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Outline

Introduction
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* Motivating the distortion framework

Utilitarian distortion framework

* Model
* Known results

e Metric distortion framework

* Model
* Known results

e Applications beyond voting



Voting

Algorithm for aggregating individual
preferences to make collective decisions




Voting with Ranked Ballots
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Randomized Voting with Ranked Ballots
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Applications of Randomized Voting

* Interpretation 1: Randomization
= Probably inappropriate for high-stakes political elections
[ * Low stakes decisions like “which restaurant for lunch?”

* Ensemble-leaning based recommendation engines

* Interpretation 2: Resource division

* Foundation splitting its budget between grantees

* Plan a workshop schedule (posters, talks, coffee, lunch, ...)
* Split a parliament between parties

* Repeated decisions (seminar weekday, lunch restaurant)



Traditional Analysis: The Axiomatic Method

* Condorcet consistency

* Whenever there exists an alternative a such that for every other alternative b a strict
majority prefer a to b, the voting rule must select a.

* Weak monotonicity

* If the voting rule selects alternative a in an instance and a moves up in the rankings of some
of the voters, the voting rule must continue to select a.

e Axioms are qualitative
e Avoting rule either satisfies an axiom or it does not



Axiomatic Method

Impossibility Results

...disagreement about rules



Voting with Ranked Ballots
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Utilitarian Votlng [Procaccia, Rosenschein, 2006]

Utilitarian Social Welfare
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No Access to Utilities

Even if voters have utilities, we may not know them, for many reasons.

 Easier elicition
* Higher cognitive effort to assign utilities than to rank alternatives
* |t may be costly to figure out utilities (e.g. computation time to simulate consequences)

e Less communication

Utilities are simply unknown or unknowable

* Privacy

leads to “implicit utilitarian voting”: voting rule only knows the ranking, but gets
evaluated on the utilities.



Utilitarian Voting
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Optimal Voting Rules with Ranked Ballots

Minimize distortion
(Worst-case approximation ratio for
utilitarian social welfare)
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Voting with Ranked Ballots

e N = set of n voters
e A = set of m alternatives

* A(A) = set of distributions over A

—

 >= observed ranked preference profile
* >; = preference ranking of voter i

* a >; b means the voter ranks a higher than b

* (Randomized) Voting rule f
« Maps every preference profile > to a distribution over alternatives f(?) =x € A(4)

* We say that f is deterministic iff(;)) has singleton support for every >



Utilitarian Distortion

1. There exists an underlying utility profile 1 such that for each i € N:
* Consistency (denoted u; > >;): Va,b : a >; b = u;(a) = u;(b)
e Unit-sum:u;(a) =0, Yqu;(a) =1
* [Aziz 2019] provides seven justifications!

* Linear extension to distributions: For x € A(4), u;(x) = Y, u;(a) - x(a)

2. If we knew the utilities, we would want to maximize the (utilitarian) social welfare
o sw(x,u) = Xepy i (x) [by linearity, this optimum is attained by an alternative]

3. Because this is impossible given the limited ranked information, we want to best
approximate the social welfare in the worst case.



Utilitarian Distortion

e Distortion

max sw(a, U
nay (a,u)

sw(x,u)

dist(x,>) = sup
U >

* Given voting rule f
dist(f) = max dist(f(>),>)
~

What is the lowest possible dist(f)? Which voting rule achieves it?




Example (deterministic)

Alternatives * Suppose we choose

e How much better can b be?

lia>b>c sw(b,i) Yz+1+1/3 s
e 1 1, ~ 2
1/3 1/3 1/3 us> sw(a,u) /3_|_0_|_ /3
* How much better can c be?
2:b>a>c
sw(c, i) 1/3 +0 + 1/3
1 0 0 max = = =1
us> SW( ,U) 1/3_|_0_|_1/3
- Hence, dist(a,>) =2 =25
3: >C>b ence, dist| a, =5 =2
1/3 1/3 1/3 » Similarly, compute dist(b,>) = 7 and dist(c,>) = o

has lower distortion than b and ¢



Example (randomized)

Alternatives * Among deterministic choices, a is best with
distortion 2.5
* With randomization, we can achieve lower

l:a>b>c distortion.
1 0 0 * On this profile, x = (a:0.5882, 5:0.4118,c:0) has
distortion 1.54 (best possible).
2:b>a>c
Y3 s s
3:a>c>Db



Utilitarian Distortion

* Instance-optimal rules
» Deterministic fj,,: Maps every preference profile > to a* € arg minge,4 dist(a, >)
* Randomized f.},,,4: Maps every preference profile > to x* € arg MiNyea () dist(x, ;))

 Have the lowest distortion on each >, and therefore in the worst case over all >

Are the instance-optimal rules polytime computable?

