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Voting

Algorithm for aggregating individual 
preferences to make collective decisions



Voting	with	Ranked	Ballots
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Randomized	Voting	with	Ranked	Ballots
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Applications	of	Randomized	Voting

• Interpreta(on 1: Randomiza(on
• ⛔ Probably inappropriate for high-stakes poliLcal elecLons

• Low stakes decisions like “which restaurant for lunch?”

• Ensemble-leaning based recommendaLon engines

• Interpreta(on 2: Resource division
• FoundaLon spliSng its budget between grantees

• Plan a workshop schedule (posters, talks, coffee, lunch, …)

• Split a parliament between parLes

• Repeated decisions (seminar weekday, lunch restaurant)

🎲



Traditional	Analysis:	The	Axiomatic	Method

• Condorcet consistency
• Whenever there exists an alternative 𝑎 such that for every other alternative 𝑏 a strict 

majority prefer 𝑎 to 𝑏, the voting rule must select 𝑎.

• Weak monotonicity
• If the voting rule selects alternative 𝑎 in an instance and 𝑎 moves up in the rankings of some 

of the voters, the voting rule must continue to select 𝑎.

• Axioms are qualitative
• A voting rule either satisfies an axiom or it does not



Axiomatic	Method

Axiom 1 Axiom 2

Axiom 3

Impossibility Results

…disagreement about rules
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Voting	with	Ranked	Ballots



Utilitarian	Voting
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No	Access	to	Utilities

Even if voters have utilities, we may not know them, for many reasons.
• Easier elicition

• Higher cognitive effort to assign utilities than to rank alternatives
• It may be costly to figure out utilities (e.g. computation time to simulate consequences)

• Less communication
• Utilities are simply unknown or unknowable
• Privacy

• leads to “implicit utilitarian voting”: voting rule only knows the ranking, but gets 
evaluated on the utilities.



Utilitarian	Voting
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Optimal	Voting	Rules	with	Ranked	Ballots

Minimize distortion
(Worst-case approximation ratio for 

utilitarian social welfare)
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Voting	with	Ranked	Ballots

• 𝑁 = set of 𝑛 voters
• 𝐴 = set of 𝑚 alternatives

• Δ(𝐴) = set of distributions over 𝐴

• ≻= observed ranked preference profile
• ≻! = preference ranking of voter 𝑖

• 𝑎 ≻! 𝑏 means the voter ranks 𝑎 higher than 𝑏

• (Randomized) Voting rule 𝑓
• Maps every preference profile ≻ to a distribution over alternatives 𝑓 ≻ = 𝑥 ∈ Δ 𝐴

• We say that 𝑓 is deterministic if 𝑓 ≻ has singleton support for every≻



Utilitarian	Distortion

1. There exists an underlying utility profile 𝑢 such that for each 𝑖 ∈ 𝑁:
• Consistency (denoted 𝑢! ⊳ ≻!): ∀𝑎, 𝑏 ∶ 𝑎 ≻! 𝑏 ⇒ 𝑢! 𝑎 ≥ 𝑢!(𝑏)

• Unit-sum: 𝑢! 𝑎 ≥ 0, ∑"𝑢! 𝑎 = 1
• [Aziz 2019] provides seven justifications!

• Linear extension to distributions: For 𝑥 ∈ Δ 𝐴 , 𝑢! 𝑥 = ∑"𝑢! 𝑎 ⋅ 𝑥 𝑎

2. If we knew the utilities, we would want to maximize the (utilitarian) social welfare
• 𝑠𝑤 𝑥, 𝑢 = ∑!∈$𝑢!(𝑥) [by linearity, this optimum is attained by an alternative]

3. Because this is impossible given the limited ranked information, we want to best 
approximate the social welfare in the worst case.



Utilitarian	Distortion

• Distortion

dist 𝑥, ≻ = sup
- ⊳≻

max
0∈2

𝑠𝑤 𝑎, 𝑢

𝑠𝑤 𝑥, 𝑢

• Given voting rule 𝑓
𝑑𝑖𝑠𝑡 𝑓 = max

≻
dist 𝑓 ≻ ,≻

What is the lowest possible 𝑑𝑖𝑠𝑡(𝑓)? Which voting rule achieves it?



