

Why videos ? The motivation for working with videos rather than with still images is that a tempo-

rally ordered sequence of images contains more information than an unordered one. This additional

information lies in the temporal order. This information is valuable because temporal ordering is

closely related to semantic structure. Since the semantics of a visual scene usually does not change

rapidly over time, we can exploit the fact that any good visual representation must also not vary

drastically over time. This provides a strong prior to constrain the search space for good visual

representations and suggests that videos should help learn better visual representations. Besides,

there are tasks that only operate on videos, such as activity recognition and tracking, where being

able to aggregate information across time is crucial. Therefore videos are a natural playground for

building representations aimed at solving these tasks. Moreover, if we take inspiration from biological

forms of intelligence, we should not ignore the fact that visual systems exist, learn and evolve in an

environment of continuously changing visual stimuli.

Why unsupervised learning ? Supervised learning has been extremely successful in learning good

visual representations that not only produce good results at the task they are trained for, but also

transfer well to other tasks and datasets. Therefore, it is natural to extend the same approach to

learning video representations. This has led to research in 3D convolutional nets (Ji et al., 2013; Tran

et al., 2014), different temporal fusion strategies (Karpathy et al., 2014) and exploring different ways of

presenting visual information to convolutional nets (Simonyan and Zisserman, 2014). However, videos

are much higher dimensional entities compared to single images. Therefore, it becomes increasingly

difficult to do credit assignment and learn long range structure, unless we collect much more labelled

1

data or do a lot of feature engineering (for example, computing the right kinds of flow features)

to keep the dimensionality low. The costly work of collecting more labelled data and the tedious

work of doing more clever engineering can go a long way in solving particular problems, but this is

ultimately unsatisfying as a machine learning solution. This highlights the need for using unsupervised

learning to find and represent structure in videos. Moreover, videos have a lot of structure in them

(spatial and temporal regularities) which makes them particularly well suited as a domain for building

unsupervised learning models, even from a purely theoretical perspective.

1.2 Challenges

Evaluation The problem that we want to solve is how to find generic and expressive visual represen-

tations that serve as an interface to high-level AI. One of the key challenges is the inherent ambiguity

of this problem. How do we quantify the notion of a representation being “generic and expressive”

in a task-independent way ? How do we know that an interface is good when the thing that uses this

interface (AI) is not very well defined ? In order to make progress, we need some meaningful way

to quantify the goodness of representations. This is important for two reasons (1) as the source of a

learning signal for training models (following the gradient that goes from worse to better parameters)

and (2) as a way of comparing distinct models. We can think of (2) in the context of a search space

over machine learning models that is being explored by the research community.

One solution is to consider probabilistic generative models and quantify the model’s performance

by measuring how likely the model is to generate some test data. This method has the advantage of

being well-defined and meaningful to compare across distinct models. However it has the disadvantage

that it is only applicable to probabilistic generative models. Moreover, it is often hard to compute

or even reasonably approximate log likelihood. Often the approximations are either unbiased but

high variance or fairly stable but so far from the true value that they are not useful. Also, the more

complicated a model we design, the harder it becomes to evaluate its log-likelihood.

An alternative is to consider examples of supervised learning tasks, for example, object recognition

or action recognition and try to solve them using the representations learned from unsupervised

models. The performance on the supervised task is indicative of the quality of the unsupervised

model, especially if the size of the labelled data is rather small. This has the advantage of being

applicable to all models, not just probabilistic generative ones. It also fits nicely with the original

motivation of enabling AI tasks. The disadvantage is that specific supervised learning tasks may bias

our search and direct it away from being truly generic. Also it gets hard to justify this approach

because if we really cared about solving a particular supervised problem, there may be better ways

to do that, for example, by throwing lots of supervised data at large neural nets.

The third solution is to look for desirable properties of the learned representations. For example

slowness, sparsity, high entropy, invariance to certain transforms, the ability to recover the input,

ability to retain information about the input, and so on. These can sometimes be incorporated as

priors in generative models or enforced directly through loss functions in non-probabilistic settings.

Computational The next challenge is purely computational. Large video datasets are hard to

handle. Videos need to be compressed in order to be stored efficiently. When making minibatches

they need to be decompressed and shuffled. Random access in a compressed video is not efficient.

2

Also information is quite sparse, in the sense that most of the time, in most regions of space, nothing

interesting happens. There seems to be no easy solutions to handle this challenge, except careful

engineering while writing data handlers.

1.3 The Underlying Theme: Temporal Coherence

Most unsupervised machine learning effort applied to visual perception has focused on still images.

All those ideas are obviously relevant for videos as well along the spatial dimension. Keeping this

in mind, this report will focus on all things temporal and temporal coherence will be an underlying

theme.

Coherence across time is a ubiquitous feature of visual sensory data. Things in the world change

locally and slowly, if at all. This is a fundamental artifact of living in a low energy, low temperature

physical system with localized, embodied objects. Consider an object moving across a visual frame.

Things that we might care about, for example object identity, do not vary at all with time. The

object’s pose varies slowly and smoothly. However low-level features, for example the state of a

particular pixel or the response of a linear filter at some patch vary at a much faster rate, especially

in the presence of background clutter and camera motion. This indicates that if we could extract

features that are coherent across time, we might be able to get rid of the variations that we don’t care

about and capture the ones that we do. Of course being coherent alone will lead to trivial solutions

like being constant. Therefore, the features must also be informative in some way. It should be

emphasized that temporal coherence is not just about features changing slowly. It can be generalized

to mean that features change predictably. Therefore, temporal coherence is not just about coherence

in the value of the features but coherence in the process that explains the features.

One of the earliest mentions of temporal coherence in the context of unsupervised machine learning

was by Hinton (1989), page 208, where it is suggested that we could insist that all or part of the code

“change as slowly as possible with time” in order to get a signal for self-supervised backpropagation.

Since then a huge amount of research has been done in trying to use temporal coherence. All the

models that we review in this paper try to use temporal coherence in some way. They differ in how

they quantify and capture coherence, how they try to prevent collapse and what tasks they aim to

solve. They can be categorized into the following sections.

• Early progress made in designing Hebbian update rules that encourage temporal coherence.

• Models that quantify coherence based on information-theoretic measures such as entropy and

mutual information.

• Probabilistic generative models for temporal sequences and image pairs.

• Models that use objective functions designed to encourage slowness and sparsity but are not

necessarily motivated by or derived from probabilistic models.

• Models that try to solve various computer vision tasks involving videos. As opposed to typical

machine learning models which solve simple tasks by learning rich representations with little

domain knowledge, most of these models use simple fixed representations but a lot of domain

3

knowledge to solve complicated tasks. We review these models with the aim of assessing if they

can be extended so that the learning signal can be used to learn the visual representations.

2 Hebbian update rules

The standard Hebbian learning principle (Hebb, 1949) is that units that fire together, wire together.

In a computational setting, this principle leads to an update rule for the strength of the synapse

(weight wij) connecting unit j to unit i

∆wij = εyi(xj − wij), (1)

where yi is the activation of the post-synaptic unit i, xj is the activation of the pre-synaptic unit

j and ε is a learning rate. The weight decay term is added to keep the weight bounded. Hinton

(1989) mentioned that one possible way of incorporating temporal coherence would be to use the

post-synaptic activity from the previous time step, instead of the current one. In a similar spirit,

Földiák (1991) proposed a modified Hebbian rule which uses the trace of the post-synaptic unit’s

activity (exponential running average) in place of its current activation.

∆w
(t)
ij = εȳi

(t)
(
x
(t)
j − w

(t)
ij

)
,

where ȳi
(t) = (1 − δ)ȳi(t−1) + δy

(t)
i . Combined with some lateral competition for turning units

“on”, this learning rule encourages features to be coherent over time because the features which can

stay coherent will have a high running average and therefore will be able to get a large learning signal.

This temporal low-pass filtering of the network’s activations incorporates an inductive bias that the

learned features should be stable over time. This was one of the first attempts to use temporal

coherence to learn invariant representations. This method was shown to work in a simple scenario

where the input consisted of straight lines in different orientations moving across a visual field. The

linear separability of the input made this particular scenario easy. In order to extend this approach

to more realistic settings, we would need a multi-layer neural net (or some other powerful non-linear

transform) to extract that linearly separable space from raw inputs, but from this work it was not

obvious what the learning signal for that non-linear transform would be.

Mitchison (1991) proposed an anti-Hebbian term designed to remove short-term temporal varia-

tions. The term looks like

∆w
(t)
ij ∝ −∆y

(t)
i ∆x

(t)
j , (2)

where ∆y
(t)
i = yti − yt−1i and ∆x

(t)
i = xti − xt−1i are the temporal differentials of the output and

input unit respectively. This terms says that if changes in the input over time are positively correlated

with changes in the output, the weight connecting them should be lowered. The contribution from

this term will be small only when changes in the input over time do not produce a large change

in the output. Therefore, the output will be temporally coherent. Until this is achieved, this term

would keep pushing the weights to be small. This is essentially a regularization term that encourages

temporal coherence since it prefers zero weights over weights that produce large changes in the output

over a short period of time.

4

Stone and Bray (1995) derived a combination of Hebbian and anti-Hebbian updates from a simple

observation regarding temporal coherence. They argue that we want the outputs of neurons to have

small short-term variance but large long-term variance. This would make them temporally coherent

over short time scales but prevent collapse by making them vary a lot over long time scales. Suppose

y(t) denotes the output of a neuron at time t, ỹ(t) the short term average (an exponential average with

a fast decay) and ȳ(t) a similar long term average. We can get the desired behaviour by maximizing

the following objective -

F =
1

2
log

V

U
=

1

2
log

∑T
t=1

(
y(t) − ȳ(t)

)2
∑T

t=1

(
y(t) − ỹ(t)

)2 .

This objective says that the log ratio of the long-term variance and the short-term variance must be

as large as possible. Suppose this neuron is linear and the weight coming into it from input xj is wj .