Do they have a nice analytical structure?




Optimal Deterministic Distortion

 Theorem [Caragiannis, Procaccia, 2011; Caragiannis, Nath, Procaccia, Shah, 2017]

* For deterministic aggregation of ranked ballots, the optimal distortion is ©(m?) and the
instance-optimal rule f;,; is polytime computable.

e Proof (lower bound):

* High-level approach:
* Take an arbitrary voting rule f
« Construct a preference profile >
* Let f choose a winner a on >

« Reveal a bad utility profile & consistent with > in which a is Q(m?) factor worse than the
optimal alternative



Deterministic Rules

n
* Proof (lower bound): /(m~1) voters per column
* Let f be any deterministic voting rule
_ — _ aq a, Am-1
* Consider > on the right
Am Am Am

- Case 1: f(>) = ap,
* Infinite distortion. Why?

» Case2: f(>) = a; for some i <m

« Bad utility profile % consistent with >
e Voters in column i have utility 1/m for every alternative
 All other voters have utility 1/2 for their top two alternatives

n-n/(m-1)

s sway ) = 25, swan, ) 2 =a(n)

m—1
* Distortion = Q(m?)



Deterministic Rules

e Proof (upper bound):

* Plurality rule: Select an alternative a that is the top choice of the most voters
* For this plurality winner:

* At least "/, voters have a as their top choice (pigeonhole principle)

* Every voter has utility at least 1/, for their top choice (pigeonhole principle)
* Hence, for every consistent utility profile u:

« sw(a,u) ="/, -

o sw(a*,u) < n for every alternative a*

« dist(a,>) = 0(m?)



Optimal Randomized Distortion

 Theorem [Boutilier, Caragiannis, Haber, Lu, Procaccia, and Sheffet, 2015]
* For randomized aggregation of ranked ballots:

* There is a voting rule with distortion 0(y/m - log* m).
* Every voting rule has distortion at least Q(y/m).
* The instance-optimal rule f,.;,,4 is computable in polynomial time.

e Proof (lower bound):

* Same high-level approach:
* Take an arbitrary randomized voting rule f
« Construct a preference profile >
* Let f choose a distribution x over alternatives

« Reveal a bad utility profile % consistent with > in which the expected social welfare
under x is QL(x/m) factor worse than the optimal social welfare



Randomized Rules

* Proof (lower bound): "/ s voters per column
* Let f be an arbitrary rule

_ _ _ _ _ a a a
 Consider > on the right with \/m special alternatives 1 2 i

* f returns distribution x in which at least one special
alternative (say a;) must be chosen w.p. at most 1/\%

» Bad utility profile % consistent with >:
* All voters ranking a; first have utility 1 for a;
All other voters have utility 1/, for every alternative

sw(a;,u) =0 ("/\/m) but sw(a, ) < "/m for every other alternative a

swie, @) < (Y ) 0 () + (1= Ymm) - Om) = 0(Y/m)
Hence, dist(x,u) = Q(/m)



Optimal Randomized Distortion

e Harmonic Rule

* The rule that achieves 0(y/m - log* m) distortion is complicated and artificial (it only makes
sense if you want low distortion) and is unlikely to generalize

* [Boutilier et al. 2015] propose a simpler rule that achieves 0(\/m -log m) distortion

Harmonic Rule

* Each voter i awards 1/, points to her " ranked alternative for every r € {1, ...m}
* Harmonic score of alternative a, denoted hsc(a, ;)), is the total point awarded to a
* W.p. %, choose each a € A with probability proportional to hsc(a, §)

* W.p. %, choose each a € A uniformly at random

* Key proof idea:
* hsc(a,>) = sw(a, i) for every a, while ¥,; hsc(a,>) = 0(logm) - ¥4 sw(a, U)



Optimal Randomized Distortion

 Theorem [Ebadian, Kahng, Peters, Shah, 2022]
 For randomized aggregation of ranked ballots, the optimal distortion is ®@(1/m).

