Outline

• Introduction
 • Applications of voting
 • Motivating the distortion framework

• Utilitarian distortion framework
 • Model
 • Known results

• Metric distortion framework
 • Model
 • Known results

• Applications beyond voting
Voting

Algorithm for aggregating individual preferences to make collective decisions
Voting with Ranked Ballots

Voting Rule f
Randomized Voting with Ranked Ballots

Voting Rule f
Applications of Randomized Voting

• **Interpretation 1: Randomization**
 - Probably inappropriate for high-stakes political elections
 - Low stakes decisions like “which restaurant for lunch?”
 - Ensemble-leaning based recommendation engines

• **Interpretation 2: Resource division**
 - Foundation splitting its budget between grantees
 - Plan a workshop schedule (posters, talks, coffee, lunch, …)
 - Split a parliament between parties
 - Repeated decisions (seminar weekday, lunch restaurant)
Traditional Analysis: The Axiomatic Method

• Condorcet consistency
 • Whenever there exists an alternative a such that for every other alternative b a strict majority prefer a to b, the voting rule must select a.

• Weak monotonicity
 • If the voting rule selects alternative a in an instance and a moves up in the rankings of some of the voters, the voting rule must continue to select a.

• Axioms are qualitative
 • A voting rule either satisfies an axiom or it does not
Axiomatic Method

Axiom 1

Axiom 2

Axiom 3

Impossibility Results

...disagreement about rules
Voting with Ranked Ballots

Voting Rule f
Utilitarian Voting

\[\text{Utilitarian Social Welfare} \]

\[f = 0.7 \]
\[f = 0.2 \]
\[f = 0.1 \]

\[\text{Utilitarian Voting} \]

\[f = 1.5 \]
\[f = 1.0 \]
\[f = 0.5 \]
No Access to Utilities

Even if voters have utilities, we may not know them, for many reasons.

- Easier elicitation
 - Higher cognitive effort to assign utilities than to rank alternatives
 - It may be costly to figure out utilities (e.g. computation time to simulate consequences)

- Less communication

- Utilities are simply unknown or unknowable

- Privacy

- leads to “implicit utilitarian voting”: voting rule only knows the ranking, but gets evaluated on the utilities.
Utilitarian Voting

$\frac{0.7}{0.2} = 3.5 \
\frac{0.4}{0.3} = 1.33 \
\frac{0.5}{0} = \infty$

Utility Vector

$\frac{1.5}{1.0}$

Utilitarian Social Welfare

$\text{Apx Ratio} (\frac{1.5}{1.0})$

"could have obtained 1.5x more welfare"
Optimal Voting Rules with Ranked Ballots

Minimize distortion
(Worst-case approximation ratio for utilitarian social welfare)
Outline

• Introduction
 • Applications of voting
 • Motivating the distortion framework

• Utilitarian distortion framework
 • Model
 • Known results

• Metric distortion framework
 • Model
 • Known results

• Applications beyond voting
Voting with Ranked Ballots

- \(N = \) set of \(n \) voters
- \(A = \) set of \(m \) alternatives
 - \(\Delta(A) = \) set of distributions over \(A \)
- \(\succ \) = observed ranked preference profile
 - \(\succ_i \) = preference ranking of voter \(i \)
 - \(a \succ_i b \) means the voter ranks \(a \) higher than \(b \)
- (Randomized) Voting rule \(f \)
 - Maps every preference profile \(\succ \) to a distribution over alternatives \(f(\succ) = x \in \Delta(A) \)
 - We say that \(f \) is deterministic if \(f(\succ) \) has singleton support for every \(\succ \)
Utilitarian Distortion

1. There exists an underlying utility profile \vec{u} such that for each $i \in N$:
 • Consistency (denoted $u_i \succ_i u_j$): $\forall a, b : a \succ_i b \Rightarrow u_i(a) \geq u_i(b)$
 • Unit-sum: $u_i(a) \geq 0$, $\sum_a u_i(a) = 1$
 • [Aziz 2019] provides seven justifications!
 • Linear extension to distributions: For $x \in \Delta(A)$, $u_i(x) = \sum_a u_i(a) \cdot x(a)$

2. If we knew the utilities, we would want to maximize the (utilitarian) social welfare
 • $sw(x, \vec{u}) = \sum_{i \in N} u_i(x)$ [by linearity, this optimum is attained by an alternative]

3. Because this is impossible given the limited ranked information, we want to best approximate the social welfare in the worst case.
Utilitarian Distortion

- Distortion

\[
\text{dist}(x, \succ) = \sup_{\vec{u} \succ x} \max_{a \in A} \frac{\text{sw}(a, \vec{u})}{\text{sw}(x, \vec{u})}
\]

- Given voting rule \(f\)

\[
\text{dist}(f) = \max_{\succ} \text{dist}(f(\succ), \succ)
\]

What is the lowest possible \(\text{dist}(f)\)? Which voting rule achieves it?
Example (deterministic)

<table>
<thead>
<tr>
<th>Voters</th>
<th>Alternatives</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 : a > b > c</td>
<td>1/3 1/3 1/3</td>
</tr>
<tr>
<td>2 : b > a > c</td>
<td>1 0 0</td>
</tr>
<tr>
<td>3 : a > c > b</td>
<td>1/3 1/3 1/3</td>
</tr>
</tbody>
</table>

• Suppose we choose \(a \):
 • How much better can \(b \) be?

\[
\frac{\max_{\vec{u} \succ a} \text{sw}(b, \vec{u})}{\text{sw}(a, \vec{u})} = \frac{1/3 + 1 + 1/3}{1/3 + 0 + 1/3} = \frac{5}{2}
\]

• How much better can \(c \) be?

\[
\frac{\max_{\vec{u} \succ a} \text{sw}(c, \vec{u})}{\text{sw}(a, \vec{u})} = \frac{1/3 + 0 + 1/3}{1/3 + 0 + 1/3} = 1
\]

• Hence, \(\text{dist}(a, \succ) = \frac{5}{2} = 2.5 \)