Then taking derivatives wrt wj-

∂F

∂wj
=

1

V

∑

t

(y(t) − ȳ(t))
(
∂y(t)

∂wj
− ∂ȳ(t)

∂wj

)
− 1

U

∑

t

(y(t) − ỹ(t))
(
∂y(t)

∂wj
− ∂ỹ(t)

∂wj

)

=
1

V
〈(y − ȳ)(xj − x̄j)〉 −

1

U
〈(y − ỹ)(xj − x̃j)〉.

Therefore, we have an update rule that contains two terms - a Hebbian term and an anti-Hebbian

term. This can be interpreted as saying that if V is large compared to U then we are in a domain

where preventing collapse is not a major concern, therefore the model’s learning is mostly anti-

Hebbian and aimed towards reducing temporal variability and improving coherence. On the other

hand, if V is smaller than U , then collapsing is becoming a concern and the model’s learning switches

to Hebbian, aimed at increasing the variability of the output in response to the input. This update

rule elegantly combines the anti-Hebbian term (Eq. 2) proposed by Mitchison (1991) with standard

Hebbian learning. This approach is one of the first examples of the use of a contrastive term to

prevent collapse in the context of learning temporal coherence. However, a drawback of this method

is that the objective function F is a per-neuron objective. In order to make multiple neurons discover

different features we would need some way to decorrelate the outputs of multiple neurons.

Becker (1996) proposed a Hebbian learning rule for Gaussian Mixture Models where the mixing

proportions are not fixed parameters, but are functions of some context. The aim was to produce a

clustering that is temporally coherent. Consider a Gaussian Mixture Model over K components-

p(x) =
K∑

k=1

πkyk(x),

yk(x) = N (x|µk,Σk).

When the log-likelihood
∑

x log(p(x)) is optimized with gradient descent, the contribution to the

update for the mean µk due to any data case x is

∆µkj = ε
πkyk(x)∑
k′ πk′yk′(x)

(xj − µkj) .

5

Comparing this to Eq. 1, this is a Hebbian update rule involving a normalized post-synaptic activation,

pre-synaptic action xj and weight µkj . Instead of πk being fixed parameters, Becker (1996) make

them a function of some context c of the current input x.

πk(c) =
exp(ck)∑
k′ exp(ck′)

The context could be a (learned) function of, for example, the preceding sequence of inputs or

the preceding cluster probabilities. If the cluster predicted by the context πk(c) agrees with that

predicted by the current input yk(x), then the weight update will be large since the update depends

on the product of the two. Therefore, the model is being encouraged to discover clusters such that

they can be predicted in agreement with the context signal, which can be seen as enforcing temporal

coherence. This model is also an example of a multiplicative interaction between context and current

input.

The Hebbian update rule here was derived from trying to optimize a cost function over multiple

neurons, unlike the previous work from Földiák (1991), Mitchison (1991) and Stone and Bray (1995).

More broadly, the approach in the research community has drifted away from formulating biologically

plausible update rules towards designing global loss functions, whether or not they lead to local update

rules is of secondary importance. One driving force behind this is that if we have a well-defined

objective function then it becomes easier to add complexity to the model, for example, by adding

more layers to a network, without having to worry too much about how to make that complexity

be useful. In other words, it decouples what we want to achieve from how we want to achieve it.

This provides the flexibility of choosing objectives through which desired properties can be enforced,

for example, temporal coherence. For generative probabilistic models, the objective function is often

the log-likelihood of the data. Another class of objective functions is based on information theoretic

measures that try to quantify information or independence in the learned representations. We describe

those next.

3 Measuring Information and Independence

A sensible objective of unsupervised representation learning is to learn a representation that is max-

imally informative about its input. After all, in the absence of a supervised task, we should try to

extract as much information as possible about the input. The challenge is how to represent this

information and measure it quantitatively. This measurement must be such that it is easy to com-

pute. It would also be nice if it was differentiable so it can be optimized easily. Shannon (1948)

showed that entropy of a distribution is a measure of how much information is obtained by observing

samples from it. The broad result in this area is that given samples from a distribution, its entropy

can be measured if we are willing to make certain assumptions about the distribution. Estimating

information gets harder if we do not make assumptions. The research in this area is mostly driven

by making sensible assumptions and seeing what properties emerge.

6

3.1 Mutual Information

Mutual Information between random variables X and Y is defined as

I(X,Y) ≡ H(X) +H(Y)−H(X,Y) = H(Y)−H(Y |X),

where H(X) ≡ −∑x∈X p(x) log p(x) is the entropy of random variable X which takes values in the

domain X . I is high when each variable has a lot of information (high entropy) but given one variable,

knowing the other does not give much additional information. Becker and Hinton (1992) proposed

that common causes, that affect separate but related parts of some perceptual input, can be found

by maximizing the mutual information between the outputs of computational modules each of which

only looks at one of the parts. For instance, they showed that mutual information between outputs

of modules that look at non-overlapping, spatially adjacent patches of random-dot stereograms can

be used to discover the common feature – depth. The idea is to exploit spatial coherence of features

such as depth which are likely to be the same or change slowly across the visual input. Becker (1992)

applied this idea to temporally adjacent inputs. Here, the common feature was the identity of a

6-dimensional random pattern as it translated (with wrap-around).

The ability to compute the entropy and its derivatives is often the limiting factor in using this

objective function. If the domain of the random variable is small, for example, if it is a single binary

or multinomial unit, then the entropy can be measured by directly enumerating the space. This

was the case in Becker (1992) where the variable was the output of the softmax trying to classify

the input. Otherwise, it becomes hard to measure the entropy unless an assumption is made about

the distribution of the variable. For example Becker and Hinton (1992) in the case of random-dot

stereograms assume that the output of each module is the true depth corrupted with independent

Gaussian noise. Under this assumption, computing the mutual information and its derivative become

tractable. For two variables a and b which are corrupted versions of the true underlying signal,

I =
1

2
log

V (a+ b)

V (a− b)

is a good measure of the mutual information between the mean of a and b and the underlying

true signal, where V denotes variance. In general, computing entropy is hard. Viola et al. (1995)

proposed a method for approximating entropy using Parzen density estimates to avoid the use of any

parametric assumption about the true density function. However, the method is hard to extend to

very high dimensional spaces because it is hard to get reliable Parzen density estimates in those cases.

Zemel and Hinton (1991) used mutual information to discover viewpoint invariant representations

of an object. The model looks at different parts of the object and outputs some representation.

The representations extracted at these different locations are made to agree. The motivation is that

attributes like position, orientation and object size are common and if the model learns to extract

those, then it can have high mutual information.

In all these models, the mutual information between two outputs of a network was used as the

objective function to train the network. Next, we will look at models where the mutual information

between the input and output of a network is used to train it.

7

3.2 Infomax

Information maximization was first proposed by Linsker (1988) as the underlying principle for learning

in networks in the context of visual systems. The main idea was that networks learn to be so that

the maximum amount of information gets transferred across each layer of the network, subject to

constraints. So if x is the input to a neuron and y is its output, the weights will be set so that y

conveys as much information as possible about x. This principle is called “infomax”.

For example, consider a linear neuron y =
∑

iwixi + b+ η where η is independent Gaussian noise

with mean zero and standard deviation σ. If we assume y to be Gaussian distributed with variance

V , then the rate at which information flows through this neuron is 0.5 log V/σ2. Therefore, the

information can be maximized by increasing the variance. But then the information can be arbitrarily

increased by just increasing the scale of the weights. So we can place a constraint on the weights, for

example that ||w||22 = 1. Since the norm of the weights is bounded, we are asking the model to find a

direction w such that the variance of the projection of the inputs along that direction is maximized,

which corresponds to finding the first principle component. If we have a whole bunch of neurons

y and we simultaneously find these directions for each unit while keeping them orthogonal to each

other, then would recover Principle Component Analysis (PCA). Imposing a Gaussian assumption

on y led us to derive PCA. If we place a different “non-Gaussianity” assumption, then we could

discover other representations. A lot of research in the field of Independent Components Analysis

(ICA) specializes in making these assumptions and finding interesting representations. Some of these

will be reviewed in this paper. However, if we insist on not making any assumptions, the problem

becomes much harder to solve. We would typically require some non-parametric density estimator to

express the probability distribution over the output space, and use that to measure entropy.

Before we look at am application of infomax to temporal sequences, it is insightful to derive the

update rules that fall out of this objective and compare them to the Hebbian rules we saw earlier.

A lot of this analysis is borrowed from Bell and Sejnowski (1995). Suppose a neural net takes X as

input and produces Y . The aim is to maximize the mutual information between X and Y . This can

be formulated as maximizing

I(X,Y) = H(Y)−H(Y |X)

where H(Y) is the entropy of the output and H(Y |X) is the entropy in Y conditioned on X. If

the model that produces Y given X is deterministic, then H(Y |X) diverges to −∞ if Y is real-valued.

However, this is fine because H is actually differential entropy and is defined with respect to some

noise level (for example, σ for the linear neuron above). Therefore, we can just concern ourselves with

maximizing the entropy H(Y). Suppose X and Y are both one dimensional entities and we have an

invertible function g that maps X to Y . The input has a probability density function pX(x). Then

the probability density function of the output pY (y) is given by

pY (y) =
pX(x)

| ∂y∂x |
.

8

The entropy of this probability density function is

H(Y) = −E[log pY (y)] = E

[
log

∣∣∣∣
∂y

∂x

∣∣∣∣
]
− E[log pX(x)].

The term E[log pX(x)] is a constant, independent of the model. Therefore, we can ignore it during

optimization. The derivative of H(Y) wrt any model parameter w is

∂

∂w
H(Y) = E

[(
∂y

∂x

)−1 ∂

∂w

(
∂y

∂x

)]
.

We can approximate the expectation by the mean over the data distribution. In particular, suppose

our model is a single weight w and bias b followed by a sigmoid non-linearity,

y =
1

1 + exp(−(wx+ b))
.