* Proof via three steps:

l. Define “stable lotteries”

Il. Prove the existence (and efficient computation) of stable lotteries via the minimax theorem

IIl. Derive O(y/m) distortion using stable lotteries



Step I: Define Stable Lotteries

® ® [ ] ® i [ ]
voterl — AN>AN >N > /10N> AN > AN
® [ ) ® [ ] ® >
Voter2 AN >AN > AN >4\ > AN > N
® ® o
voter3 AN >N > AN > /|\>/|\>/.\

* For a set of alternatives § = {'i“/i\"i\} and an alternative a =,i\
V(a,S)={ieN:a>; b,Vb € S}| =2

* Lottery S over sets of size k is stable if Eg_g[V (a, S)] < ™/, foreverya € A



Step II: Prove Stable Lotteries Exist

* Theorem: For every k, a stable lottery over committees of size k exists.
e Proof (skip):

L < mi
min max Es slV(a,S)] < min xréqAaé) Es s q~xV(a,S)]

i <
xrélAa(ﬁ) min Es-sa-x[V(a, S)] <

=13

e Forany x € A(A), consider the lottery §*, where we sample k alternatives i.i.d. according to
x and replace any duplicates with arbitrary other alternatives

* For each voter i:

1
Pr [a>;bVbES]|<——
S~§*,a~x

k+1
* Hence:

Esstax[V(@S)] <= < =

=S



Step III: Proof of O(+/m) Distortion

Stable Lottery Rule

* W.p. %, find a stable lottery S over sets of size \/m, sample S ~ S, choose a € S uniformly at
random
* W.p. %, choose a € A uniformly at random

e Theorem: Stable lottery rule achieves O (y/m) distortion.
* Let a® be an alternative maximizing social welfare
* Forany S:sw(a*,u) <V(a*,S) + Xpessw(b,u)
* Taking expectation over § ~ §:

SW(CL*, l_i) < [ES~5 [V(a*, S)] + IES~S [ZbES SW(b, ﬁ)]
1

< 2{m- G 7% + % Es-s [ﬁ - Dpes SW(b, ﬁ)])

=2ym-sw(f(>),u) =



Notes

e Stable lotteries

* Introduced by [Cheng, Jiang, Munagala, Wang, 2020], who show the existence of a stronger
form of stable lotteries which bounds IV (§',5) forall S' € A

* Requires a much more intricate proof

e Stable committees
» 16-stable committees exist [Jiang, Munagala, Wang, 2020]: V(a,S) < 16 - %for alla e A

* Factor 16 cannot be improved to any lower than 2
* Open question: Do 2-approximately stable committees exist?

e Lower bound

* The lower bound from before is \/Tn_l

e Open question: A gap of factor 4 between this lower bound and the 2+/m upper bound by
stable lottery rule



Extensions

Other utility classes and objective functions

* |ncentives

Ballot formats other than ranked ballots

Committee selection

Optimal ballot design

Participatory budgeting

* Social welfare functions



Other Objective Functions

 Nash social welfare
o sw(x,u) = Xepy ui(x)
e nsw(x, 1) = ([Tieyui(x))7/n

* Nash social welfare is independent of individual scales
* Any distortion upper bound with respect to unit-sum utilities holds for arbitrary utilities

* Theorem [Ebadian, Kahng, Peters, Shah, 2022]:

e With respect to the Nash social welfare:

* The distortion of harmonic rule is @(\/m ' logm)

 The distortion of stable committee rule (similar to stable lottery rule) is @(1/m)
* There is a randomized rule with distortion O (log m)

m~ /m
* No randomized rule has distortion better than (%) - e

* Open question: Close the gap between O(logm) and e



Other Objective Functions

e Additive distortion
e swix, 1) = (M/n) - DiieN u; (x)
* dist*(x,>) = max [maxsw(a, i) — sw(x, )]
uc > Qae€eA

 Theorem [Caragiannis, Nath, Procaccia, Shah, 2017]:
* For deterministic rules, the optimal additive distortion is 1/,.

* For randomized rules, the optimal additive distortion is between 1/, and 1/, - (1 — Y ).

 Theorem [Kahng, Kehne, 2022]:

* For randomized rules, the optimal additive distortion is between >/;g and 11/,-.

* Open question: Close the gap for randomized rules



Other Objective Functions

* If we knew the utility profile u:
* Efficiency would ask us to select x* € arg max,, sw(x, u)
* What about fairness? Particularly attractive in budget division.

u;(y)
u;(x)
* Average % change in utilities when moving to any other distribution y

* Folklore: If we knew 1, choosing x* € arg max, [[; u;(x) would guarantee PF(x*,u) = 1

* Proportional Fairness: PF(x, 1) = Supy%Zi

* Optimal, consider y = x
* Folklore: PF = a implies a-approximation to the core

* Any subgroup of x % of voters cannot find an « factor Pareto improvement over x by
allocating x % of the probability mass (or budget), for any x

* Theorem [Ebadian, Kahng, Peters, Shah, 2022]:

* The optimal randomized rule achieves ©(log m) proportional fairness.