• Similarly, compute \(\text{dist}(b, \succ) = 7 \) and \(\text{dist}(c, \succ) = \infty \)
 • \(a \) has lower distortion than \(b \) and \(c \)
Example (randomized)

1 : $a > b > c$

 1 0 0

2 : $b > a > c$

 $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$

3 : $a > c > b$

 1 0 0

- Among deterministic choices, a is best with distortion 2.5
- With randomization, we can achieve lower distortion.
- On this profile, $x = (a: 0.5882, b: 0.4118, c: 0)$ has distortion 1.54 (best possible).
Utilitarian Distortion

- Instance-optimal rules
 - Deterministic f_{det}^*: Maps every preference profile \succ to $a^* \in \arg \min_{a \in A} \text{dist}(a, \succ)$
 - Randomized f_{rand}^*: Maps every preference profile \succ to $x^* \in \arg \min_{x \in \Delta(A)} \text{dist}(x, \succ)$
 - Have the lowest distortion on each \succ, and therefore in the worst case over all \succ

Are the instance-optimal rules polytime computable? Do they have a nice analytical structure?
Optimal Deterministic Distortion

• **Theorem** [Caragiannis, Procaccia, 2011; Caragiannis, Nath, Procaccia, Shah, 2017]
 • For deterministic aggregation of ranked ballots, the optimal distortion is $\Theta(m^2)$ and the instance-optimal rule f_{det}^* is polytime computable.

• **Proof (lower bound):**
 • High-level approach:
 • Take an arbitrary voting rule f
 • Construct a preference profile \succ
 • Let f choose a winner a on \succ
 • Reveal a bad utility profile \bar{u} consistent with \succ in which a is $\Omega(m^2)$ factor worse than the optimal alternative
Deterministic Rules

• Proof (lower bound):
 • Let f be any deterministic voting rule
 • Consider \succ on the right
 • Case 1: $f(\succ) = a_m$
 • Infinite distortion. Why?
 • Case 2: $f(\succ) = a_i$ for some $i < m$
 • Bad utility profile \vec{u} consistent with \succ
 • Voters in column i have utility $1/m$ for every alternative
 • All other voters have utility $1/2$ for their top two alternatives
 • $sw(a_i, \vec{u}) = \frac{n}{m-1} \cdot \frac{1}{m}$, $sw(a_m, \vec{u}) \geq \frac{n-n/(m-1)}{2} = \Omega(n)$
 • Distortion $= \Omega(m^2)$
Deterministic Rules

• Proof (upper bound):
 • Plurality rule: Select an alternative a that is the top choice of the most voters
 • For this plurality winner:
 • At least n/m voters have a as their top choice (pigeonhole principle)
 • Every voter has utility at least $1/m$ for their top choice (pigeonhole principle)
 • Hence, for every consistent utility profile \bar{u}:
 • $sw(a, \bar{u}) \geq n/m^2$
 • $sw(a^*, \bar{u}) \leq n$ for every alternative a^*
 • $\text{dist}(a, \succ) = O(m^2)$
Optimal Randomized Distortion

• **Theorem** [Boutilier, Caragiannis, Haber, Lu, Procaccia, and Sheffet, 2015]
 • For randomized aggregation of ranked ballots:
 • There is a voting rule with distortion $O(\sqrt{m} \cdot \log^* m)$.
 • Every voting rule has distortion at least $\Omega(\sqrt{m})$.
 • The instance-optimal rule f_{rand}^* is computable in polynomial time.

• **Proof (lower bound):**
 • Same high-level approach:
 • Take an arbitrary *randomized* voting rule f
 • Construct a preference profile \succ
 • Let f choose a distribution x over alternatives
 • Reveal a bad utility profile \widehat{u} consistent with \succ in which the expected social welfare under x is $\Omega(\sqrt{m})$ factor worse than the optimal social welfare
Randomized Rules

• Proof (lower bound):
 • Let \(f \) be an arbitrary rule
 • Consider \(\succ \) on the right with \(\sqrt{m} \) special alternatives
 • \(f \) returns distribution \(x \) in which at least one special alternative (say \(a_i \)) must be chosen w.p. at most \(\frac{1}{\sqrt{m}} \)
 • Bad utility profile \(\vec{u} \) consistent with \(\succ \):
 • All voters ranking \(a_i \) first have utility 1 for \(a_i \)
 • All other voters have utility \(\frac{1}{m} \) for every alternative
 • \(sw(a_i, \vec{u}) = \Theta \left(\frac{n}{\sqrt{m}} \right) \) but \(sw(a, \vec{u}) \leq \frac{n}{m} \) for every other alternative \(a \)
 • \(sw(x, \vec{u}) \leq \left(\frac{1}{\sqrt{m}} \right) \cdot \Theta \left(\frac{n}{\sqrt{m}} \right) + \left(1 - \frac{1}{\sqrt{m}} \right) \cdot \frac{n}{m} = O \left(\frac{n}{m} \right) \)
 • Hence, \(dist(x, \vec{u}) = \Omega(\sqrt{m}) \)
Optimal Randomized Distortion

• **Harmonic Rule**
 • The rule that achieves $O(\sqrt{m} \cdot \log^* m)$ distortion is complicated and artificial (it only makes sense if you want low distortion) and is unlikely to generalize
 • [Boutilier et al. 2015] propose a simpler rule that achieves $O(\sqrt{m} \cdot \log m)$ distortion

<table>
<thead>
<tr>
<th>Harmonic Rule</th>
</tr>
</thead>
</table>
| • Each voter i awards $1/r$ points to her r^{th} ranked alternative for every $r \in \{1, \ldots, m\}$
| • Harmonic score of alternative a, denoted $hsc(a, \succ)$, is the total point awarded to a
| • W.p. $\frac{1}{2}$, choose each $a \in A$ with probability proportional to $hsc(a, \succ)$
| • W.p. $\frac{1}{2}$, choose each $a \in A$ uniformly at random |

• Key proof idea:
 • $hsc(a, \succ) \geq sw(a, \bar{u})$ for every a, while $\sum_a hsc(a, \succ) = O(\log m) \cdot \sum_a sw(a, \bar{u})$
Optimal Randomized Distortion

• **Theorem** [Ebadian, Kahng, Peters, Shah, 2022]
 - For randomized aggregation of ranked ballots, the optimal distortion is $\Theta(\sqrt{m})$.