1 : 𝑎 ≻ 𝑏 ≻ 𝑐

2 : 𝑏 ≻ 𝑎 ≻ 𝑐

3 : 𝑎 ≻ 𝑐 ≻ 𝑏

Example	(deterministic)

• Suppose we choose 𝑎:

• How much better can 𝑏 be?

max
%⊳≻

𝑠𝑤(𝑏, 𝑢)
𝑠𝑤(𝑎, 𝑢)

=
=1 3 + 1 + =1 3
=1 3 + 0 + =1 3

=
5
2

• How much better can 𝑐 be?

max
%⊳≻

𝑠𝑤(𝑐, 𝑢)
𝑠𝑤(𝑎, 𝑢)

=
=1 3 + 0 + =1 3
=1 3 + 0 + =1 3

= 1

• Hence, 𝑑𝑖𝑠𝑡 𝑎, ≻ = (
)
= 2.5

• Similarly, compute 𝑑𝑖𝑠𝑡 𝑏, ≻ = 7 and 𝑑𝑖𝑠𝑡 𝑐, ≻ = ∞
• 𝑎 has lower distortion than 𝑏 and 𝑐

Voters Alternatives

31 3 31 3 31 3

1 0 0

31 3 31 3 31 3



1 : 𝑎 ≻ 𝑏 ≻ 𝑐

2 : 𝑏 ≻ 𝑎 ≻ 𝑐

3 : 𝑎 ≻ 𝑐 ≻ 𝑏

Example	(randomized)

• Among deterministic choices, 𝑎 is best with 
distortion 2.5
• With randomization, we can achieve lower 

distortion.
• On this profile, 𝑥 = (𝑎: 0.5882, 𝑏: 0.4118, 𝑐: 0) has 

distortion 1.54 (best possible).

Voters Alternatives

31 3 31 3 31 3

1 0 0

1 0 0



Utilitarian	Distortion

• Instance-optimal rules
• Deterministic 𝑓*+,∗ : Maps every preference profile ≻ to 𝑎∗ ∈ argmin"∈. dist 𝑎, ≻

• Randomized 𝑓/"0*∗ : Maps every preference profile ≻ to 𝑥∗ ∈ argmin1∈2 . dist 𝑥, ≻

• Have the lowest distortion on each ≻, and therefore in the worst case over all ≻

Are the instance-optimal rules polytime computable? 
Do they have a nice analytical structure?



Optimal	Deterministic	Distortion

• Theorem [Caragiannis, Procaccia, 2011; Caragiannis, Nath, Procaccia, Shah, 2017]
• For deterministic aggregation of ranked ballots, the optimal distortion is Θ 𝑚) and the 

instance-optimal rule 𝑓*+,∗ is polytime computable.

• Proof (lower bound):
• High-level approach: 

• Take an arbitrary voting rule 𝑓
• Construct a preference profile ≻
• Let 𝑓 choose a winner 𝑎 on ≻
• Reveal a bad utility profile 𝑢 consistent with ≻ in which 𝑎 is Ω 𝑚) factor worse than the 

optimal alternative



Deterministic	Rules

22

• Proof (lower bound):
• Let 𝑓 be any determinisAc voAng rule
• Consider ≻ on the right

• Case 1: 𝑓 ≻ = 𝑎3
• Infinite distorAon. Why?

• Case 2: 𝑓 ≻ = 𝑎! for some 𝑖 < 𝑚

• Bad uAlity profile 𝑢 consistent with ≻
• Voters in column 𝑖 have u=lity 1/𝑚 for every alterna=ve
• All other voters have u=lity 1/2 for their top two alterna=ves

• sw 𝑎!, 𝑢 = 0
345

⋅ 5
3

, sw 𝑎3, 𝑢 ≥ 04 ⁄0 345
)

= Ω 𝑛

• DistorAon = Ω 𝑚)

⁄7 (9:*) voters per column

𝑎* 𝑎< … 𝑎9:*
𝑎9 𝑎9 … 𝑎9
⋮ ⋮ ⋮ ⋮



Deterministic	Rules

23

• Proof (upper bound):
• Plurality rule: Select an alternative 𝑎 that is the top choice of the most voters

• For this plurality winner:

• At least ⁄0 3 voters have 𝑎 as their top choice (pigeonhole principle)

• Every voter has utility at least ⁄5 3 for their top choice (pigeonhole principle)

• Hence, for every consistent utility profile 𝑢:

• 𝑠𝑤 𝑎, 𝑢 ≥ ⁄0 3!