* Open question: Can the core approximation be improved to a constant?



Other Utility Classes

* Unit range utilities:
* u;(a) € [0,1] foralla € A, maxu;(a) = 1,m;nui(a) =0
a

 Theorem [Ebadian, Kahng, Peters, Shah, 2022]:

* With respect to unit range utilities:

* The distortion of harmonic rule increases to 0(m2/3 - logl/3 m)

 The distortion of stable lottery rule remains O (y/m)
 Every randomized rule has distortion Q(y/m)



Incentives

* Strategyproofness

* A randomized rule is strategyproof if a voter cannot increase her expected utility by
misreporting her preference ranking in any instance.

* Theorem [Bhaskar, Dani, Ghosh, 2018]:

* With respect to unit-sum utilities, the best distortion subject to strategyproofness is
@(\/m -log m).
* Upper bound is achieved by harmonic rule, which is strategyproof.

 Theorem [Filos-Ratsikas, Bro Miltersen, 2014; Lee 2019]:

* With respect to unit-range utilities, the best distortion subject to strategyproofness is @(mZ/S).
* Note: This explains why the distortion of harmonic rule, which is strategyproof, increases to
0(m"/3) for unit-range utilities

* Harmonic rule achieves near-optimal distortion subject to strategyproofness with respect
to both unit-sum and unit-range utilities!



Committee Selection

e Goal: Select a set of alternatives of given size k
* Representation utilities: u;(S) = max u;(a)
a

* A priori, it is not clear if the best possible distortion increases or decreases with k

 Theorem [Caragiannis, Nath, Procaccia, Shah, 2017]

: : : N : (m—k
* The optimal distortion of deterministic rules is © (1 + = (7: )).
e Optimal distortion of randomized rules: Distortion
e Upper bound not monotone in k 7ok

« Left an m1/® gap 60!
50 |

Distortion

40 -

30+

3000

20+

2000

10 -

1000

0




Committee Selection

Stable Lottery Rule for Committees

e Ifk <+/m:

* W.p. %, find a stable lottery S over sets of size k - v/m, sample S ~ §, and choose S’ € S of

size |S'| = k uniformly at random
* W.p. %, choose S € A of size |S| = k uniformly at random

e Ifk >+m

* Choose S € A of size |S| = k uniformly at random

O(Distortion)

 Theorem [Borodin, Halpern, Latifian, Shah, ‘22]: 5|

* Among randomized rules, the stable lottery rule for committees
m

of size k achieves the optimal distortion of © (min (\/7?_1, ;))

e Corollary: 2|

* The best possible distortion (asymptotically) weakly decreasesin k .

15

20



Other Ballot Formats

* Top-t preferences (less information than ranked ballots)
e Each voter ranks her t most favorite alternatives

 Theorem [Borodin, Halpern, Latifian, Shah, 22]:
e Stable lottery rule for committees has distortion O (min (max (\/n_l, nf) ,%))
* Apply the rule after arbitrarily completing partial preferences to ranked ballots!
* Every randomized voting rule has distortion () (min (max (\/ﬁ, kﬂt) ,%))
* Open question: Close this gap!

Distortion

* Corollary:
* For k = 1 (single-winner), the bound is © (max (\/77_1, %))
« Optimal O(y/m) distortion is already achieved at t = \/m — m=25

* So only ask voters to rank their top /m alternatives!
e For deterministic rules, t = 1 gives optimal ®(m?) distortion




Other Ballot Formats

* Ranked ballots + additional queries (more information than ranked ballots)
* Value query: What is u;(a)?
« Comparison query: Isu;(a) = a - u;(b)?
* We measure the number of queries per voter

* Theorem [Amanatidis, Birmpas, Filos-Ratsikas, Voudouris, 2021]:

* Forany k, it is possible to achieve distortion 0('”%) with O (k - logm) value queries
* It is possible to achieve 0(1) distortion using O(log? m) comparison queries

1
: : : L 1 —
* The best distortion with A value queries is () (m : m2(1+1))

* Many open questions:
e E.g., 0(1) distortion with O(log m) value queries?