• **Proof via three steps:**
 I. Define “stable lotteries”
 II. Prove the existence (and efficient computation) of stable lotteries via the minimax theorem
 III. Derive $O(\sqrt{m})$ distortion using stable lotteries
Step I: Define Stable Lotteries

Voter 1

Voter 2

Voter 3

• For a set of alternatives $S = \{\text{ }, \text{ }, \text{ }\}$ and an alternative $a = \text{ }$

$$V(a, S) = |\{i \in N : a >_i b, \forall b \in S\}| = 2$$

• Lottery S over sets of size k is stable if $\mathbb{E}_{S \sim S}[V(a, S)] \leq \frac{n}{k}$ for every $a \in A$
Step II: Prove Stable Lotteries Exist

• **Theorem:** For every k, a stable lottery over committees of size k exists.

• **Proof (skip):**

 $\min_S \max_{a \in A} \mathbb{E}_{S \sim S}[V(a, S)] \leq \min_S \max_{x \in \Delta(A)} \mathbb{E}_{S \sim S, a \sim x}[V(a, S)]$

 $= \max_{x \in \Delta(A)} \min_S \mathbb{E}_{S \sim S, a \sim x}[V(a, S)] \leq \frac{n}{k}$

• For any $x \in \Delta(A)$, consider the lottery S^*, where we sample k alternatives i.i.d. according to x and replace any duplicates with arbitrary other alternatives

• For each voter i:

 $$\Pr_{S \sim S^*, a \sim x}[a >_i b, \forall b \in S] \leq \frac{1}{k + 1}$$

• Hence:

 $$\mathbb{E}_{S \sim S^*, a \sim x}[V(a, S)] \leq \frac{n}{k + 1} < \frac{n}{k} \quad \blacksquare$$
Step III: Proof of $O(\sqrt{m})$ Distortion

Stable Lottery Rule

- W.p. $\frac{1}{2}$, find a stable lottery S over sets of size \sqrt{m}, sample $S \sim S$, choose $a \in S$ uniformly at random
- W.p. $\frac{1}{2}$, choose $a \in A$ uniformly at random

Theorem: Stable lottery rule achieves $O(\sqrt{m})$ distortion.

- Let a^* be an alternative maximizing social welfare
- For any S: $sw(a^*, \bar{u}) \leq V(a^*, S) + \sum_{b \in S} sw(b, \bar{u})$
- Taking expectation over $S \sim S$:
 $$sw(a^*, \bar{u}) \leq \mathbb{E}_{S \sim S}[V(a^*, S)] + \mathbb{E}_{S \sim S}[\sum_{b \in S} sw(b, \bar{u})]$$
 $$\leq 2\sqrt{m} \cdot \left(\frac{1}{m} \cdot \frac{n}{m} + \frac{1}{2} \cdot \mathbb{E}_{S \sim S} \left[\frac{1}{|S|} \cdot \sum_{b \in S} sw(b, \bar{u})\right]\right)$$
 $$= 2\sqrt{m} \cdot sw(f(\succ), \bar{u}) \blacksquare$$
Notes

• Stable lotteries
 • Introduced by [Cheng, Jiang, Munagala, Wang, 2020], who show the existence of a stronger form of stable lotteries which bounds $V(S', S)$ for all $S' \subseteq A$
 • Requires a much more intricate proof

• Stable committees
 • 16-stable committees exist [Jiang, Munagala, Wang, 2020]: $V(a, S) \leq 16 \cdot \frac{n}{k}$ for all $a \in A$
 • Factor 16 cannot be improved to any lower than 2
 • Open question: Do 2-approximately stable committees exist?

• Lower bound
 • The lower bound from before is $\frac{\sqrt{m}}{2}$
 • Open question: A gap of factor 4 between this lower bound and the $2\sqrt{m}$ upper bound by stable lottery rule
Extensions

- Other utility classes and objective functions
- Incentives
- Ballot formats other than ranked ballots
- Committee selection
- Optimal ballot design
- Participatory budgeting
- Social welfare functions
Other Objective Functions

• Nash social welfare
 • \(sw(x, \vec{u}) = \sum_{i \in N} u_i(x) \)
 • \(nsw(x, \vec{u}) = \left(\prod_{i \in N} u_i(x) \right)^{1/n} \)
 • Nash social welfare is independent of individual scales
 • Any distortion upper bound with respect to unit-sum utilities holds for arbitrary utilities

• Theorem [Ebadian, Kahng, Peters, Shah, 2022]:
 • With respect to the Nash social welfare:
 • The distortion of harmonic rule is \(\Theta(\sqrt{m \cdot \log m}) \)
 • The distortion of stable committee rule (similar to stable lottery rule) is \(\Theta(\sqrt{m}) \)
 • There is a randomized rule with distortion \(O(\log m) \)
 • No randomized rule has distortion better than \(\left(\frac{m^m}{m!} \right)^{1/m} \rightarrow e \)

• Open question: Close the gap between \(O(\log m) \) and \(e \)
Other Objective Functions

- **Additive distortion**
 - \(sw(x, \bar{u}) = \left(\frac{1}{n} \right) \cdot \sum_{i \in N} u_i(x) \)
 - \(dist^+(x, \succeq) = \max_{\bar{u} \succ \succeq} \left[\max_{a \in A} sw(a, \bar{u}) - sw(x, \bar{u}) \right] \)

- **Theorem** [Caragiannis, Nath, Procaccia, Shah, 2017]:
 - For deterministic rules, the optimal additive distortion is \(\frac{1}{2} \).
 - For randomized rules, the optimal additive distortion is between \(\frac{1}{4} \) and \(\frac{1}{2} \cdot \left(1 - \frac{1}{m^2} \right) \).