• 𝑠𝑤 𝑎∗, 𝑢 ≤ 𝑛 for every alternative 𝑎∗

• 𝑑𝑖𝑠𝑡 𝑎, ≻ = 𝑂 𝑚)



Optimal	Randomized	Distortion

• Theorem [Boutilier, Caragiannis, Haber, Lu, Procaccia, and Sheffet, 2015]
• For randomized aggregation of ranked ballots:

• There is a voting rule with distortion 𝑂 𝑚 ⋅ log∗𝑚 .
• Every voting rule has distortion at least Ω 𝑚 .
• The instance-optimal rule 𝑓/"0*∗ is computable in polynomial time.

• Proof (lower bound):
• Same high-level approach: 

• Take an arbitrary randomized voting rule 𝑓
• Construct a preference profile ≻
• Let 𝑓 choose a distribution 𝑥 over alternatives
• Reveal a bad utility profile 𝑢 consistent with ≻ in which the expected social welfare 

under 𝑥 is Ω 𝑚 factor worse than the optimal social welfare



Randomized	Rules

25

• Proof (lower bound):
• Let 𝑓 be an arbitrary rule

• Consider ≻ on the right with 𝑚 special alternaAves

• 𝑓 returns distribuAon 𝑥 in which at least one special 
alternaAve (say 𝑎!) must be chosen w.p. at most =5 3

• Bad uAlity profile 𝑢 consistent with ≻:
• All voters ranking 𝑎! first have uAlity 1 for 𝑎!
• All other voters have uAlity ⁄5 3 for every alternaAve

• sw 𝑎!, 𝑢 = Θ =0 3 but 𝑠𝑤 𝑎, 𝑢 ≤ ⁄0 3 for every other alternaAve 𝑎

• 𝑠𝑤 𝑥, 𝑢 ≤ =5 3 ⋅ Θ =0 3 + 1 − =5 3 ⋅ ⁄0 3 = 𝑂 ⁄0 3

• Hence, 𝑑𝑖𝑠𝑡 𝑥, 𝑢 = Ω 𝑚

=0 3 voters per column

𝑎5 𝑎) … 𝑎 3

⋮ ⋮ ⋮ ⋮



Optimal	Randomized	Distortion

• Harmonic Rule
• The rule that achieves 𝑂 𝑚 ⋅ log∗𝑚 distortion is complicated and artificial (it only makes 

sense if you want low distortion) and is unlikely to generalize
• [Boutilier et al. 2015] propose a simpler rule that achieves 𝑂 𝑚 ⋅ log𝑚 distortion

• Key proof idea: 
• ℎ𝑠𝑐 𝑎, ≻ ≥ 𝑠𝑤 𝑎, 𝑢 for every 𝑎, while ∑" ℎ𝑠𝑐 𝑎, ≻ = 𝑂 log𝑚 ⋅ ∑" 𝑠𝑤 𝑎, 𝑢

Harmonic Rule

• Each voter 𝑖 awards ⁄! " points to her 𝑟#$ ranked alternative for every 𝑟 ∈ {1, …𝑚}
• Harmonic score of alternative 𝑎, denoted ℎ𝑠𝑐 𝑎, ≻ , is the total point awarded to 𝑎
• W.p. ½ , choose each 𝑎 ∈ 𝐴 with probability proportional to ℎ𝑠𝑐 𝑎, ≻
• W.p. ½, choose each 𝑎 ∈ 𝐴 uniformly at random



Optimal	Randomized	Distortion

• Theorem [Ebadian, Kahng, Peters, Shah, 2022]
• For randomized aggregation of ranked ballots, the optimal distortion is Θ 𝑚 . 