Utilitarian Voting with Ranked Ballots
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Utilitarian Voting with Generic Ballots
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Examples of Ballots

Ranked Ballot | 1% | 24 | 3¢ | 4%
A O ® O O
B ® O O O
C O O O e
D O O @ O

Range Votig | 1Worst) | 2 |3
A O O [ )

000
900
000

B
C
D

a4 Best)

0000

Top-t Ballot

00008
00008
000088
00008

Approval Ballot 1s

1St

A

B
C
D

-+

coe e



Optimal Voting with Optimal Ballot Design

* Tradeoff
VS
* Lowest distortion allowed by the ballot » “Expressiveness” / “cognitive difficulty” imposed
design when using its best aggregation rule * Crude measure: #bits communicated by each voter

to communicate for us to achieve distortion d?

éq?) How many bits of information does each voter need




Optimal Voting with Optimal Ballot Design

* Theorem [Mandal, Procaccia, Shah, Woodruff, 2019; Mandal, Shah, Woodruff, 2020]

* For any d, the optimal ballot (combined with its optimal randomized aggregation rule) elicits the
following number of bits of information from each voter to achieve distortion d:

* Deterministic ballot: @("™/,4)
* Randomized ballot: @(m/kds)

* Comparison to ranked ballots
* Ranked ballots achieve d = @(min(y/m,™/,,)) distortion by eliciting ©@(m - logm) bits
« Optimal ballot achieves d = 0(1) distortion already by eliciting only 0 (™/,) bits



Participatory Budgeting

e Ranking by value

e Ranking by VFM

&%

Utility 6 mn
Cost 4 Hl—l

1

Utility 2
Cost 1

.

- g

A

i - & - A

> o

[Benade, Procaccia, Nath, Shah, 2021]

e Knapsack voting ﬂ.:
(budget = 4)

e Threshold approval ﬂ.:
(threshold = 3)

- Utility 3
Cost 3 Q

o



Participatory Budgeting

e Additive utilities

* u(S) = Lgesui(a)
* Previously mentioned results were for representation utilities: u;(S) = max u;(a)
a

* Theorem [Benade, Nath, Procaccia, Shah, 2017]:

* The best possible distortion using randomized aggregation rule is as follows:
* Knapsack ballot: ©(m)

* Ranking by value: ®(y/m)
* Ranking by VFM: ©(ym)

* Threshold approval votes: O(log? m), £ (

logm )
loglogm



Social Welfare Functions

e Output: a ranking of the alternatives >~
* How do we define the utility of a voter for a ranking?
* Each voter i has non-increasing weights w; ; such that w; ; = 0 for all j and Z}Zl wij=1
* w; ; = how much voter i cares about which alternative gets ranked j* in >*
« w;(>") = Xizy wij - ui(a;), where aj is the j*™ ranked alternative in >"
» Distortion = worst case over the choice of both voter utilities and voter weights
* Strictly harder than single-winner selection (w; ; = 1)

* Theorem [Benade, Procaccia, Qiao, 2019]:

» The best distortion of any randomized social welfare function is 0(y/m - log3 m).
* Only polylogarithmically higher than single-winner selection!



Many, Many Open Questions

* Combining extensions

Strategyproofness +
* Nash welfare distortion, additive distortion, other ballots, committee selection, ...

Committee selection or participatory budgeting +
* Nash welfare distortion, additive distortion, ...

Unit-range utilities +
* Additive distortion, other ballots, committee selection, participatory budgeting, ...

Social welfare functions?



Outline

Introduction
* Applications of voting
* Motivating the distortion framework

Utilitarian distortion framework

* Model
* Known results

 Metric distortion framework

e Model
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e Applications beyond voting



Metric Distortion [Anshelevich, Bhardwaj, Elkind, Postl, Skowron, 2018]

Metric Space Voters Preferences
4 —_ (a>b>0)
c>a>»>b
— — Winner
Rule a
D a>c>b
9 b>axc,

Assess quality using the underlying metric



Why The Metric?
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Why The Metric?
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Metric Distortion

1. There exists an underlying metric d over voters and alternatives such that:
* Consistency (denotedd =>):Va,b:a >; b = d(i,a) < d(i,b)
* Triangle inequality: Vx,y,z,d(x,y) + d(y,z) = d(x, z)
* Linear extension to distributions: For x € A(A), ¢c;(x) = d(i,x) = X,d(i,a) - x(a)

2. If we knew the costs, we would minimize the social cost
* sc(x,d) = X;end(i, x)

3. Because this is impossible given the limited ranked information, we want to
best approximate the social cost in the worst case.