- **Theorem** [Kahng, Kehne, 2022]:
 - For randomized rules, the optimal additive distortion is between \(\frac{5}{18} \) and \(\frac{11}{27} \).

- **Open question**: Close the gap for randomized rules
Other Objective Functions

- If we knew the utility profile \mathbf{u}:
 - Efficiency would ask us to select $x^* \in \arg\max_x sw(x, \mathbf{u})$
 - What about fairness? Particularly attractive in budget division.

- **Proportional Fairness**: $PF(x, \mathbf{u}) = \sup_y \frac{1}{n} \sum_i \frac{u_i(y)}{u_i(x)}$
 - Average % change in utilities when moving to any other distribution y
 - **Folklore**: If we knew \mathbf{u}, choosing $x^* \in \arg\max_x \prod_i u_i(x)$ would guarantee $PF(x^*, \mathbf{u}) = 1$
 - Optimal, consider $y = x$
 - **Folklore**: $PF = \alpha$ implies α-approximation to the core
 - Any subgroup of x % of voters cannot find an α factor Pareto improvement over x by allocating x % of the probability mass (or budget), for any x

- **Theorem** [Ebadian, Kahng, Peters, Shah, 2022]:
 - The optimal randomized rule achieves $\Theta(\log m)$ proportional fairness.

- **Open question**: Can the core approximation be improved to a constant?
Other Utility Classes

• Unit range utilities:
 • $u_i(a) \in [0,1]$ for all $a \in A$, $\max_a u_i(a) = 1$, $\min_a u_i(a) = 0$

• Theorem [Ebadian, Kahng, Peters, Shah, 2022]:
 • With respect to unit range utilities:
 • The distortion of harmonic rule increases to $O(m^{2/3} \cdot \log^{1/3} m)$
 • The distortion of stable lottery rule remains $O(\sqrt{m})$
 • Every randomized rule has distortion $\Omega(\sqrt{m})$
Incentives

• **Strategyproofness**
 • A randomized rule is strategyproof if a voter cannot increase her expected utility by misreporting her preference ranking in any instance.

• **Theorem** [Bhaskar, Dani, Ghosh, 2018]:
 • With respect to unit-sum utilities, the best distortion subject to strategyproofness is $\Theta(\sqrt{m \cdot \log m})$.
 • Upper bound is achieved by harmonic rule, which is strategyproof.

• **Theorem** [Filos-Ratsikas, Bro Miltersen, 2014; Lee 2019]:
 • With respect to unit-range utilities, the best distortion subject to strategyproofness is $\Theta(m^{2/3})$.
 • **Note**: This explains why the distortion of harmonic rule, which is strategyproof, increases to $\tilde{O}(m^{2/3})$ for unit-range utilities
 • Harmonic rule achieves near-optimal distortion subject to strategyproofness with respect to both unit-sum and unit-range utilities!
Committee Selection

• **Goal:** Select a set of alternatives of given size k
 • Representation utilities: $u_i(S) = \max_{a \in S} u_i(a)$
 • A priori, it is not clear if the best possible distortion increases or decreases with k

• **Theorem** [Caragiannis, Nath, Procaccia, Shah, 2017]
 • The optimal distortion of deterministic rules is $\Theta\left(1 + \frac{m \cdot (m-k)}{k}\right)$.
 • Optimal distortion of randomized rules:
 • Upper bound not monotone in k
 • Left an $m^{1/6}$ gap

![Distortion graph](image)
Committee Selection

Stable Lottery Rule for Committees

- If $k \leq \sqrt{m}$:
 - W.p. $\frac{1}{2}$, find a stable lottery S over sets of size $k \cdot \sqrt{m}$, sample $S \sim S$, and choose $S' \subseteq S$ of size $|S'| = k$ uniformly at random
 - W.p. $\frac{1}{2}$, choose $S \subseteq A$ of size $|S| = k$ uniformly at random
- If $k \geq \sqrt{m}$
 - Choose $S \subseteq A$ of size $|S| = k$ uniformly at random

Theorem [Borodin, Halpern, Latifian, Shah, ‘22]:
- Among randomized rules, the stable lottery rule for committees of size k achieves the optimal distortion of $\Theta \left(\min \left(\sqrt{m}, \frac{m}{k} \right) \right)$

Corollary:
- The best possible distortion (asymptotically) weakly decreases in k
Other Ballot Formats

• **Top-t preferences** (less information than ranked ballots)
 - Each voter ranks her t most favorite alternatives

• **Theorem** [Borodin, Halpern, Latifian, Shah, ‘22]:
 - Stable lottery rule for committees has distortion $O\left(\min\left(\max\left(\sqrt{m}, \frac{m}{t}\right), \frac{m}{k}\right)\right)$
 - Apply the rule after arbitrarily completing partial preferences to ranked ballots!
 - Every randomized voting rule has distortion $\Omega\left(\min\left(\max\left(\sqrt{m}, \frac{m}{k\cdot t}\right), \frac{m}{k}\right)\right)$
 - Open question: Close this gap!

• **Corollary:**
 - For $k = 1$ (single-winner), the bound is $\Theta\left(\max\left(\sqrt{m}, \frac{m}{t}\right)\right)$
 - Optimal $O(\sqrt{m})$ distortion is already achieved at $t = \sqrt{m}$
 - So only ask voters to rank their top \sqrt{m} alternatives!
 - For deterministic rules, $t = 1$ gives optimal $\Theta(m^2)$ distortion
Other Ballot Formats

• **Ranked ballots + additional queries** (more information than ranked ballots)
 • Value query: What is $u_i(a)$?
 • Comparison query: Is $u_i(a) \geq \alpha \cdot u_i(b)$?
 • We measure the number of queries *per voter*

• **Theorem** [Amanatidis, Birmpas, Filos-Ratsikas, Voudouris, 2021]:
 • For any k, it is possible to achieve distortion $O\left(\frac{k+1}{\sqrt{m}}\right)$ with $O(k \cdot \log m)$ value queries
 • It is possible to achieve $O(1)$ distortion using $O(\log^2 m)$ comparison queries
 • The best distortion with λ value queries is $\Omega\left(\frac{1}{\lambda+1} \cdot \frac{1}{m^{2(\lambda+1)}}\right)$
 • ...