• Proof via three steps:
I. Define “stable lotteries”

II. Prove the existence (and efficient computation) of stable lotteries via the minimax theorem

III. Derive 𝑂 𝑚 distortion using stable lotteries



Step	I:	Define	Stable	Lotteries

• For a set of alternaLves 𝑆 = { , , } and an alternaLve 𝑎 =

𝑉 𝑎, 𝑆 = | 𝑖 ∈ 𝑁 ∶ 𝑎 ≻H 𝑏, ∀𝑏 ∈ 𝑆 | = 2

• Lokery 𝒮 over sets of size 𝑘 is stable if 𝔼I∼𝒮 𝑉 𝑎, 𝑆 ≤ ⁄7 L for every 𝑎 ∈ 𝐴

≻ ≻ ≻ ≻ ≻Voter 1

≻ ≻ ≻ ≻ ≻Voter 2

≻ ≻ ≻ ≻ ≻Voter 3



Step	II:	Prove	Stable	Lotteries	Exist

• Theorem: For every 𝑘, a stable lottery over committees of size 𝑘 exists.
• Proof (skip):

• min
𝒮

max
"∈.

𝔼8∼𝒮 𝑉 𝑎, 𝑆 ≤ min
𝒮

max
1∈2 .

𝔼8∼𝒮,"∼1 𝑉 𝑎, 𝑆

= max
1∈2 .

min
𝒮

𝔼8∼𝒮,"∼1 𝑉 𝑎, 𝑆 ≤ 0
;

• For any 𝑥 ∈ Δ(𝐴), consider the lottery 𝒮∗, where we sample 𝑘 alternatives i.i.d. according to 
𝑥 and replace any duplicates with arbitrary other alternatives

• For each voter 𝑖:

Pr
8∼𝒮∗,"~1

𝑎 ≻! 𝑏, ∀𝑏 ∈ 𝑆 ≤
1

𝑘 + 1

• Hence:

𝔼8∼𝒮∗,"∼1 𝑉 𝑎, 𝑆 ≤ 0
;=5

< 0
;
∎



Step	III:	Proof	of	𝑶 𝒎 Distortion

Stable Lottery Rule

• W.p. ½ , find a stable lottery 𝒮 over sets of size 𝑚, sample 𝑆 ∼ 𝒮, choose 𝑎 ∈ 𝑆 uniformly at 
random

• W.p. ½, choose 𝑎 ∈ 𝐴 uniformly at random

• Theorem: Stable lottery rule achieves 𝑂 𝑚 distortion.
• Let 𝑎∗ be an alternative maximizing social welfare

• For any 𝑆: 𝑠𝑤 𝑎∗, 𝑢 ≤ 𝑉 𝑎∗, 𝑆 + ∑>∈8 𝑠𝑤 𝑏, 𝑢

• Taking expectation over 𝑆 ∼ 𝒮: 

𝑠𝑤 𝑎∗, 𝑢 ≤ 𝔼8∼𝒮 𝑉 𝑎∗, 𝑆 + 𝔼8∼𝒮 ∑>∈8 𝑠𝑤 𝑏, 𝑢

≤ 2 𝑚 ⋅ 5
)
⋅ 0
3
+ 5
)
⋅ 𝔼8∼𝒮

5
8
⋅ ∑>∈8 𝑠𝑤 𝑏, 𝑢

= 2 𝑚 ⋅ 𝑠𝑤 𝑓 ≻ , 𝑢 ∎



Notes

• Stable lokeries
• Introduced by [Cheng, Jiang, Munagala, Wang, 2020], who show the existence of a stronger 

form of stable loeeries which bounds 𝑉 𝑆?, 𝑆 for all 𝑆? ⊆ 𝐴
• Requires a much more intricate proof

• Stable commikees
• 16-stable commieees exist [Jiang, Munagala, Wang, 2020]: 𝑉 𝑎, 𝑆 ≤ 16 ⋅ 0

;
for all 𝑎 ∈ 𝐴

• Factor 16 cannot be improved to any lower than 2
• Open quesAon: Do 2-approximately stable commieees exist?