Metric Distortion

e Distortion

_ sc(x,d
dist(x,>) = sup — (. d) y
> minsc(a,d)

* Given voting rule f
dist(f) = max dist(f(>),>)
~

What is the lowest possible distortion of deterministic

and randomized rules? Which voting rules achieves it?



Lower Bound

[Anshelevich, Bhardwaj, Elkind, Postl, Skowron, 2018]

* Asimple lower bound of 3 (deterministic rules) with just two candidates

"/, voters - a > b Rule selects

>

: b > Qa w.l.0.g.

n/, voters

(ad)=10+20=3"
scl\a, = 2 2— 2

(hd)=1o+0o="
S A= 2TV T3

Winner

n n
Bad instance /2 voters "'/, voters

distortion >

> a

b » o »
« » N »

sc(a,d) > 3
sc(b,d) —

597) Can a deterministic rule achieve distortion 37



Deterministic Rules

* Theorem [Anshelevich, Bhardwaj, Elkind, Postl, Skowron, 2018]:

Rule Distortion

k-approval (k > 2)

Unbounded

Plurality, Borda count

O(m)

Harmonic rule*

(o) g

Best positional scoring rule

o({/Togm)

STV 0(logm), Q(y/logm)
Copeland’s rule 5
Best deterministic rule > 3

*Deterministic version of the harmonic rule,

which simply picks an alternative with the largest harmonic score

* The instance-optimal
deterministic rule can be
computed in polynomial time
by solving a number of linear
programs.

* Open question: What is the
best distortion achievable by
any positional scoring rule?



Copeland’s Rule

* Lemma [Kempe 2020b]:

* If (aq,a,, ...,ap) is a sequence of alternatives such that a (weak) majority of voters prefer a;
toa;,q foreachi =1,...,¢ —1,thensc(a,,d) < (2¢ — 1) - sc(ay, d) for every metric d
consistent with the preference profile.

e Corollary:
* Itis known that Copeland’s winner is in the uncovered set:

* If a; is Copeland’s winner, then for every other alternative a, either sequence (a4, a) or
(aq, a,, a) for some a, satisfies the condition above.

* This explains distortion 5 of Copeland’s rule
* Lemma quite powerful, later used by [Anagnostides, Fotakis, Patsilinakos, 2021]

* Copeland’s rule is Condorcet consistent

* [Anshelevich, Bhardwaj, Elkind, Postl, Skowron, 2018]: Any voting rule can be made
Condorcet consistent without losing distortion because the Condorcet winner is always a 3-
approximation



Deterministic Rules

 Theorem [Kempe 2020a]:

 The distortion of ranked pairs and Schulze’s rule is @(y/m).
* Analysis via a powerful LP duality approach

* Theorem [Munagala, Wang, 2019]:
« There exists a deterministic voting rule with distortion 2 + /5 ~ 4.236.

* Theorem [Gkatzelis, Halpern, Shah, 2020]:

* There exists a deterministic voting rule, PluralityMatching, with distortion 3.
* Proof by confirming a conjecture by [Munagala, Wang, 2019]

* Theorem [Kizilkaya, Kempe, 2022]:
* There exists a deterministic voting rule, Plurality Veto, with distortion 3.
* Proof by confirming a conjecture by [Munagala, Wang, 2019] in a 1-paragraph proof



Domination Graph of Candidate a

Certificate that a is a good choice:
we can match each voter j (with top choice x) to another voter i = M(j) with a >; x.

Edge (i,)) exists when, in i’s vote, a weakly defeats the top choice of j

!i 1 1

a>b>c a>b>c
1 11 !
c>a>b c>a>b
i 1 1

a>c>D>b a>c>D>b
1 1 1 !
b>a>c b>a>c

Perfect Matching



Perfect Matching Gives Distortion 3

* Lemma [Munagala, Wang, 2019; Kempe 2020a]
* If the domination graph of a has a perfect matching, then a has distortion at most 3.
* Conjecture: For every profile, at least one candidate’s graph has a perfect matching.

* Proof (skip):  sc(a) = Y d(i.a)

eV

< Z d(i,top(M(7))) (".ma =i top(M(i)),Vi e V)
eV

< Z d(i,b) + d(b, top(M(i)))) (.- triangle inequality)
eV

= Z (d(i,b) + d(b, top(i))) (.- M is a perfect matching)
eV

< Z (d(2,0) + d(b,7) + d(i, top(z))) ("." triangle inequality)
eV

<> (d(i,b) + d(b,i) + d(i, b))
eV

= 3-SC(b).