Then

∂y

∂x
= wy(1− y),

∂

∂w

(
∂y

∂x

)
= y(1− y)(1 + wx(1− 2y)),

and the updates are-

∆w ∝ 1

w
+ x(1− 2y),

∆b ∝ 1− 2y.

The bias update has the nice interpretation that it will be zero only if the expected value of y is

0.5. This means that the model will center the sigmoid around the mean of the input distribution.

The x(1−2y) term in the weight updates will change the weights to try to match them with the scale

of the input distribution. The 1/w term keeps the w from collapsing to 0. This is a rather interesting

situation where we have an anti-Hebbian rule involving the activities and an anti-decay term that

prevents collapse. Usually, we have a Hebbian rule involving the activities and a weight decay.

In general, if both X and Y are vectors of length N , then this generalizes to

pY (y) =
pX(x)

|det J | ,

where J is the Jacobian whose entries are given by Jij = ∂yi
∂xj

. This leads to

∆W ∝
[
W>

]−1
+ (1− 2y)x>,

∆b ∝ 1− 2y.

Instead of just preventing W from being 0, the
[
W>]−1 term now prevents any linear dependence

9

between the weights, making the different weights discover different features. This is an interesting

way in which it prevents collapse. However, this technique only works for full dimensional weights.

If the output has fewer units than inputs, the mapping is not invertible and this technique would not

apply directly (det J = 0).

Bell and Sejnowski (1995) applied this to the source separation problem also known as the cocktail

party problem. In this problem, there are N independent temporal signals (N people talking at a

party). There are N sensors that are recording the sound. Each sensor receives a different mixture of

the N signals. The input signal x(t) represents the input at the N sensors at time t. The problem is to

separate this input signal to recover the N independent signals y(t) where each dimension corresponds

to one of the speakers. By maximizing the mutual information between x(t) and y(t) they were able

to separate up to 10 independent sources including 6 human speakers, rock music, raucous laughter

etc. The temporal problem being solved here is disentangling an additive mixture of independent

factors of variation. This is much simpler than disentangling the factors of variation in a visual scene

(object identity, motion, pose, camera motion etc) because they combine in overwhelmingly intricate

ways. But looking at the strengths and limitations of these approaches when applied to a simple

problem can potentially help understand when and how they would fail for bigger problems.

3.3 Independent Component Analysis

In this section we review models based on ICA. ICA has been used to learn representations in

numerous domains. The principle underlying ICA was first introduced by Herault and Jutten (1986)

and stated more clearly by Comon (1994). The idea has since then been explored by a number of

researchers (Bell and Sejnowski, 1995; Amari et al., 1996; Hyvärinen and Oja, 1997, 2000). In ICA,

given an input x, we would like to transform it into an encoding y = Wx such that the components

yj are as statistically independent as possible. The notion of independence has been quantified in

numerous ways – correlation, kurtosis, “non-Gaussianity”, differential entropy (negentropy), mutual

information, etc.

ICA has been used to solve the cocktail party problem. The motivation is that if we can obtain N

signals that are as independent as possible, then they should correspond to the N speakers. Jutten

and Herault (1991) proposed a neural network architecture to solve this problem. They proposed a set

of update rules to learn the network’s parameters, but the rules did not correspond to any global loss

function. However, they showed that the fixed point of the updates is reached when the correlation

between different output dimensions is zero. In this way, this model used second-order statistics of

the output signals (i.e. the correlation 〈y(t)j y
(t)
i 〉t) as a measure of independence. However, since we

want y
(t)
i and y

(t)
j to be independent, not just uncorrelated, all non-linear functions of them must also

be uncorrelated. Therefore, the authors extended their approach to second-order statistics of fixed

arbitrary non-linear functions of the output signals (i.e., the correlation 〈f(y
(t)
j)g(y

(t)
i)〉t, where f, g

are some fixed non-linear functions, for instance, f(x) = x3, g(x) = sin(x)). This makes the output

signals more independent. However, a drawback of their approach is that they only took into account

statistics at the same time point t.

Ideally, we would want independence between components across time as well. In other words,

we want y
(t)
i and y

(t+τ)
j to be independent for all i 6= j and for all τ ≥ 0. Molgedey and Schuster

10

(1994) try to take this account. They choose a single fixed time-delay τ and minimize

L =
∑

i 6=j
〈y(t)i y

(t)
j 〉2 +

∑

i 6=j
〈y(t)i y

(t+τ)
j 〉2, (3)

while keeping the variance 〈y(t)i 〉2 constrained to be 1. Ziehe and Müller (1998) extended this to

several time steps τk

L =
K∑

k=0

∑

i 6=j
〈y(t)i y

(t+τk)
j 〉2,

where τ0 = 0. They also extended it by applying fixed arbitrary non-linear functions to yi’s and

yj ’s. These models do take into account correlations at other time steps, but they still quantify

independence in terms of correlation. By assuming that decorrelation and independence are the

same thing, we make an implicit Gaussian assumption about the signals in question. This can be

ameliorated to some extent by looking at non-linear functions of the signals (Jutten and Herault,

1991) but ultimately these are still second-order statistics, when what we really want is to look at

statistics at all orders.

The use of higher order statistics for example kurtosis (4-th order moments) has also been pro-

posed. Kurtosis is usually defined as

E[(X − µ)4]

(E[(X − µ)2])2
− 3

This essentially measures the peakedness of a distribution. The Gaussian distribution has zero kur-

tosis. Spikier distributions have higher kurtosis and flatter distributions have lower kurtosis. It has

been used as a measure of non-Gaussianity. However, it is very sensitive to outliers and is not robust.

Cardoso and Souloumiac (1993) used 4th order cumulants for separating non-Gaussian signals.

3.4 Independent Subspace Analysis

ISA (Hyvärinen and Hoyer, 2000) is a generalization of ICA where instead of having each component

yj be independent, the norms of the projection of x onto subspaces defined by subsets of these of

components are independent. More precisely, suppose the projection y is divided into J subsets of

K units each. Let yjk denote feature k in group j, and wjk denote the weight that connects it to the

input x.

The norm of the projection of x into subspace j is given by

aj(x) =

(
K∑

k=1

(
w>jkx

)2
)1/2

.

ISA maximizes the following objective

L =
1

N

N∑

n=1

J∑

j=1

log p(aj(x
(n))) subject to WW> = I.

11

Figure 1: (Figure reproduced from Häusler et al. (2013)) (A) RBM (B) Autoencoder (C) Conditional
RBM (D) Temporal RBM.

Here decorrelation is used as a surrogate for independence, although other forms of independence

can also be enforced. p(aj(x)) is chosen to be some sparse distribution. Often this is the exponential

distribution,

log p(aj(x)) ∝ −λaj(x) + β.

Le et al. (2011) applied ISA to learn an encoding of spatio-temporal cubes sampled from natural

videos.

4 Probabilistic Generative Models of Temporal Sequences

Probabilistic generative models offer a principled framework for expressing unsupervised learning

models. The basic idea is to define a probability density function P over the domain of the data X .

Given unlabelled data D we assume that it consists of samples drawn i.i.d from the true unknown data

generating distribution. The maximum likelihood objective function is to learn the distribution P

such that the probability of drawing the samples in D from P is as high as possible. A huge number of

models have been proposed to understand temporal sequences using probabilistic generative models.

In this section, we will focus on models that have been built for visual data or can be potentially

applied to them.

4.1 Temporal Boltzmann Machines

The Restricted Boltzmann Machine (RBM) is a simple undirected generative model. Temporal ex-

tensions of RBMs have been studied to model temporal sequences. Fig. 1 shows a conditional RBM

and a temporal RBM. These models incorporate temporal coherence by conditioning the hidden state

of an RBM at any time by the states at previous time steps. However, note that the conditioning is

additive in the sense that previous visible and/or hidden states add a bias to the current state. The

case of the TRBM is a little more complicated since the proper way to do inference at time t here

would be to marginalize the effects of previous timesteps. Sutskever et al. (2009) proposed Recurrent

Temporal RBMs (RT-RBMs) which are similar to TRBMs, except that they remove this problem by

removing the undirected connection between the hidden and visibles and replacing that by a directed

connection from the visible to hidden. The effect of the hidden state on the visible is through a time

12

Figure 2: The graphical structure of the RTRBM,Q. The variablesHt are real valued while the
variablesH ′

t are binary. The conditional distributionQ(Vt,H
′
t|ht−1) is given by the equation

Q(vt, h
′
t|ht−1) = exp

(
v⊤t Wh′

t + v⊤t bV + h′
t(bH +W ′ht−1)

)
/Z(ht−1), which is essentially the

same as the TRBM’s conditional distributionP from equation 5. We will always integrate outH ′
t

and will work directly with the distributionQ(Vt|ht−1). Notice that whenV1 is observed,H ′
1 cannot

affectH1.

probabilityP ′(H(j) = 1), and 0 otherwise. In contrast, the statementh← P ′(H) means that each
h(j) is set to the real valueP ′(H(j) = 1), so this is a “mean-field” update [8, 17]. The symbolP
stands for the distribution of some TRBM, while the symbolQ stands for the distribution defined by
an RTRBM. Note that the outcome of the operation· ← P (Ht|vt, ht−1) is s(Wvt+W ′ht−1+bH).

An RTRBM,Q(V T
1 ,HT

1), is defined by the equation

Q(vT1 , h
T
1) =

T∏

t=2

Q(vt|ht−1)Q(ht|vt, ht−1) ·Q0(v1). Q0(h1|v1) (6)

The terms appearing in this equation will be defined shortly.

Let us contrast the generative process of the two models. To sample from a TRBMP , we need
to perform a directed pass, sampling from each RBM on every timestep. One way of doing this is
described by the following algorithm.