• Lower bound
• The lower bound from before is 3

)
• Open quesAon: A gap of factor 4 between this lower bound and the 2 𝑚 upper bound by 

stable loeery rule



Extensions

• Other utility classes and objective functions
• Incentives
• Ballot formats other than ranked ballots
• Committee selection
• Optimal ballot design
• Participatory budgeting
• Social welfare functions



Other	Objective	Functions

• Nash social welfare
• 𝑠𝑤 𝑥, 𝑢 = ∑!∈$𝑢! 𝑥
• 𝑛𝑠𝑤 𝑥, 𝑢 = ∏!∈$𝑢! 𝑥 ⁄# $

• Nash social welfare is independent of individual scales
• Any distortion upper bound with respect to unit-sum utilities holds for arbitrary utilities

• Theorem [Ebadian, Kahng, Peters, Shah, 2022]:
• With respect to the Nash social welfare:

• The distortion of harmonic rule is Θ 𝑚 ⋅ log𝑚
• The distortion of stable committee rule (similar to stable lottery rule) is Θ 𝑚
• There is a randomized rule with distortion 𝑂 log𝑚

• No randomized rule has distortion better than 3%

3!

⁄# %
→ 𝑒

• Open question: Close the gap between 𝑂(log𝑚) and 𝑒



Other	Objective	Functions

• Additive distortion
• 𝑠𝑤 𝑥, 𝑢 = ⁄5 0 ⋅ ∑!∈$𝑢! 𝑥
• 𝑑𝑖𝑠𝑡= 𝑥, ≻ = max

% ⊳≻
[max
"∈.

𝑠𝑤 𝑎, 𝑢 − 𝑠𝑤(𝑥, 𝑢)]

• Theorem [Caragiannis, Nath, Procaccia, Shah, 2017]:
• For deterministic rules, the optimal additive distortion is ⁄5 ).
• For randomized rules, the optimal additive distortion is between ⁄5 A and ⁄5 ) ⋅ 1 − ⁄5 3! .

• Theorem [Kahng, Kehne, 2022]:
• For randomized rules, the optimal additive distortion is between ⁄( 5B and ⁄55 )C.

• Open question: Close the gap for randomized rules



Other	Objective	Functions

• If we knew the uLlity profile 𝑢:
• Efficiency would ask us to select 𝑥∗ ∈ argmax1 𝑠𝑤(𝑥, 𝑢)
• What about fairness? ParAcularly aeracAve in budget division.

• ProporLonal Fairness: PF 𝑥, 𝑢 = supD
5
0
∑!

%& D
%& 1

• Average % change in uAliAes when moving to any other distribuAon 𝑦
• Folklore: If we knew 𝑢, choosing 𝑥∗ ∈ argmax1∏! 𝑢! 𝑥 would guarantee PF 𝑥∗, 𝑢 = 1

• OpAmal, consider 𝑦 = 𝑥
• Folklore: PF = 𝛼 implies 𝛼-approximaAon to the core

• Any subgroup of 𝑥 % of voters cannot find an 𝛼 factor Pareto improvement over 𝑥 by 
allocaAng 𝑥 % of the probability mass (or budget), for any 𝑥

• Theorem [Ebadian, Kahng, Peters, Shah, 2022]:
• The opAmal randomized rule achieves Θ log𝑚 proporAonal fairness.

• Open quesLon: Can the core approximaLon be improved to a constant?



Other	Utility	Classes

• Unit range utilities:
• 𝑢! 𝑎 ∈ [0,1] for all 𝑎 ∈ 𝐴, max

"
𝑢! 𝑎 = 1 ,min

"
𝑢! 𝑎 = 0

• Theorem [Ebadian, Kahng, Peters, Shah, 2022]:
• With respect to unit range utilities:

• The distortion of harmonic rule increases to 𝑂 𝑚 ⁄! ' ⋅ log ⁄# '𝑚
• The distortion of stable lottery rule remains 𝑂 𝑚
• Every randomized rule has distortion Ω 𝑚



Incentives

• Strategyproofness
• A randomized rule is strategyproof if a voter cannot increase her expected utility by 

misreporting her preference ranking in any instance.

• Theorem [Bhaskar, Dani, Ghosh, 2018]:
• With respect to unit-sum utilities, the best distortion subject to strategyproofness is 
Θ 𝑚 ⋅ log𝑚 .

• Upper bound is achieved by harmonic rule, which is strategyproof.

• Theorem [Filos-Ratsikas, Bro Miltersen, 2014; Lee 2019]:
• With respect to unit-range utilities, the best distortion subject to strategyproofness is Θ 𝑚 ⁄! ' .
• Note: This explains why the distortion of harmonic rule, which is strategyproof, increases to 
t𝑂 𝑚 ⁄! ' for unit-range utilities
• Harmonic rule achieves near-optimal distortion subject to strategyproofness with respect 

to both unit-sum and unit-range utilities!