• **Many open questions:**
 • E.g., $O(1)$ distortion with $O(\log m)$ value queries?
Utilitarian Voting with Ranked Ballots

Vote Aggregation Rule

= 0.7
= 0.2
= 0.1
= 0.4
= 0.3
= 0.3
= 0.5
= 0.5
= 0.0
Utilitarian Voting with Generic Ballots

\[
\begin{align*}
\rho_1 &= 0.7 \\
\rho_2 &= 0.2 \\
\rho_3 &= 0.1
\end{align*}
\]
Examples of Ballots

Ranked Ballot

<table>
<thead>
<tr>
<th>Ranked Ballot</th>
<th>1<sup>st</sup></th>
<th>2<sup>nd</sup></th>
<th>3<sup>rd</sup></th>
<th>4<sup>th</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td>⬤</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>⬤</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td>⬤</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td>⬤</td>
</tr>
</tbody>
</table>

Top-<i>t</i> Ballot

<table>
<thead>
<tr>
<th>Top-<i>t</i> Ballot</th>
<th>1<sup>st</sup></th>
<th>2<sup>nd</sup></th>
<th>3<sup>rd</sup></th>
<th>4<sup>th</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td>⬤</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>⬤</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td>⬤</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td>⬤</td>
</tr>
</tbody>
</table>

Range Voting

<table>
<thead>
<tr>
<th>Range Voting</th>
<th>1 (Worst)</th>
<th>2</th>
<th>3</th>
<th>4 (Best)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td>⬤</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td>⬤</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>⬤</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td>⬤</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Approval Ballot

<table>
<thead>
<tr>
<th>Approval Ballot</th>
<th>1<sup>st</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>⬤</td>
</tr>
<tr>
<td>B</td>
<td>⬤</td>
</tr>
<tr>
<td>C</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
</tr>
</tbody>
</table>
Optimal Voting with Optimal Ballot Design

• Tradeoff

<table>
<thead>
<tr>
<th>Distortion</th>
<th>Communication</th>
</tr>
</thead>
</table>
| Lowest distortion allowed by the ballot design when using its best aggregation rule | “Expressiveness” / “cognitive difficulty” imposed
| Crude measure: #bits communicated by each voter |

How many bits of information does each voter need to communicate for us to achieve distortion d?
Theorem [Mandal, Procaccia, Shah, Woodruff, 2019; Mandal, Shah, Woodruff, 2020]

For any d, the optimal ballot (combined with its optimal randomized aggregation rule) elicits the following number of bits of information from each voter to achieve distortion d:

- Deterministic ballot: $\tilde{\Theta}(m/kd)$
- Randomized ballot: $\tilde{\Theta}(m/ka^3)$

Comparison to ranked ballots

- Ranked ballots achieve $d = \Theta(\min(\sqrt{m}, m/k))$ distortion by eliciting $\Theta(m \cdot \log m)$ bits
- Optimal ballot achieves $d = O(1)$ distortion already by eliciting only $\tilde{\Theta}(m/k)$ bits

Optimal Voting with Optimal Ballot Design
Participatory Budgeting

- Ranking by value

- Ranking by VFM

- Knapsack voting (budget = 4)

- Threshold approval (threshold = 3)

[Benade, Procaccia, Nath, Shah, 2021]
Participatory Budgeting

• Additive utilities
 • \(u_i(S) = \sum_{a \in S} u_i(a) \)
 • Previously mentioned results were for representation utilities: \(u_i(S) = \max_{a \in S} u_i(a) \)

• Theorem [Benade, Nath, Procaccia, Shah, 2017]:
 • The best possible distortion using randomized aggregation rule is as follows:
 • Knapsack ballot: \(\Theta(m) \)
 • Ranking by value: \(\tilde{\Theta}(\sqrt{m}) \)
 • Ranking by VFM: \(\tilde{\Theta}(\sqrt{m}) \)
 • Threshold approval votes: \(O(\log^2 m), \Omega\left(\frac{\log m}{\log \log m}\right) \)
Social Welfare Functions

- **Output**: a ranking of the alternatives \succ^*
 - How do we define the utility of a voter for a ranking?
 - Each voter i has non-increasing weights $w_{i,j}$ such that $w_{i,j} \geq 0$ for all j and $\sum_{j=1}^{m} w_{i,j} = 1$
 - $w_{i,j}$ = how much voter i cares about which alternative gets ranked j^{th} in \succ^*
 - $u_i(\succ^*) = \sum_{j=1}^{m} w_{i,j} \cdot u_i(a_j)$, where a_j is the j^{th} ranked alternative in \succ^*
 - Distortion \rightarrow worst case over the choice of both voter utilities and voter weights
 - Strictly harder than single-winner selection ($w_{i,1} = 1$)

- **Theorem** [Benade, Procaccia, Qiao, 2019]:
 - The best distortion of any randomized social welfare function is $O(\sqrt{m \cdot \log^3 m})$.
 - Only polylogarithmically higher than single-winner selection!
Many, Many Open Questions

• Combining extensions
 • Strategyproofness +
 • Nash welfare distortion, additive distortion, other ballots, committee selection, ...
 • Committee selection or participatory budgeting +
 • Nash welfare distortion, additive distortion, ...
 • Unit-range utilities +
 • Additive distortion, other ballots, committee selection, participatory budgeting, ...
 • Social welfare functions?
 • ...

• Social welfare functions?
Outline

• Introduction
 • Applications of voting
 • Motivating the distortion framework

• Utilitarian distortion framework
 • Model
 • Known results

• Metric distortion framework
 • Model
 • Known results

• Applications beyond voting
Metric Distortion

Assess quality using the underlying metric

Metric Space

Voters

Preferences

Voting Rule

Winner

A

[Anshelevich, Bhardwaj, Elkind, Postl, Skowron, 2018]
Why The Metric?
Why The Metric?