Plurality Veto

* Simple voting rule that selects a candidate with a perfect matching in the
domination graph. [Kizilkaya, Kempe, 2022]
* All alternatives start out being alive. Each voter i gives 1 point to i’s top alternative.
* Go through voters 1-by-1 in an arbitrary order.

* Each voter i subtracts 1 point from i’s least-favorite alive alternative.
If that alternative’s score drops to O, it dies.

* The alternative a surviving until the last round wins.

* Only two queries per voter!

* Note: there are n points in total, and we take n points away.
* In the domination graph of a:

* For each x, we can match the t voters who rank x top with the t voters who delete a point
from x during the execution of the rule.

* For each such voter, a >; x because a is alive.



Randomized Rules

* Theorem [Anshelevich, Bhardwaj, Elkind, Postl, Skowron, 2018]:
* No randomized rule has distortion better than 2.
 Same example as before
« Random Dictatorship has distortion 3 — 2/y,.

* Theorem [Kempe 2020a]:
* There is a randomized voting rule with access only to top choices with distortion 3 — 2/m.

* Theorem [Charikar, Ramakrishnan, 2022; Pulyassary, Swamy, 2021]:
* No randomized rule has distortion better than 2.1126 for all m.
* Weaker lower bounds for fixed, finite m

* Open question: What is the optimal metric distortion of randomized rules?
* Open question: Is the instance-optimal randomized rule polytime computable?



Extensions

e Other objective functions

Ballot formats other than ranked ballots

Committee selection

e Information-distortion tradeoff



Other Objective Functions

* Bounding higher moments of distortion [Fain, Goel, Munagala, Sakshuwong, 2017;
Fain, Goel, Munagala, Prabhu, 2019; Fain, Fan, Munagala, 2020]

e kth moment .
(IEa~x sc(a, d)k) /k

min sc(a*, d
a*eA ( ’ )

dist®(x,>) = sup
do >
* Motivation:

* Bounding, e.g., the 2" moment (“squared distortion”) bounds not only the expectation of the
social cost approximation ratio, but also its variance

* Filters out rules like Random Dictatorship that achieve terrible social cost with low probability
* Unbounded squared distortion [Fain, Goel, Munagala, Sakshuwong, 2017]

* By Markov’s inequality, one can obtain high-probability bounds on social cost approximation

* By Jensen’s inequality, any upper bound on dist¥ is also an upper bound on dist

* Open question: What is the optimal k' moment distortion of randomized rules?



Other Ballot Formats

* Top-t ballots
* Each voter ranks her t most favorite alternatives
e t = 1 = Plurality is optimal with distortion 2m — 1
e t = m — 1 = PluralityMatching is optimal with distortion 3

 Theorem [Kempe 20203, Kempe 2020b]:
12m

* The distortion of the optimal deterministic rule for top-t ballots is between %n —1and -

 Theorem [Anagnostides, Fotakis, Patsilinakos, 2021]:

* The upper bound can be improved to 6Tm.

* Open question: Close the gaps!



Other Ballot Formats

* Top-t ballots
* Each voter ranks her t most favorite alternatives
e t = 1 = Plurality is optimal with distortion 2m — 1
e t = m — 1 = PluralityMatching is optimal with distortion 3

* Theorem [Gross, Anshelevich, Xia, 2017]:

* The distortion of the optimal randomized rule for top-t ballots is at least 3 — 2/|™/] when
t <™/, and at least 2 when t = ™/,

* Open question: Design randomized rules with matching upper bounds!



Other Ballot Formats

 More information than ranked ballots
* a-decisive metric spaces (where a € [0,1]) [Anshelevich, Postl, 2016]:
» Each voter’s distance to her top choice is at most a times her distance to her 2" choice

 a = 1 provides no additional information
* a = 0 means every voter is co-located with her top choice

 Theorem [Gkatzelis, Halpern, Shah, 2020]:

 Deterministic: No rule has distortion better than ~2 + a — %/m while PluralityMatching has
distortion 2 + a.

- Randomized: No rule has distortion better than ~ *¥/, — =8/ while there exists a
randomized rule (using only plurality votes) with distortion 2 + a — %/m.

* Other types of extra information

e “Voter passion” [Abramowitz, Anshelevich, Zhu, 2019]
e Locations of alternatives known [Chen, Li, Wang, 2020; Anshelevich, Zhu, 2021]



Committee Selection

e \Voter costs for committees:
* Additive costs: ¢;(S) = Yqesd(i, a)
* g-costs: ¢;(S) = q"—mind(i, a)
aes
* Theorem [Goel, Hulett, Krishnaswamy, 2018]:

* Under additive costs, applying a single-winner rule with distortion d recursively to choose a
committee of size k achieves distortion at most d.