Committee	Selection

• Goal: Select a set of alternatives of given size 𝑘
• Representation utilities: 𝑢! 𝑆 = max

"∈8
𝑢! 𝑎

• A priori, it is not clear if the best possible distortion increases or decreases with 𝑘

• Theorem [Caragiannis, Nath, Procaccia, Shah, 2017]
• The optimal distortion of deterministic rules is Θ 1 + 3⋅ 34;

;
.

• Optimal distortion of randomized rules: 
• Upper bound not monotone in 𝑘
• Left an 𝑚5/G gap



Committee	Selection

Stable Lo.ery Rule for Commi.ees

• If 𝑘 ≤ 𝑚:
• W.p. ½ , find a stable loeery 𝒮 over sets of size 𝑘 ⋅ 𝑚, sample 𝑆 ∼ 𝒮, and choose 𝑆? ⊆ 𝑆 of 

size 𝑆? = 𝑘 uniformly at random
• W.p. ½, choose 𝑆 ⊆ 𝐴 of size 𝑆 = 𝑘 uniformly at random

• If 𝑘 ≥ 𝑚
• Choose 𝑆 ⊆ 𝐴 of size 𝑆 = 𝑘 uniformly at random

• Theorem [Borodin, Halpern, LaLfian, Shah, ‘22]: 
• Among randomized rules, the stable loeery rule for commieees 

of size 𝑘 achieves the opAmal distorAon of Θ min 𝑚,3
;

• Corollary: 
• The best possible distorAon (asymptoAcally) weakly decreases in 𝑘



Other	Ballot	Formats

• Top-𝑡 preferences (less information than ranked ballots)
• Each voter ranks her 𝑡 most favorite alternatives

• Theorem [Borodin, Halpern, Latifian, Shah, ‘22]: 
• Stable lottery rule for committees has distortion 𝑂 min max 𝑚,3

,
,3
;

• Apply the rule after arbitrarily completing partial preferences to ranked ballots!

• Every randomized voting rule has distortion Ω min max 𝑚, 3
;⋅,

,3
;

• Open question: Close this gap!

• Corollary:
• For 𝑘 = 1 (single-winner), the bound is Θ max 𝑚,3

,
• Optimal 𝑂 𝑚 distortion is already achieved at 𝑡 = 𝑚

• So only ask voters to rank their top 𝑚 alternatives!
• For deterministic rules, 𝑡 = 1 gives optimal Θ(𝑚)) distortion



Other	Ballot	Formats

• Ranked ballots + additional queries (more information than ranked ballots)
• Value query: What is 𝑢! 𝑎 ?
• Comparison query: Is 𝑢! 𝑎 ≥ 𝛼 ⋅ 𝑢! 𝑏 ?
• We measure the number of queries per voter

• Theorem [Amanatidis, Birmpas, Filos-Ratsikas, Voudouris, 2021]: 
• For any 𝑘, it is possible to achieve distortion 𝑂 ()# 𝑚 with 𝑂 𝑘 ⋅ log𝑚 value queries
• It is possible to achieve 𝑂 1 distortion using 𝑂 log)𝑚 comparison queries

• The best distortion with 𝜆 value queries is Ω 5
H=5

⋅ 𝑚
#

! *)#

• …

• Many open questions:
• E.g., 𝑂 1 distortion with 𝑂 log𝑚 value queries?



Utilitarian	Voting	with	Ranked	Ballots

Vote 
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Rule
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= 0.1

= 0.4

= 0.3
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≻ ≻

≻ ≻

≻ ≻



Utilitarian	Voting	with	Generic	Ballots

Vote 
Aggregation 

Rule

= 0.7

= 0.2

= 0.1

= 0.4

= 0.3

= 0.3

= 0.5

= 0.5

= 0

Ballot 
Design

𝜌!

𝜌"

𝜌#



Examples	of	Ballots

Ranked Ballot 1st 2nd 3rd 4th

A

B

C

D

Top-𝒕 Ballot 1st 2nd 3rd 4th

A

B

C

D

Approval Ballot 1st

A

B

C

D

Range Voting 1 (Worst) 2 3 4 (Best)

A

B

C

D



Optimal	Voting	with	Optimal	Ballot	Design

• Tradeoff

How many bits of information does each voter need 
to communicate for us to achieve distortion 𝑑?