2D Models

3D Models

Popular Tools
Metric Distortion

1. There exists an underlying metric d over voters and alternatives such that:
 - Consistency (denoted $d \triangleright \succ$): $\forall a, b : a \succ_i b \Rightarrow d(i, a) \leq d(i, b)$
 - Triangle inequality: $\forall x, y, z, d(x, y) + d(y, z) \geq d(x, z)$
 - Linear extension to distributions: For $x \in \Delta(A), c_i(x) = d(i, x) = \sum_a d(i, a) \cdot x(a)$

2. If we knew the costs, we would minimize the social cost
 - $sc(x, d) = \sum_{i \in N} d(i, x)$

3. Because this is impossible given the limited ranked information, we want to best approximate the social cost in the worst case.
Metric Distortion

• Distortion

\[
\text{dist}(x, \succ) = \sup_{d \succ} \frac{sc(x, d)}{\min_{a \in A} sc(a, d)}
\]

• Given voting rule \(f\)

\[
\text{dist}(f) = \max_{\succ} \text{dist}(f(\succ), \succ)
\]

What is the lowest possible distortion of deterministic and randomized rules? Which voting rules achieves it?
• A simple lower bound of 3 (deterministic rules) with just two candidates

\[\frac{n}{2} \text{ voters} : a > b \]

Rule selects w.l.o.g.

\[\frac{n}{2} \text{ voters} : b > a \]

Bad instance

\[sc(a, d) = 1 \frac{n}{2} + 2 \frac{n}{2} = 3 \frac{n}{2} \]

\[sc(b, d) = 1 \frac{n}{2} + 0 \frac{n}{2} = \frac{n}{2} \]

\[\text{distortion} \geq \frac{sc(a,d)}{sc(b,d)} \geq 3 \]

Can a deterministic rule achieve distortion 3?
Deterministic Rules

• **Theorem** [Anshelevich, Bhardwaj, Elkind, Postl, Skowron, 2018]:

<table>
<thead>
<tr>
<th>Rule</th>
<th>Distortion</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k)-approval ((k > 2))</td>
<td>Unbounded</td>
</tr>
<tr>
<td>Plurality, Borda count</td>
<td>(\Theta(m))</td>
</tr>
<tr>
<td>Harmonic rule*</td>
<td>(O\left(\frac{m}{\sqrt{\log m}}\right), \Omega\left(\frac{m}{\log m}\right))</td>
</tr>
<tr>
<td>Best positional scoring rule</td>
<td>(\Omega\left(\sqrt{\log m}\right))</td>
</tr>
<tr>
<td>STV</td>
<td>(O\left(\log m\right), \Omega\left(\sqrt{\log m}\right))</td>
</tr>
<tr>
<td>Copeland’s rule</td>
<td>5</td>
</tr>
<tr>
<td>Best deterministic rule</td>
<td>(\geq 3)</td>
</tr>
</tbody>
</table>

Deterministic version of the harmonic rule, which simply picks an alternative with the largest harmonic score

• The instance-optimal deterministic rule can be computed in polynomial time by solving a number of linear programs.

• **Open question:** What is the best distortion achievable by any positional scoring rule?
Copeland’s Rule

• **Lemma** [Kempe 2020b]:
 - If \((a_1, a_2, \ldots, a_\ell)\) is a sequence of alternatives such that a (weak) majority of voters prefer \(a_i\) to \(a_{i+1}\) for each \(i = 1, \ldots, \ell - 1\), then \(sc(a_1, d) \leq (2\ell - 1) \cdot sc(a_\ell, d)\) for every metric \(d\) consistent with the preference profile.

• **Corollary:**
 - It is known that Copeland’s winner is in the uncovered set:
 - If \(a_1\) is Copeland’s winner, then for every other alternative \(a\), either sequence \((a_1, a)\) or \((a_1, a_2, a)\) for some \(a_2\) satisfies the condition above.
 - This explains distortion 5 of Copeland’s rule
 - Lemma quite powerful, later used by [Anagnostides, Fotakis, Patsilinakos, 2021]

• **Copeland’s rule is Condorcet consistent**
 - [Anshelevich, Bhardwaj, Elkind, Postl, Skowron, 2018]: Any voting rule can be made Condorcet consistent without losing distortion because the Condorcet winner is always a 3-approximation
Deterministic Rules

• **Theorem** [Kempe 2020a]:
 - The distortion of ranked pairs and Schulze’s rule is $\Theta(\sqrt{m})$.
 - Analysis via a powerful LP duality approach

• **Theorem** [Munagala, Wang, 2019]:
 - There exists a deterministic voting rule with distortion $2 + \sqrt{5} \approx 4.236$.

• **Theorem** [Gkatzelis, Halpern, Shah, 2020]:
 - There exists a deterministic voting rule, PluralityMatching, with distortion 3.
 - Proof by confirming a conjecture by [Munagala, Wang, 2019]

• **Theorem** [Kizilkaya, Kempe, 2022]:
 - There exists a deterministic voting rule, Plurality Veto, with distortion 3.
 - Proof by confirming a conjecture by [Munagala, Wang, 2019] in a 1-paragraph proof
Domination Graph of Candidate α

Certificate that α is a good choice:
we can match each voter j (with top choice x) to another voter $i = M(j)$ with $\alpha \succeq_i x$.

Edge (i, j) exists when, in i’s vote, α weakly defeats the top choice of j.

Perfect Matching
Perfect Matching Gives Distortion 3

- **Lemma** [Munagala, Wang, 2019; Kempe 2020a]
 - If the domination graph of a has a perfect matching, then a has distortion at most 3.
 - Conjecture: For every profile, at least one candidate’s graph has a perfect matching.