Algorithm 2 (for sampling from the TRBM):

for 1 ≤ t ≤ T :

1. samplevt ∼ P (Vt|ht−1)

2. sampleht ∼ P (Ht|vt, ht−1)
3

where step 1 requires sampling from the marginals of a Boltzmann Machine (by integrating outHt),
which involves running a Markov chain.

By definition, RTRBMs and TRBMs are parameterized in the sameway, so from now on we will
assume thatP andQ have identical parameters, which areW,W ′, bV , bH , andbinit. The following
algorithm samples from the RTRBMQ under this assumption.

Algorithm 3 (for sampling from the RTRBM)

for 1 ≤ t ≤ T :

1. samplevt ∼ P (Vt|ht−1)

2. setht ← P (Ht|vt, ht−1)

We can infer thatQ(Vt|ht−1) = P (Vt|ht−1) because of step 1 in Algorithm 3, which is also con-
sistent with the equation given in figure 2 whereH ′

t is integrated out. The only difference between
Algorithm 2 and Algorithm 3 is in step 2. The difference may seem small, since the operations
ht ∼ P (Ht|vt, ht−1) andht ← P (Ht|vt, ht−1) appear similar. However, this difference signifi-
cantly alters the inference and learning procedures of the RTRBM; in particular, it can already be
seen thatHt are real-valued for the RTRBM.

3Whent = 1, P (Ht|vt, ht−1) stands forP0(H1|v1), and similarly for other conditional distributions. The
same convention is used in all algorithms.

Figure 2: (Figure reproduced from Sutskever et al. (2009)) A Recurrent Temporal Restricted Boltz-
mann Machine (RTRBM).

delayed recurrent connection. The resulting model is shown in Fig. 2. This was used to model a video

of bouncing balls and worked better than a TRBM. Boulanger-Lewandowski et al. (2012) proposed

RNN-RBMs (Fig. 3). In this model there is a recurrent neural net running that takes as input the

observed temporal sequence. There is also a conditional RBM that looks at the input at each time

step. The RBM is conditioned on the states of the RNN from the previous time step. This model

separates the hidden state of the RNN from the hidden state of the RBM. Therefore the RNN hidden

states model the temporal dynamics while the RBM hidden states model the appearance (conditioned

on the temporal dynamics). This tries to separate motion modeling capacity from the appearance

modeling one. In the RT-RBM, the same hidden state tries to perform both jobs simultaneously. The

RNN-RBM was shown to empirically work better than RT-RBM on the task of modeling polyphonic

music.

Modeling Temporal Dependencies in High-Dimensional Sequences

v(2) v(T)

h(2) h(T)...

...

h(0) h(1)

W

W' bh(1)

bv(1)
W"

bv(2)
v(1)

bh(2) bh(T)

bv(T)

(a) RTRBM

v(2) v(T)

h(2) h(T)...

...

h(1)

W
W'

bh(1)

W"
bv(1) bv(2) bv(T)
v(1)

bh(2) bh(T)

h(2) h(T)...h(0) h(1)W3

W2

(b) RNN-RBM

Figure 2. Comparison of the graphical structures of (a) the
RTRBM and (b) the single-layer RNN-RBM. Single arrows
represent a deterministic function, double arrows represent
the stochastic hidden-visible connections of an RBM. The
upper half of the RNN-RBM is the RBM stage while the
lower half is a RNN with hidden units ĥ(t). The RBM
biases b

(t)
h , b

(t)
v are a linear function of ĥ(t−1).

hidden units ĥ(t) are only connected to their direct
predecessor ĥ(t−1) and to v(t) by the relation:

ĥ(t) = σ(W2v
(t) +W3ĥ

(t−1) + bĥ). (11)

The RBM portion of the RNN-RBM (upper portion of
Fig. 2(b)) is otherwise exactly the same as its RTRBM
counterpart. This gives the single-layer RNN-RBM
nine parameters: W, bv, bh,W

′,W ′′, ĥ(0),W2,W3, bĥ.

The training algorithm is slightly different than for the
RTRBM since the mean-field values of the h(t) are now
distinct from ĥ(t). An iteration of training is based on
the following general scheme:

1. Propagate the current values of the hidden units
ĥ(t) in the RNN portion of the graph using (11),

2. Calculate the RBM parameters that depend on the
ĥ(t) (eq. 8 and 9) and generate the negative particles
v(t)∗ using k-step block Gibbs sampling,

3. Use CDk to estimate the log-likelihood gradient

(eq. 6) with respect to W , b
(t)
v and b

(t)
h ,

4. Propagate the estimated gradient with respect to

b
(t)
v , b

(t)
h backward through time (BPTT) (Rumel-

hart et al., 1986) to obtain the estimated gradient
with respect to the RNN parameters.

This procedure can be adapted to any RNN architec-
ture and conditional distribution estimator assuming
the RNN provides the estimator’s parameters (step
2) and can be trained based on a stochastic gradi-

ent signal on those parameters (obtained in step 3).
The RNN-NADE, obtained by substituting NADEs for
RBMs, allows for exact gradient computation.

Note that the single-layer RNN-RBM is a generaliza-
tion of the RTRBM and reduces to this simpler model
by setting W2 = W , W3 = W ′ and bĥ = bh in equa-
tions (10) and (11). The RTRBM was not gaining
computationally from sharing these connections, hence
untying them does not make it slower. In practice, the
ability to distinguish between the number of hidden
units h and ĥ allows to scale RBMs to several hundred
hidden units while keeping the RNNs to their (typi-
cally smaller) optimal size, improving performance.

4.1 Initialization strategies

Initialization strategies based on unsupervised pre-
training of each layer have been shown to be important
both for supervised and unsupervised training of deep
architectures (Bengio, 2009). A recurrent network cor-
responds to a very deep architecture when unfolded in
time, and indeed we find that pretraining can clearly
affect the overall performance of both the RTRBM and
the RNN-RBM. To ensure the quality of the learned
weight matrices, we found that initializing the W , bv
and bh parameters from a trained RBM yields less
noisy filters. The hidden-to-bias weights W ′,W ′′ can
then be initialized to small random values, such that
the sequential model will initially behave like indepen-
dent RBMs, eventually departing from that state.

In order to capture better temporal dependencies,
we initialize the W2,W3, bĥ,W

′′, bv, ĥ(0) parameters of
the RNN-RBM from an RNN trained with the cross-
entropy cost:

L({v(t)}) =
1

T

T∑

t=1

nv∑

j=1

−v(t)j log y
(t)
j −(1−v(t)j) log(1−y(t)j)

(12)

where y(t) = σ(b
(t)
v) and equations (9) and (11) hold.

This deterministic objective allows the use of a second-
order optimization method for pretraining of the RNN.
Note that the RTRBM could use this strategy to ini-
tialize W,W ′, bv, bh,W ′′, ĥ(0), but in practice we have
found the initialization from an RBM more important.

4.2 Details of the BPTT algorithm

Suppose we want to minimize the negative log-
likelihood cost C ≡ − logP ({v(t)}). The gradient of
C with respect to the parameters of the conditional
RBMs can be estimated by CD using equations (4)
and (6):

∂C

∂b
(t)
v

' v(t)∗ − v(t) (13)

Figure 3: (Figure reproduced from Boulanger-Lewandowski et al. (2012)) A Recurrent Neural Network
Restricted Boltzmann Machine (RNN-RBM).

4.2 Gated Restricted Boltzmann Machines and Autoencoders

Most of the models that we have considered till now only use additive interactions between the infor-

mation coming from the previous time steps to better model the data at the current time step. Models

13

that take use multiplicative interactions have also been proposed. Gated Restricted Boltzmann Ma-

chines (GRBMs) were proposed by Taylor and Hinton (2009) to model human motion-capture data.

Memisevic and Hinton (2010) applied GRBMs for learning the representation of the transformation

that happens between pairs of temporally adjacent video frames. The motivation was to encode

the transform and not the image that is being acted upon by the transform, so that motion can be

separated from appearance. This model was applied in a convolutional way by Taylor et al. (2010).

Memisevic (2011) proposed Gated Autoencoders which are same as GRBMs, except that the genera-

tive probabilistic model is replaced by an autoencoder with sparsity. Memisevic (2013) has a review

of these related models. Michalski et al. (2014) extend this idea by modelling not just pairs but longer

images sequences. In this case, instead of just representing the velocity-like features, higher-order

features corresponding to higher-order time derivatives of the motion, such as acceleration are also

modelled.

4.3 RNN Autoencoders

Recurrent neural nets, especially the ones based on Long Short Term Memory (LSTMs)(Hochreiter

and Schmidhuber, 1997) have recently become very popular for modeling sequential data. The RNN

encoder-decoder framework was proposed by Sutskever et al. (2014) for machine translation. This

was applied by Srivastava et al. (2015) for learning a model that represents a video sequence (features

from a convolutional net or image patches) by encoding it with an LSTM. The model is trained

to decode the state at the last time step of the encoder using another LSTM to predict the future

and/or reconstruct the input sequence back. Ranzato et al. (2014) also proposed a model that tries to

predict future image patches. They make an interesting innovation by representing the target using

a one-of-K encoding to avoid using an L2 loss when reconstructing the pixels.

4.4 Sparse Coders

Sparse coding was introduced by Olshausen and Field (1996) in the context of learning first level

features from static frames. They showed that these features are similar to the features empirically

observed in the V1 region of mammalian brains. Sparse coding can be seen as a directed generative

model which has latent variables h. In the simplest case, the generative model is that the code h is

drawn from a prior distribution which is sparse, and the data is a linear function of h, plus additive

Gaussian noise.

h ∼ P (h)

x ∼ N (Wh, σ2)

Learning can be formulated as optimizing the following objective

L(W, {hn}Nn=1) = ||Whn − xn||2 − σ2 logP (hn),

where logP (h) could be ||h||22 (Gaussian prior), ||h||1 (Laplace prior), or some other creative

prior. The main intuition behind increasing sparseness is that is not feasible for biological neurons

14

to be highly active all the time. Even though a high entropy state is most efficient for information

transmission, when we trade off information flow rate with the cost of action potential generation

required for firing, having a small number of neurons firing is optimal. In order to encourage temporal

coherence we can now design suitable priors. Willmore and Tolhurst (2001) give a detailed analysis

of some of these priors.