 Theorem [Caragiannis, Shah, Voudouris, 2022]:
* Under g-costs, the optimal distortion of deterministic rules follows a trichotomy:
*qEc [1' k/S] L 00
* q € (*/3,%/5]:0(n)
- q€ (*/2,k] :3
e Open question: For g > ¥/,, what distortion can be achieved in polynomial time?
* Current bestis 9



Many, Many Open Questions

e Extensions for metric distortion less-studied than for utilitarian distortion

Participatory budgeting?

Strategyproofness?

Ranked ballots + additional queries?

Information-distortion tradeoff? [Kempe 2020a]



Outline

Introduction
* Applications of voting
* Motivating the distortion framework

Utilitarian distortion framework

* Model
* Known results

e Metric distortion framework

* Model
* Known results

e Applications beyond voting



Actually, More Voting First!

Distributed elections

* Voters partitioned into groups that conduct separate elections [Borodin, Lev, Shah,
Strangway, 2019; Filos-Ratsikas, Micha, Voudouris, 2020; Filos-Ratsikas, Voudouris, 2021;
Anshelevich, Filos-Ratsikas, Voudouris, 2022]

e Representative candidates

* Alternatives sampled from the pool of voters [Cheng, Dughmi, Kempe, 2017; Cheng, Dughmi,
Kempe, 2018]

e \/oter abstentions

* What if only a fraction of the voters vote? [Borodin, Lev, Shah, Strangway, 2019; Seddighin,
Latifian, Ghodsi, 2021; Anagnostides, Fotakis, Patsilinakos, 2021]

e Approval-based cost functions for metric distortion [Pierczynski, Skowron, 2019]



Beyond Voting

* One-Sided Matching

* Match m agents to m items, where agents have cardinal utilities for the items but only
provide ordinal rankings

* Theorem [Filos-Ratsikas, Frederiksen, Zhang, 2014]:
 The best distortion of any randomized rule is @(1/m).

* Theorem [Amanatidis, Birmpas, Filos-Ratsikas, Voudouris, 2021]:
* The best distortion of any deterministic rule is ®(m?).
* They also analyze the information-distortion tradeoff via queries.

 Surprisingly, identical bounds as single-winner voting!
e Other work [Ma, Menon, Larson, 2021; Bishop, Chan, Mandal, Tran-Thanh, 2022]



Beyond Voting

e Resource allocation
* Allocate m goods to n agents
* [Halpern, Shah, 2021]: When every agent ranks the goods

* [Ebadian, Freeman, Shah, 2022]: When k agents provide no information while the rest
provide cardinal utilities

e Secretary problem [Hoefer, Kodric, 2017]

* Graph-theoretic problems
* Maximum-weight matching [Anshelevich, Sekar, 2016a]
* Max k-sum, densest k-subgraph, maximum traveling salesman [Anshelevich, Sekar, 2016b]

* Min-weight and max-min bipartite matching, facility location, k-center, k-median [Filos-
Ratsikas, Voudouris, 2021; Anshelevich, Zhu, 2021]



Future Work: Ballot Design

4

Common ballot designs

* Pairwise comparisons, “Do you like
candidate a at least twice as much as
candidate b?”, ...

[I=—=
[ 1=
XI=/#

/1
D — * Intangible aspects of ballot design

e Barcelona PB team: “Knapsack votes are
good because they help voters
understand the limitations of the budget.”

Better models of cognitive burden
* Psychology, HCI, ...

Voter errors in answering ballots
* Expressive ballots can also induce errors



Future Work: Distortion vs Other Desiderata

e Distortion & Truthfulness

e With ranked ballots, near-optimal
distortion can be achieved via truthful
aggregation

* What happens with other ballot formats?

e Distortion & Axioms

* Can we achieve low distortion together
with popular axioms?

* Especially, proportional representation for
committee selection

e Distortion & Explainability

* Explaining the voting rule vs explaining
what it does




Future Work: More Complex Voting Paradigms

* Design optimal voting rules for more
complex voting paradigms
* Participatory budgeting
* Districting

* Model end-to-end voting

* In participatory budgeting, voting is but
the final step of a year-long process

e Compare models of democracy

* E.g., direct democracy, representative
democracy, and liquid democracy
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