- **Proof (skip):**
 \[
 SC(a) = \sum_{i \in V} d(i, a) \\
 \leq \sum_{i \in V} d(i, \text{top}(M(i))) \\
 \leq \sum_{i \in V} (d(i, b) + d(b, \text{top}(M(i)))) \\
 = \sum_{i \in V} (d(i, b) + d(b, \text{top}(i))) \\
 \leq \sum_{i \in V} (d(i, b) + d(b, i) + d(i, \text{top}(i))) \\
 \leq \sum_{i \in V} (d(i, b) + d(b, i) + d(i, b)) \\
 = 3 \cdot SC(b).
 \]
Plurality Veto

• Simple voting rule that selects a candidate with a perfect matching in the domination graph. [Kizilkaya, Kempe, 2022]
 • All alternatives start out being alive. Each voter i gives 1 point to i’s top alternative.
 • Go through voters 1-by-1 in an arbitrary order.
 • Each voter i subtracts 1 point from i’s least-favorite alive alternative. If that alternative’s score drops to 0, it dies.
 • The alternative a surviving until the last round wins.

• Only two queries per voter!

• Note: there are n points in total, and we take n points away.

• In the domination graph of a:
 • For each x, we can match the t voters who rank x top with the t voters who delete a point from x during the execution of the rule.
 • For each such voter, $a \succeq_i x$ because a is alive.
Randomized Rules

- **Theorem** [Anshelevich, Bhardwaj, Elkind, Postl, Skowron, 2018]:
 - No randomized rule has distortion better than 2.
 - Same example as before
 - Random Dictatorship has distortion $3 - \frac{2}{n}$.

- **Theorem** [Kempe 2020a]:
 - There is a randomized voting rule with access only to top choices with distortion $3 - \frac{2}{m}$.

- **Theorem** [Charikar, Ramakrishnan, 2022; Pulyassary, Swamy, 2021]:
 - No randomized rule has distortion better than 2.1126 for all m.
 - Weaker lower bounds for fixed, finite m

- **Open question**: What is the optimal metric distortion of randomized rules?
- **Open question**: Is the instance-optimal randomized rule polytime computable?
Extensions

- Other objective functions
- Ballot formats other than ranked ballots
- Committee selection
- Information-distortion tradeoff
Other Objective Functions

- **Bounding higher moments of distortion** [Fain, Goel, Munagala, Sakshuwong, 2017; Fain, Goel, Munagala, Prabhu, 2019; Fain, Fan, Munagala, 2020]
 - k^{th} moment
 \[
 \text{dist}^k(x, \succ) = \sup_{d \succeq \succ} \left(\frac{\mathbb{E}_{a \sim x} \text{sc}(a, d)^k}{\min_{a^* \in A} \text{sc}(a^*, d)} \right)^{1/k}
 \]

- **Motivation:**
 - Bounding, e.g., the 2^{nd} moment ("squared distortion") bounds not only the expectation of the social cost approximation ratio, but also its variance
 - Filters out rules like Random Dictatorship that achieve terrible social cost with low probability
 - Unbounded squared distortion [Fain, Goel, Munagala, Sakshuwong, 2017]
 - By Markov’s inequality, one can obtain high-probability bounds on social cost approximation
 - By Jensen’s inequality, any upper bound on dist^k is also an upper bound on dist

- **Open question:** What is the optimal k^{th} moment distortion of randomized rules?
Other Ballot Formats

• **Top-\(t\) ballots**
 - Each voter ranks her \(t\) most favorite alternatives
 - \(t = 1 \Rightarrow\) Plurality is optimal with distortion \(2m - 1\)
 - \(t = m - 1 \Rightarrow\) Plurality Matching is optimal with distortion 3

• **Theorem** [Kempe 2020a, Kempe 2020b]:
 - The distortion of the optimal deterministic rule for top-\(t\) ballots is between \(\frac{2m}{t} - 1\) and \(\frac{12m}{t}\).

• **Theorem** [Anagnostides, Fotakis, Patsilinakos, 2021]:
 - The upper bound can be improved to \(\frac{6m}{t}\).

• **Open question**: Close the gaps!
Other Ballot Formats

• Top-t ballots
 • Each voter ranks her t most favorite alternatives
 • $t = 1 \Rightarrow$ Plurality is optimal with distortion $2m - 1$
 • $t = m - 1 \Rightarrow$ PluralityMatching is optimal with distortion 3

• Theorem [Gross, Anshelevich, Xia, 2017]:
 • The distortion of the optimal randomized rule for top-t ballots is at least $3 - 2/\lceil m/t \rceil$ when $t \leq m/2$ and at least 2 when $t \geq m/2$.

• Open question: Design randomized rules with matching upper bounds!
Other Ballot Formats

• More information than ranked ballots
 • α-decisive metric spaces (where $\alpha \in [0,1]$) [Anshelevich, Postl, 2016]:
 • Each voter’s distance to her top choice is at most α times her distance to her 2nd choice
 • $\alpha = 1$ provides no additional information
 • $\alpha = 0$ means every voter is co-located with her top choice

• Theorem [Gkatzelis, Halpern, Shah, 2020]:
 • Deterministic: No rule has distortion better than $\sim 2 + \alpha - \frac{\alpha}{m}$ while PluralityMatching has distortion $2 + \alpha$.
 • Randomized: No rule has distortion better than $\sim \frac{(3+\alpha)}{2} - \frac{(1-\alpha)}{m}$ while there exists a randomized rule (using only plurality votes) with distortion $2 + \alpha - \frac{\alpha}{m}$.

• Other types of extra information
 • “Voter passion” [Abramowitz, Anshelevich, Zhu, 2019]
 • Locations of alternatives known [Chen, Li, Wang, 2020; Anshelevich, Zhu, 2021]
Committee Selection

• Voter costs for committees:
 • Additive costs: \(c_i(S) = \sum_{a \in S} d(i, a) \)
 • \(q \)-costs: \(c_i(S) = \min_{a \in S} d(i, a) \)

• Theorem [Goel, Hulett, Krishnaswamy, 2018]:
 • Under additive costs, applying a single-winner rule with distortion \(d \) recursively to choose a committee of size \(k \) achieves distortion at most \(d \).