Hyvärinen et al. (2004) propose an interesting sparse coder model that learns spatio-temporal

“bubbles” of activity. They enforce three things – sparsity, a topology on the filter space and temporal

coherence. Fig. 4 shows the patterns of activity this model produces, compared to models that enforce

only some of the three things.

gative, highly sparse random process obtains independent
values at each point in time and space (with space refer-
ring to the topographic grid). For simplicity, let us de-
note the location on the topography by a single index i.
Then the variances v of the observed variables are ob-
tained by a spatiotemporal convolution followed by a
pointwise nonlinearity:

vi~t ! 5 fS (
j

h~i, j !@ f~t ! * uj~t !# D , (21)

where h(i, j) is the neighborhood function that defines
the spatial topography and f is a temporal smoothing
kernel. The simple cell outputs are now obtained by
multiplying simple Gaussian white noise zi(t) by this
variance signal:

si~t ! 5 vi~t !zi~t !. (22)

Finally, the latent signals si(t) are mixed linearly to give
the image. If I(x, y, t) denotes an image sequence, this
mixing can be expressed as

I~x, y, t ! 5 (
i51

n

ai~x, y !si~t !. (23)

The three equations (21)–(23) define a statistical genera-
tive model for natural image sequences.

The combination of temporal and spatial energy corre-
lation is illustrated in Fig. 7. The two signals in the fig-
ure are uncorrelated, and also have no temporal correla-

tion, but the temporal dependence of activation is clear.
Since the active intervals coincide, this is a prototype of
what the dependency between two adjacent cells would
look like.

Fig. 6. Four types of representation. The plots show the outputs of filters as a function of time (horizontal axis) and the position of the
filter on the topographic grid (vertical axis). Each pixel is the output of one unit at a given time point, gray being zero, white and black
meaning positive and negative outputs. For simplicity, the topography is here one dimensional. In the basic sparse representation, the
filters are independent. In the topographic representation, the activations of the filters are also spatially grouped. In the represen-
tation that has temporal coherence, they are temporally grouped. The bubble representation combines all these aspects, leading to
spatiotemporal activity bubbles. Note that the two latter types of representation require that the data have a temporal structure, un-
like the two former ones.

Fig. 7. Combination of temporal and spatial (i.e., topographic)
energy correlation. The two signals are caricatures of what the
outputs of two simple cells with strong energy correlation could
look like. They are uncorrelated, both from each other and tem-
porally. Nevertheless, we see temporal bubbles of activity in the
outputs, and these bubbles are simultaneous, which eventually
leads to spatiotemporal bubbles when there are many cells ar-
ranged topographically. Note that a very similar figure was
used to illustrate basic energy correlation in topographic ICA.21

In that context, the temporal energy correlation was added for
the purposes of illustration only, whereas here it is an essential
part of the model.

1244 J. Opt. Soc. Am. A/Vol. 20, No. 7 /July 2003 Hyvärinen et al.

Figure 4: (Figure reproduced from Hyvärinen et al. (2004)) Spatio-temporal bubbles.

Häusler et al. (2013) proposed a model where they use a sparse autoencoder to pretrain temporal

weights for a TRBM. In a recent preprint, Goroshin et al. (2015) proposed a sparse autoencoder that

incorporates temporal coherence to regularize the learned code. The loss function is

L(x(t),x(t′), θ) =
∑

τ=t,t′

(
||fdec(h(τ))− x(τ)||2 + α|h(τ)|

)
+ β

K∑

i=1

∣∣∣||h(t)||Pi − ||h(t′)||Pi

∣∣∣ ,

where t, t′ are adjacent frames in a video, θ denotes the parameters of the encoder fenc and decoder

fdec, h
(τ) = fenc(x

(τ)) is the encoding of the input and ||h(τ)||Pi denotes an L2 pooling operation over

the region Pi. The first term asks the model to reconstruct the input from the code and the code to

L1 sparse. The second term encourages temporal coherence but in the pooled space.

15

4.5 Sparse-Coder for Separating Amplitude and Phase

Cadieu and Olshausen (2012) proposed a model which aims to disentangle appearance and motion

by explicitly representing features in terms of an amplitude and a phase. This can be seen as a

grouping and reparameterization operation. In a standard sparse coder, each feature is independent.

But here we bundle features into groups of two. Each group is now represented in polar coordinates

– an amplitude a and phase φ, as opposed to the more standard way of representing them as two

independent components. In both cases we have two degrees of freedom. The advantage of separating

amplitude and phase is that over a short time scale, motion will create smooth changes in amplitude

and phase but more abrupt changes if the features were represented independently. The phase

helps impose a smooth local topology on the feature space. Therefore, instead of each feature just

representing how strongly that feature is present, it now represents that along with where that feature

is present with respect to its own local coordinate frame. This separation of what and where makes

this model very appealing.

The model can be elegantly expressed as a sparse coder with complex-valued basis functions and

complex-valued coefficients. Consider sparse-coding an I-dimensional input signal x. Suppose we

choose to have J basis functions and we want the input signal to be a sparse linear combination

of these J basis functions weighted by some coefficients. In a standard sparse coder, each basis

function would be an I-dimensional vector of weights wj . However, in this case, each basis function

has an amplitude wj and phase θj , both of which are I-dimensional vectors. Therefore, the weight

connecting feature j to input dimension k is wjke
iθjk . The coefficient corresponding to basis function

j is zj . It has an amplitude aj and phase φj and can be represented as the complex number aje
iφj .

The generative model of the data is that for each dimension xk,

xk = Re

∑

j

z∗jwkj

+ η

=
∑

j

ajwij cos(θkj − φj) + η

where ∗ denotes complex conjugate, Re denotes the real part of that complex number and η denotes

independent Gaussian noise. Note that this model can further be expanded as-

xk =
∑

j

ajwkj(cosφj cos θkj + sinφj sin θkj) + η

=
∑

j

(aj cosφj)(wkj cos θkj) +
∑

j

(aj sinφj)(wkj sin θkj) + η

Therefore, if each feature and weight is reparameterized by projecting into Cartesian coordinates

(r, θ) → (r cos θ, r sin θ), then the model looks similar to a standard sparse-coder. Therefore, till

this point, all we have done is make groups of two and reparametrize in polar coordinates, without

changing the model at all. What makes this model interesting and different from standard sparse

coding is that we can now impose priors separately on the phase and amplitude. When projected

16

into Cartesian coordinates, this would induce a dependence within the two features in each group

which is not present in standard sparse coding. In particular, we can choose to have a uniform prior

on phase and enforce sparsity and slowness on the amplitude.

P (a
(t)
j |a

(t−1)
j) ∝ exp

(
−λSp(a(t)j)− βSl(a(t)j , a

(t−1)
j)

)
,

Sp(a
(t)
j) = log

1 +

(
a
(t)
j

σ

)2

 ,

Sl(a
(t)
j , a

(t−1)
j) =

(
a
(t)
j − a

(t−1)
j

)2
.

Sp is the sparsity prior on the amplitudes (Cauchy distribution). Sl is the slowness prior which

enforces temporal coherence. λ and β control the importance of these priors.

In this model, Cadieu and Olshausen (2012) use a one-dimensional phase φ. There is no reason

why this cannot be extended to higher dimensional phases. This would provide an expressive feature

representation where the phase can represent the pose of a feature. Essentially, we are providing a

local coordinate system to each feature. Objects can then be detected by finding agreement in the

relative pose of their parts. This is a very promising research direction that I am currently exploring.

4.6 Contrastive Backpropagation

Feed-forward neural networks can be used to define generative probabilistic models. This can be

done simply by defining a real-valued smooth function E of the activations in a network and calling

it an energy. Any function will do, as long as it can be well-defined energy, meaning that it should

be lower bounded and smooth. This energy function E can be used to define a probability density

function on the space of data vectors x

p(x) =
e−E(x)

∑
x′ e
−E(x′)

.

One natural way to think of E(x) is as a measure of how much x violates the constraints that

are present in the system that we are modeling. If x satisfies all the constraints, it has a low energy

and a high probability. Contrastive Backpropagation (Hinton et al., 2006) is an extremely general

method for training such models. The main idea is that if we could sample from this distribution, we

can find examples that the model thinks should have high probability. Then during training, we can

change the model’s parameters to lower the probability of those examples and raise the probability of

the true data. These two effects will cancel out when the things we sample from the model have the

same distribution as the true data, which is when we stop training. In Contrastive Backpropagation,

samples are obtained by running a Markov chain, starting from samples from the data distribution.

In principle, if the Markov chain is run for a long time, the chain should forget its initial position

and end up in a true sample from the distribution. The mixing of the Markov chain is often slow for

powerful models and in order to speed up the process, Hybrid Monte-Carlo (HMC) sampling is used

which tries to simulate the dynamics of a particle moving on the energy surface. In practice, only a

17

few steps of this Markov chain are run (as many as computationally feasible) and it is argued that

that since we start from the data distribution, a few steps are often enough to detect a systematic

change in the distribution which is enough to provide the right gradient direction.

Although Contrastive Backpropagation does not place any serious restrictions on the input space

or kind of network or energy function, it is currently not a popular method for unsupervised learning.

This is primarily because learning requires sampling from the energy landscape of the model defined

on the high-dimensional input space, which is very slow in spite of using HMC. The particles moving

on the energy landscape are prone to getting stuck and never reaching large regions of the domain,

leaving them with high probabilities. This approach was shown to work by Mnih and Hinton (2005)

for modeling the coordinates of a moving arm containing several segments. The constraints in this case

are that the length of each arm segment is fixed and the coordinates must respect this. Contrastive

Backpropagation can be expected to work well in this case because the constraint is a very sharp

defining characteristic of this system.

Hinton et al. (2006) mention that this can be applied to modeling temporal sequences by feeding

them into a recurrent neural net and defining a smooth energy function on the hidden activities of the

network. While any smooth energy function will do, we could enforce desirable properties by designing

more appropriate energy functions. For example, if we wish to encourage temporal coherence, we

can penalize the states for differing too much over successive time steps. If we want the features in

the RNN to be different, we can encourage decorrelation of the outputs of the hidden units. We can

have a lot of creativity in designing the energy function. This offers a promising direction for future

research. Although the computational disadvantages of this method are still daunting, they can now

be overcome to some extent by just using faster computers.

5 Objective Functions for Slowness

In this section, we review models that try to explicitly quantify slowness. Slowness is measured by

some global objective function which is optimized to train the model.

5.1 Slow Feature Analysis

Wiskott and Sejnowski (2002) proposed Slow Feature Analysis (SFA) as a method of finding tempo-

rally coherent features. For any chosen J , SFA tries to find the J-dimensional projection of the input

signal that minimizes the mean squared rate of change of the projected signal over time, under the

constraint that the J dimensions have zero mean and identity covariance over time. More precisely,

the problem can be stated as follows. Suppose x(t) is an I-dimensional time-varying input signal. We

would like to find J functions, {g1(x), . . . , gJ(x)} such that if we apply those functions on the input,

the resulting J-dimensional output sequence y(t), with y
(t)
j = gj(x

(t)) has the property that-

〈
(

∆y
(t)
j

)2
〉 is minimal

18

subject to the constraints that for each j

〈yj〉 = 0, (zero mean)

〈y2j 〉 = 1, (unit variance)

〈yjyj′〉 = 0 ∀j′ < j, (decorrelation)

where 〈•〉 indicates the average over time and ∆y
(t)
j = y

(t)
j − y

(t−1)
j . This objective says that

changes in y(t) over time must be small. Being constant would obviously minimize this objective

if there were no constraints. Therefore, to prevent collapse, we demand that each dimension of yt

must have zero mean and unit variance over time. Additionally, we would like the J functions to be

different. Therefore, we also demand that each successive feature be uncorrelated with all previous

ones. This also defines a natural ordering of the features. Each successive feature, must obey an

additional constraint that it should be uncorrelated with the previous ones. Therefore, the first

feature is the slowest varying and each successive one becomes less slow.

In general, this optimization problem is hard to solve, but it can solved if the g’s are constrained

to be of particular forms. For example, if the g’s are all linear, then they can be found by computing

the temporal deltas of the input signal, whitening them, doing PCA and then picking the J lowest

eigen values. Instead of applying this directly to the input signal, we could also first apply a fixed

non-linear projection on each frame of the signal and then do slow feature analysis on the projected

signal. This would map the signal to a higher dimensional and hopefully richer space where interesting

slow features can be found. This is the formulation proposed by Wiskott and Sejnowski (2002) and

explained through multiple examples. The g’s become non-linear but the non-linear part is fixed, not

learned.

This brings us to the main drawback of this approach which is that we need to engineer the

non-linear projection to expose interesting features. It is not clear how to do this for a general input

sequence. The SFA part is just applying an affine transformation to this engineered space to find the

directions along which the data is changing the slowest. Arguably, most of the heavy lifting needs to

be done by the non-linear projection. The situation is somewhat analogous to that faced in designing

good kernel functions for use in Support Vector Machines. Another drawback, as mentioned by the

authors, is that the computational complexity becomes prohibitive as size of the non-linear space

(say, D) increases because we need to compute a covariance matrix of size D×D and apply PCA to

it which takes O(D3) time. Moreover, this is a batch method which makes it hard to apply to very

large datasets.

Wiskott and Sejnowski (2002) also show how SFA modules can be stacked to create hierarchical

networks. Just like in a multilayer neural network, each subsequent SFA layer looks at the previous

layer’s features and optionally increases its field of view (similar to convolutional networks). If we

think of the input as a fast-changing sequence, each subsequent layer can be seen as a progressively

slowed down higher-level representation of the layer below.

The authors highlight an important aspect of the SFA algorithm that it is “simple and guaranteed

to find the optimal solution in one shot”, as opposed to the other methods that we have seen till

now that involve some form of iterative learning which is prone to getting stuck in local optima or

19

on plateaus. Also, multiple decorrelated slow features can be extracted simultaneously. The way

decorrelation has been achieved, if at all, in all other models that we have seen is through some form

of competition, for example, in the case of Becker (1996) it was achieved by normalizing the post-

synaptic activations over a bunch of neurons. The authors here argue that this not really learning

different features, but a single one-of-K encoded feature that exhibits K states. This method has

been successfully applied to a number of applications such as estimating driving forces of a dynamical

system (Wiskott, 2003), blind source separation (Sprekeler et al., 2014) and as feature extractor for

reinforcement learning (Legenstein et al., 2010).

5.2 Probabilistic Interpretation of SFA

SFA was introduced as the solution to an optimization problem and was not necessarily motivated

from a generative probabilistic standpoint. Turner and Sahani (2007) showed that SFA can be seen

as inference for a linear Gaussian dynamical system under certain constraints. The prior over y(t) is

p(y(t)|y(t−1),λ,σ) =

J∏

j=1

p(y
(t)
j |y

(t−1)
j , λj , σ

2
j),

p(y
(t)
j |y

(t−1)
j , λj , σ

2
j) = N (λjy

(t−1)
j , σ2j),

p(y
(1)
j |σ2j,1) = N (0, σ2j,1).

The conditional distribution of x given y is

p(x(t)|y(t),W, σx) = N (W−1y(t), σ2xI).

If we set σ2j,1 = 1, σx → 0, σ2j = 1 − λ2j and λ1 ≤ λ2 ≤ . . . λJ → 0, then maximum likelihood

learning in this model would be same as the optimization problem being solved in SFA. Therefore, SFA

is equivalent to a linear Gaussian dynamical system with a simple component-wise diffusion process

in the latent space. This analysis makes explicit some of the assumptions being made implicitly in

the original SFA formulation. It also makes it easy to relax certain conditions or add more to create

different SFA variants.

5.3 Relationship between SFA and ICA

Blaschke et al. (2006) try to understand the relationship between SFA and ICA. Their main result is

that linear SFA is formally equivalent to second-order ICA with time delay one. We have looked at

time-delayed ICA in Eq. 3. SFA is equivalent to setting τ = 1. This helps relate two different notions

of temporal coherence – one coming from slowness of change in a representation over time and the

other coming from statistical independence of different components of a representation over time. If

independence in measured through correlation, as is the case in second-order ICA, the two notions

become the same.

20

5.4 Contrastive Hinge-loss Objectives

Mobahi et al. (2009) proposed a loss function that encourages coherence by trying to pull temporally

consecutive frames close and push other pairs of frames farther than some margin, where the distances

are measured in the L1 sense in some learned feature space.

Lcoh(x1,x2, θ) =

||fθ(x1)− fθ(x2)||1, if x1,x2 are consecutive,

max(0, δ − ||fθ(x1)− fθ(x2)||1), otherwise.

Here fθ is a convolutional neural network and θ denotes all its parameters. This coherence

objective is jointly minimized with a supervised classification loss to learn the parameters θ. The

feature space is the penultimate layer of the network.

In a recent preprint, Wang and Gupta (2015) propose a similar model. They optimize the following

loss function

L(θ) =
∑

x∈D
max

(
0, δ +Dθ(x,x

+)−Dθ(x,x
−)
)
,

where

Dθ(x1,x2) = 1− fθ(x1) · fθ(x2)

||fθ(x1)||||fθ(x2)||
is the cosine distance measure. The loss function operates on triplets (x,x+,x−) where x is some

image patch, x+ is an image patch found after tracking x for 30 frames and x− is a hard negative

example. The motivation is similar to the previous model, in the sense that this model also pulls

together image patches that we believe to be semantically close and pushes other image patches away.

The measure of the distances is slightly different, as is the fact that this is applied to tracked image

patches and not entire frames. In another recent preprint, Ramanathan et al. (2015) learn temporal

embeddings by extending the Skip-gram model that was proposed for learning word embeddings

(Mikolov et al., 2013). Given an unlabelled set of videos V , they minimize the following objective

L(θ) =
∑

v∈V

∑

x∈v

∑

x−∈N(x)

max
(
0, 1− (fθ(x)− fθ(x−)) · hθ,x

)
,

where x is a frame in video v, x− is a frame outside the neighbourhood of x (from the same or

different video), fθ is a deep neural net and hθ,x is the context of frame x. The authors compare

different kinds of context but what they found to work best was the average embedding of frames in

the neighbourhood of x

hθ,x =
1

|N(x)|
∑

x′∈N(x)

fθ(x
′).

The idea is that similarity between an image and its context fθ(x) · hθ,x must be greater than

that between a far away image and the context fθ(x
−) · hθ,x by some margin. In other words, the

context must predict the frame better than it predicts other frames.

All these models essentially try to enforce coherence in the learned representation by demanding

that nearby frames have similar representations and prevent collapse by contrasting with far away

frames. The main drawback of these methods is that these objective functions are often easy to

21

optimize without learning good high-level representations. For example, if we want adjacent frames

to be close, low-level translation invariance can give us that by learning Gabors and pooling. There

is not much incentive to learn good high-level features, the kind of which are necessary for supervised

learning on ImageNet.

6 Solving Vision Tasks

In this section, we review computer vision tasks that can serve as objectives from learning visual

representations from unlabelled videos.

6.1 Tracking

Figure 1. An example of corner feature tracking with optical flow. The video sequence moves frame-to-frame from left to right. The center
of each yellow box in the left-most (first) frame is a corner detected by [22, 4]. The green arrows show the motion of these corners into
the next frame as determined with optical flow [16, 4]. This is not a prediction. The flow algorithm uses the next frame in the sequence for
this calculation. The yellow boxes contain the patches extracted and saved for later optimization. The yellow path tails in the subsequent
frames depict patch movement as estimated by the optical flow. In total, four patch sets are produced, each with four patches. They are
shown in Figure 2. Our algorithm produces additional patches for these frames. We do not show them for a simpler illustration.