• Theorem [Caragiannis, Shah, Voudouris, 2022]:
 • Under \(q \)-costs, the optimal distortion of deterministic rules follows a trichotomy:
 • \(q \in [1, \frac{k}{3}] \) : \(\infty \)
 • \(q \in (\frac{k}{3}, \frac{k}{2}] \) : \(\Theta(n) \)
 • \(q \in (\frac{k}{2}, k] \) : 3
 • Open question: For \(q > \frac{k}{2} \), what distortion can be achieved in polynomial time?
 • Current best is 9
Many, Many Open Questions

• Extensions for metric distortion less-studied than for utilitarian distortion
 • Participatory budgeting?
 • Strategyproofness?
 • Ranked ballots + additional queries?
 • Information-distortion tradeoff? [Kempe 2020a]
 • ...

Outline

• Introduction
 • Applications of voting
 • Motivating the distortion framework

• Utilitarian distortion framework
 • Model
 • Known results

• Metric distortion framework
 • Model
 • Known results

• Applications beyond voting
Actually, More Voting First!

• Distributed elections
 • Voters partitioned into groups that conduct separate elections [Borodin, Lev, Shah, Strangway, 2019; Filos-Ratsikas, Micha, Voudouris, 2020; Filos-Ratsikas, Voudouris, 2021; Anshelevich, Filos-Ratsikas, Voudouris, 2022]

• Representative candidates
 • Alternatives sampled from the pool of voters [Cheng, Dughmi, Kempe, 2017; Cheng, Dughmi, Kempe, 2018]

• Voter abstentions
 • What if only a fraction of the voters vote? [Borodin, Lev, Shah, Strangway, 2019; Seddighin, Latifian, Ghodsi, 2021; Anagnostides, Fotakis, Patsilinakos, 2021]

• Approval-based cost functions for metric distortion [Pierczynski, Skowron, 2019]
Beyond Voting

• One-Sided Matching
 • Match m agents to m items, where agents have cardinal utilities for the items but only provide ordinal rankings

• Theorem [Filos-Ratsikas, Frederiksen, Zhang, 2014]:
 • The best distortion of any randomized rule is $\Theta(\sqrt{m})$.

• Theorem [Amanatidis, Birmpas, Filos-Ratsikas, Voudouris, 2021]:
 • The best distortion of any deterministic rule is $\Theta(m^2)$.
 • They also analyze the information-distortion tradeoff via queries.

• Surprisingly, identical bounds as single-winner voting!

• Other work [Ma, Menon, Larson, 2021; Bishop, Chan, Mandal, Tran-Thanh, 2022]
Beyond Voting

• Resource allocation
 • Allocate \(m \) goods to \(n \) agents
 • [Halpern, Shah, 2021]: When every agent ranks the goods
 • [Ebadian, Freeman, Shah, 2022]: When \(k \) agents provide no information while the rest provide cardinal utilities

• Secretary problem [Hoefer, Kodric, 2017]

• Graph-theoretic problems
 • Maximum-weight matching [Anshelevich, Sekar, 2016a]
 • Max \(k \)-sum, densest \(k \)-subgraph, maximum traveling salesman [Anshelevich, Sekar, 2016b]
 • Min-weight and max-min bipartite matching, facility location, \(k \)-center, \(k \)-median [Filos-Ratsikas, Voudouris, 2021; Anshelevich, Zhu, 2021]
Future Work: Ballot Design

• Common ballot designs
 • Pairwise comparisons, “Do you like candidate \(a \) at least twice as much as candidate \(b \)?”, ...

• Better models of cognitive burden
 • Psychology, HCI, ...

• Voter errors in answering ballots
 • Expressive ballots can also induce errors

• Intangible aspects of ballot design
 • Barcelona PB team: “Knapsack votes are good because they help voters understand the limitations of the budget.”
Future Work: Distortion vs Other Desiderata

• Distortion & Truthfulness
 • With ranked ballots, near-optimal distortion can be achieved via truthful aggregation
 • What happens with other ballot formats?

• Distortion & Axioms
 • Can we achieve low distortion together with popular axioms?
 • Especially, proportional representation for committee selection

• Distortion & Explainability
 • Explaining the voting rule vs explaining what it does
Future Work: More Complex Voting Paradigms

- Design optimal voting rules for more complex voting paradigms
 - Participatory budgeting
 - Districting

- Model end-to-end voting
 - In participatory budgeting, voting is but the final step of a year-long process

- Compare models of democracy
 - E.g., direct democracy, representative democracy, and liquid democracy
AI-Driven Decisions

RoboVote is a free service that helps users combine their preferences or opinions into optimal decisions. To do so, RoboVote employs state-of-the-art voting methods developed in artificial intelligence research.

Learn More

Poll Types

RoboVote offers two types of polls, which are tailored to different scenarios; it is up to users to indicate to RoboVote which scenario best fits the problem at hand.

Objective Opinions

In this scenario, some alternatives are objectively better than others, and the opinion of a participant reflects an attempt to estimate the correct order. RoboVote’s proposed outcome is guaranteed to be as close as possible — based on the available information — to the best outcome. Examples include deciding which product prototype to develop, or which company to invest in, based on a metric such as projected revenue or market share.

Subjective Preferences

In this scenario participants’ preferences reflect their subjective taste; RoboVote proposes an outcome that mathematically makes participants as happy as possible overall. Common examples include deciding which restaurant or movie to go to as a group.

Ready to get started?

CREATE A POLL
• Abramowitz, B., Anshelevich, E. and Zhu, W. Awareness of voter passion greatly improves the distortion of metric social choice. WINE, pp. 3-16, 2019.

• Anshelevich, E. and Sekar, S. Truthful mechanisms for matching and clustering in an ordinal world. WINE, pp. 265-278, 2016b.
References

References

• Caragiannis, I. and Procaccia, A. D. Voting almost maximizes social welfare despite limited communication. AIJ, 175(9-10), pp. 1655-1671, 2011.

References

References

References

References

Thank you!

Questions?