Figure 2. The extracted patch sets from Figure 1. The correspon-
dence is not perfect, but satisfactory for good optimization and
application-specific feature performance.

and saved for the optimization step. The yellow path tails
show patch movement from previous frames as estimated
by the flow algorithm. In this example, four patch sets of
four patches each are produced. They appear in Figure 2.

Actually, our algorithm finds many more corners on
these frames and is also tracking corners found in frames
prior to the left-most frame. We omit these in the figure
for a simpler illustration. In practice, on each frame, our
algorithm continues tracking corners from previous frames
and also calculates a new set of corners to begin tracking.
Tracking of a particular corner terminates when the flow al-
gorithm can no longer confidently solve for its new position.
We also perform outlier rejection. Tracks are discarded if
they are dramatically different from the average for the cur-
rent frame. While this could potentially discard interesting
data, we find it eliminates the majority of optical flow track-
ing errors, resulting in cleaner data for optimization.

Our algorithm uses corner features and optical flow.
However any features and correspondence algorithm could
be used. Corner features work with virtually any textured
image patch. We argue that texture is a necessary condi-
tion for any algorithm seeking multiple views of the same
area. Thus, our method is especially complete in the types
of patches it uses. We feel this makes the optimization
step particularly general, really capturing all possible im-

Figure 3. Four non-consecutive images from the surgical data set.
The images are non-consecutive because the camera moves slowly,
making the actual motion between frames small.

age patch types and variations. Furthermore, corners and
optical flow are very fast to compute. Therefore our method
could be used online to adapt features in real-time.

Corner features are not enough for many vision applica-
tions such as object recognition and correspondence for 3D
reconstruction in the absence of dense data. This motivates
the next step of our method where higher-level features are
calculated and optimized for the tracked patches.

4. Optimizing Higher-Level Features
We define a “higher-level” feature to be anything more

sophisticated than the basic corner features we use in Sec-
tion 3. In our experiments, we use SIFT and HOG. How-
ever, the optimization process is identical for any higher-
level feature. Let p be any single patch generated in Sec-
tion 3. Then p ∈ P ∈ ~P where P is the set of all patches for
a single environment location and ~P is the set of all patch
sets. Since we do not optimize on pixels, we use p as the

Figure 5: Figure reproduced from Stavens and Thrun (2010). Different views of the same object
through time obtained by tracking.

Stavens and Thrun (2010) proposed an unsupervised model to learn visual features using videos.

They first track objects using low-level features (Harris corner features + optical flow). By doing this

they collect sets of patches where all patches in the same set are of the same object being tracked

through a video. Fig. 5 shows four such sets. These sets are used as ground truth for training high-

level features using a contrastive loss function which pulls all members of the same set close together

in high-level feature space and pushes members of different sets farther away. This is similar in spirit

to Mobahi et al. (2009) but in that case the high-level features were computed on entire frames. In

this case, objects are first tracked and then used to extract high-level features. The main idea here

is that tracking algorithms that use low-level cues like optical flow can be used to track objects and

then high-level features can be learned from the resulting data. These high-level features can now

help learn better trackers and that can track objects across more variations of pose, occlusion and

clutter. The data from that can be used to learn even more high-level representations. Therefore, we

can bootstrap the learning of high-level visual representations from low-level ones using unlabelled

videos. In this way the goal of tracking can help learn visual representations from unlabelled videos.

6.2 Predicting Future Motion and Appearance

Walker et al. (2014) propose an algorithm for predicting the trajectory and appearance of moving

objects in a visual scene. Their algorithm takes a static image as input and outputs a probability

distribution over which things will move, what their trajectories will be and what their appearance

will be. The model is trained using only unlabelled data. An example output from the model is

shown in Fig. 6. This line of research is motivated by the fact that when humans look at a static

22

Figure 6: Results from Walker et al. (2014) (Reproduced from their paper).

scene, they not only understand the objects and their pose but also anticipate the state of the scene

in the near future. This mental prediction helps humans in planning their actions, providing a strong

evolutionary advantage. Therefore, human brains must be representing visual information in a way

that makes it easy to predict the future. Therefore, being able to predict the future might be a

reasonable objective function for learning visual representations.

As a representative example of a computer vision approach, we can look at the algorithm proposed

by Walker et al. (2014). They learn three things -

• A representation of object appearance. This is a one-of-K encoding obtained by clustering

mid-level patches. This essentially clusters image patches into K clusters based on mid-level

features (Singh et al., 2012). There might be different clusters for the same object, for example

one for frontal views of cars and another for the side view of cars.

• A transition matrix that contains the probability of transitioning from one cluster to another.

This is estimated by simply counting how often these transitions occur in data.

• A reward function that uses the features and context of an image region to determine how likely

it is to contain each cluster (for example, road-like regions are likely to contain things that look

like cars, but sidewalk regions are unlikely to do so). This is again estimated by counting how

often a particular kind of region gets occupied by a particular kind of image patch.

These components are learned piece-wise and put together to create an algorithm that given a

static image, goes to each patch in that image, maps it to the nearest cluster and uses the transition

matrix and reward function to estimate a distribution over how this patch will move in the future and

what its appearance will look like. Even though this model learns a very simple representation and

23

uses very simple learning schemes, it is interesting in the way it lays out the different factors involved

in predicting trajectories and stitches them into a model. The model can be extended by replacing

the one-of-K image representation with a distributed one, the HMM by a temporal sequence model

which uses a distributed state, going to each patch by an attention model, etc.

The focus in most of the work in this area has been in accurately modeling the trajectories and

scene affordances given some fixed hand-engineered visual representation. For example, Kitani et al.

(2012) represent objects as points and formulate the problem in terms of reinforcement learning

in POMDPs focusing on the geometry of the scene; Yuen and Torralba (2010) model optical flow

trajectories; Walker et al. (2014) use a dictionary of mid-level patches. Recently, Vondrick et al.

(2015) used features from deep convolutional networks (Krizhevsky et al., 2012; Szegedy et al., 2014)

trained on the ImageNet dataset (Deng et al., 2009) as targets for future prediction from static images.

However, in all these cases the representation is first fixed and then the task is solved. An interesting

future research direction is making these systems end-to-end by training the feature extraction model

along with the task being solved.

6.3 Learning to Play Games

Learning good visual representations is a pre-requisite for playing games that require the player to

take decisions based on visual input. Therefore visual feature learning can be incorporated into a

Reinforcement Learning setting. A very ambitious and fruitful line of research is in this area is

being explored. Mnih et al. (2015) showed that an agent can be trained to play simple Atari games

by simply looking at the pixels and getting the game score as input. This is different from the

completely unsupervised setting where we just have video frames as input. However, the supervision

here comes from the environment and once we can design realistic environments, there is no more

human intervention needed. Being able to play other games that require understanding 3D geometry,

pose and motion from realistic images can help learn representations that might transfer well into

the real world.

7 Conclusion

In this paper we reviewed models and tasks that have been used to learn visual representations from

videos. We tried to understand how the notion of temporal coherence is captured by these models

using different realizations of statistical independence, slowness and sparsity.

Arguably, one of the main drawback of most machine learning models in this area is that they

are too simple and general. A lot of advances may be possible by using just the right amount of

domain knowledge. For instance the biggest advance in recent years in machine learning applied to

vision came from convolutional neural nets which are structured to incorporate the local nature of

visual information and the fact that statistics of image patches are invariant to position. Giving even

more structure to the models, for example, by using richer neurons (e.g. including phase instead of

just activations), incorporating attention and tracking as primitives and building models to explain

occlusion are all fruitful research directions.

24

References

S. Amari, A. Cichocki, and H. H. Yang. A new learning algorithm for blind signal separation. In

Advances in Neural Information Processing Systems, pages 757–763. MIT Press, 1996.

Suzanna Becker. Learning to categorize objects using temporal coherence. In Advances in Neural

Information Processing Systems 5, NIPS, pages 361–368, 1992.

Suzanna Becker. Learning temporally persistent hierarchical representations. In NIPS, pages 824–830.

MIT Press, 1996.

Suzanna Becker and Geoffrey E. Hinton. Self-organizing neural network that discovers surfaces in

random-dot stereograms. Nature, 355(6356):161–163, 1992.

Anthony J. Bell and Terrence J. Sejnowski. An information-maximization approach to blind separa-

tion and blind deconvolution. Neural Computation, 7(6):1129–1159, 1995.

Tobias Blaschke, Pietro Berkes, and Laurenz Wiskott. What is the relation between slow feature

analysis and independent component analysis? Neural Computation, 18(10):2495–2508, 2006.

Nicolas Boulanger-Lewandowski, Yoshua Bengio, and Pascal Vincent. Modeling temporal dependen-

cies in high-dimensional sequences: Application to polyphonic music generation and transcription.

In ICML, 2012.

Charles F. Cadieu and Bruno A. Olshausen. Learning intermediate-level representations of form and

motion from natural movies. Neural Computation, 24(4):827–866, 2012.

J. F. Cardoso and A. Souloumiac. Blind beamforming for non Gaussian signals. IEE Proceedings-F,

140(6):362–370, 1993.

Pierre Comon. Independent component analysis, a new concept? Signal Process., 36(3):287–314,

April 1994.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale Hierarchical

Image Database. In CVPR09, 2009.

Peter Földiák. Learning invariance from transformation sequences. Neural Computation, 3(2):194–

200, 1991.

Ross Goroshin, Joan Bruna, Jonathan Tompson, David Eigen, and Yann LeCun. Unsupervised

feature learning from temporal data. CoRR, abs/1504.02518, 2015.

Chris Häusler, Alex Susemihl, and Martin P. Nawrot. Natural image sequences constrain dynamic

receptive fields and imply a sparse code. Brain Research, 1536(0):53 – 67, 2013.

Donald O. Hebb. The Organization of Behavior: A Neuropsychological Theory. Wiley, New York,

1949.

25

J. Herault and C. Jutten. Space or time adaptive signal processing by neural network models. AIP

Conference Proceedings, 151(1):206–211, 1986.

Geoffrey E. Hinton. Connectionist learning procedures. Artificial Intelligence, 40(13):185 – 234, 1989.

Geoffrey E. Hinton, Simon Osindero, Max Welling, and Yee Whye Teh. Unsupervised discovery of

nonlinear structure using contrastive backpropagation. Cognitive Science, 30(4):725–731, 2006.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9(8):

1735–1780, 1997.

A. Hyvärinen and E. Oja. Independent component analysis: Algorithms and applications. Neural

Networks, 13(4-5):411–430, 2000.

Aapo Hyvärinen and Patrik Hoyer. Emergence of phase- and shift-invariant features by decomposition

of natural images into independent feature subspaces. Neural Computation, 12(7):1705–1720, 2000.

Aapo Hyvärinen and Erkki Oja. A fast fixed-point algorithm for independent component analysis.

Neural Computation, 9(7):1483–1492, 1997.

Aapo Hyvärinen, Jarmo Hurri, and Jaakko V”ayrynen. A unifying framework for natural image

statistics: spatiotemporal activity bubbles. pages 801–806, 2004.

Shuiwang Ji, Wei Xu, Ming Yang, and Kai Yu. 3d convolutional neural networks for human action

recognition. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 35(1):221–231, Jan

2013.

Christian Jutten and Jeanny Herault. Blind separation of sources, part i: An adaptive algorithm

based on neuromimetic architecture. Signal Processing, 24(1):1 – 10, 1991.

Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas Leung, Rahul Sukthankar, and Li Fei-Fei.

Large-scale video classification with convolutional neural networks. In CVPR, 2014.

Kris M. Kitani, Brian D. Ziebart, James Andrew Bagnell, and Martial Hebert. Activity forecasting.

In Computer Vision - ECCV 2012 - 12th European Conference on Computer Vision, Florence,

Italy, October 7-13, 2012, Proceedings, Part IV, pages 201–214, 2012.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep convolu-

tional neural networks. In Advances in Neural Information Processing Systems 25, pages 1097–1105.

Curran Associates, Inc., 2012.

Q. V. Le, W. Zou, S. Y. Yeung, and A. Y. Ng. Learning hierarchical spatio-temporal features for

action recognition with independent subspace analysis. In CVPR, 2011.

Robert A. Legenstein, Niko Wilbert, and Laurenz Wiskott. Reinforcement learning on slow features

of high-dimensional input streams. PLoS Computational Biology, 2010.

Ralph Linsker. Self-organization in a perceptual network. Computer, 21(3):105–117, 1988.

26

Roland Memisevic. Gradient-based learning of higher-order image features. In ICCV, pages 1591–

1598. IEEE, 2011.

Roland Memisevic. Learning to relate images. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 35(8):1829–1846, 2013.

Roland Memisevic and Geoffrey E. Hinton. Learning to represent spatial transformations with fac-

tored higher-order boltzmann machines. Neural Computation, 22(6):1473–1492, 2010.

Vincent Michalski, Roland Memisevic, and Kishore Konda. Modeling deep temporal dependencies

with recurrent grammar cells. In Advances in Neural Information Processing Systems 27, pages

1925–1933. Curran Associates, Inc., 2014.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word representa-

tions in vector space. CoRR, abs/1301.3781, 2013.

G Mitchison. Removing time variation with the anti-hebbian differential synapse. Neural Computa-

tion, 3(3):312–320, Sept 1991.

Andriy Mnih and Geoffrey Hinton. Learning nonlinear constraints with contrastive backpropagation.

In Proceedings of International Joint Conference on Neural Networks (IJCNN), volume 2, pages

1302–1307, 2005.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Bellemare,

Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen, Charles

Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane

Legg, and Demis Hassabis. Human-level control through deep reinforcement learning. Nature, 518

(7540):529–533, 2015.

Hossein Mobahi, Ronan Collobert, and Jason Weston. Deep learning from temporal coherence in

video. In Proceedings of the 26th Annual International Conference on Machine Learning, ICML

’09, pages 737–744, New York, NY, USA, 2009. ACM.

L. Molgedey and H. G. Schuster. Separation of a mixture of independent signals using time delayed

correlations. Physical Review Letters, 72:3634–3637, 1994.

B. Olshausen and D. Field. Emergence of simple-cell receptive field properties by learning a sparse

code for natural images. Nature, 381:607–609, 1996.

Vignesh Ramanathan, Kevin Tang, Greg Mori, and Li Fei-Fei. Learning temporal embeddings for

complex video analysis. CoRR, abs/1505.00315, 2015.

Marc’Aurelio Ranzato, Arthur Szlam, Joan Bruna, Michaël Mathieu, Ronan Collobert, and Sumit

Chopra. Video (language) modeling: a baseline for generative models of natural videos. CoRR,

abs/1412.6604, 2014.

Claude Shannon. A mathematical theory of communication. Bell System Technical Journal, 27:

379–423, 623–656, 1948.

27

K. Simonyan and A. Zisserman. Two-stream convolutional networks for action recognition in videos.

In Advances in Neural Information Processing Systems, 2014.

Saurabh Singh, Abhinav Gupta, and Alexei A. Efros. Unsupervised discovery of mid-level discrim-

inative patches. In Proceedings of the 12th European Conference on Computer Vision - Volume

Part II, ECCV’12, pages 73–86, Berlin, Heidelberg, 2012. Springer-Verlag.

Henning Sprekeler, Tiziano Zito, and Laurenz Wiskott. An extension of slow feature analysis for

nonlinear blind source separation. Journal of Machine Learning Research, 15:921–947, 2014.

Nitish Srivastava, Elman Mansimov, and Ruslan Salakhutdinov. Unsupervised learning of video

representations using lstms. CoRR, abs/1502.04681, 2015.

David Stavens and Sebastian Thrun. Unsupervised learning of invariant features using video. In The

Twenty-Third IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2010, San

Francisco, CA, USA, 13-18 June 2010, pages 1649–1656, 2010.

J. Stone and A. Bray. A learning rule for extracting spatio-temporal invariances. Network: Compu-

tation in Neural Systems, 6(3):429–436, 1995.

Ilya Sutskever, Geoffrey E. Hinton, and Graham W. Taylor. The recurrent temporal restricted

boltzmann machine. In Advances in Neural Information Processing Systems 21, pages 1601–1608.

Curran Associates, Inc., 2009.

Ilya Sutskever, Oriol Vinyals, and Quoc V. V Le. Sequence to sequence learning with neural networks.

In Advances in Neural Information Processing Systems 27, pages 3104–3112. 2014.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru

Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. CoRR,

abs/1409.4842, 2014.

Graham W. Taylor and Geoffrey E. Hinton. Factored conditional restricted boltzmann machines for

modeling motion style. In Proceedings of the 26th Annual International Conference on Machine

Learning, ICML ’09, pages 1025–1032, New York, NY, USA, 2009. ACM.

Graham W. Taylor, Rob Fergus, Yann LeCun, and Christoph Bregler. Convolutional learning of

spatio-temporal features. In Proceedings of the 11th European Conference on Computer Vision:

Part VI, ECCV’10, pages 140–153, Berlin, Heidelberg, 2010. Springer-Verlag.

Du Tran, Lubomir D. Bourdev, Rob Fergus, Lorenzo Torresani, and Manohar Paluri. C3D: generic

features for video analysis. CoRR, abs/1412.0767, 2014.

Richard E. Turner and Maneesh Sahani. A maximum-likelihood interpretation for slow feature anal-

ysis. Neural Computation, 19(4):1022–1038, 2007.

Paul A. Viola, Nicol N. Schraudolph, and Terrence J. Sejnowski. Empirical entropy manipulation for

real-world problems. In NIPS. MIT Press, 1995.

28

Carl Vondrick, Aditya Khosla, Hamed Pirsiavash, Tomasz Malisiewicz, and Antonio Torralba. Visu-

alizing object detection features. CoRR, abs/1502.05461, 2015.

Jacob Walker, Abhinav Gupta, and Martial Hebert. Patch to the future: Unsupervised visual pre-

diction. In Computer Vision and Pattern Recognition, 2014.

Xiaolong Wang and Abhinav Gupta. Unsupervised learning of visual representations using videos.

CoRR, abs/1505.00687, 2015.

B. Willmore and D. J. Tolhurst. Characterizing the sparseness of neural codes. Network, 12:255–270,

2001.

Laurenz Wiskott. Estimating driving forces of nonstationary time series with slow feature analysis.

CoRR, abs/cond-mat/0312317, 2003.

Laurenz Wiskott and Terrence J. Sejnowski. Slow feature analysis: Unsupervised learning of invari-

ances. Neural Computation, 14(4):715–770, 2002.

Jenny Yuen and Antonio Torralba. A data-driven approach for event prediction. In Proceedings of

the 11th European Conference on Computer Vision: Part II, ECCV’10, pages 707–720, Berlin,

Heidelberg, 2010. Springer-Verlag.

Richard S. Zemel and Geoffrey E. Hinton. Discovering viewpoint-invariant relationships that charac-

terize objects. In Advances in Neural Information Processing Systems 3, pages 299–305. Morgan-

Kaufmann, 1991.

A. Ziehe and K.-R. Müller. TDSEP – an efficient algorithm for blind separation using time structure.

In L. Niklasson, M. Bodén, and T. Ziemke, editors, Proc. of the 8th International Conference on

Artificial Neural Networks, ICANN’98, Perspectives in Neural Computing, pages 675 – 680, Berlin,

1998. Springer Verlag.

29