Distortion Communication

• Lowest distortion allowed by the ballot 
design when using its best aggregation rule

• “Expressiveness” / “cognitive difficulty” imposed
• Crude measure: #bits communicated by each voter

vs



• Theorem [Mandal, Procaccia, Shah, Woodruff, 2019; Mandal, Shah, Woodruff, 2020]
• For any 𝑑, the optimal ballot (combined with its optimal randomized aggregation rule) elicits the 

following number of bits of information from each voter to achieve distortion 𝑑:
• Deterministic ballot: wΘ ⁄3 ;*
• Randomized ballot:   wΘ ⁄3 ;*'

• Comparison to ranked ballots
• Ranked ballots achieve 𝑑 = Θ min 𝑚, ⁄3 ; distortion by eliciting Θ(𝑚 ⋅ log𝑚) bits
• Optimal ballot achieves 𝑑 = 𝑂(1) distortion already by eliciting only t𝑂 ⁄3 ; bits 

Optimal	Voting	with	Optimal	Ballot	Design



≻ ≻

Utility 6
Cost    4

Utility 2
Cost    1

Utility 3
Cost    3

Participatory	Budgeting

≻ ≻

● Ranking by value

● Ranking by VFM

● Knapsack voting
(budget = 4)

● Threshold approval
(threshold = 3)

[Benade, Procaccia, Nath, Shah, 2021]



• Additive utilities
• 𝑢! 𝑆 = ∑"∈8 𝑢!(𝑎)
• Previously mentioned results were for representation utilities: 𝑢! 𝑆 = max

"∈8
𝑢! 𝑎

• Theorem [Benade, Nath, Procaccia, Shah, 2017]:
• The best possible distortion using randomized aggregation rule is as follows:

• Knapsack ballot: Θ 𝑚
• Ranking by value: wΘ 𝑚
• Ranking by VFM:  wΘ 𝑚
• Threshold approval votes: 𝑂 log)𝑚 , Ω IJK3

IJK IJK3

Participatory	Budgeting



Social	Welfare	Functions

• Output: a ranking of the alternatives ≻∗
• How do we define the utility of a voter for a ranking?
• Each voter 𝑖 has non-increasing weights 𝑤!,L such that 𝑤!,L ≥ 0 for all 𝑗 and ∑LM53 𝑤!,L = 1

• 𝑤!,L = how much voter 𝑖 cares about which alternative gets ranked 𝑗th in ≻∗

• 𝑢! ≻∗ = ∑LM53 𝑤!,L ⋅ 𝑢!(𝑎L), where 𝑎L is the 𝑗th ranked alternative in ≻∗

• Distortion → worst case over the choice of both voter utilities and voter weights
• Strictly harder than single-winner selection (𝑤!,5 = 1)

• Theorem [Benade, Procaccia, Qiao, 2019]:
• The best distortion of any randomized social welfare function is 𝑂 𝑚 ⋅ logN𝑚 .
• Only polylogarithmically higher than single-winner selection!



Many,	Many	Open	Questions

• Combining extensions

• Strategyproofness + 
• Nash welfare distortion, additive distortion, other ballots, committee selection, …

• Committee selection or participatory budgeting +
• Nash welfare distortion, additive distortion, …

• Unit-range utilities +
• Additive distortion, other ballots, committee selection, participatory budgeting, …

• Social welfare functions?

• …



Outline

• Introduction
• Applications of voting 
• Motivating the distortion framework

• Utilitarian distortion framework
• Model
• Known results

• Metric distortion framework
• Model
• Known results

• Applications beyond voting



Metric	Distortion

52

1

2

3

4

Voters

𝑎 ≻ 𝑏 ≻ 𝑐

𝑐 ≻ 𝑎 ≻ 𝑏

𝑎 ≻ 𝑐 ≻ 𝑏

𝑏 ≻ 𝑎 ≻ 𝑐

:

:

:

:

Preferences

Voting 
Rule

Metric Space

1

2

3

4

𝑎

𝑏

𝑐

Assess quality using the underlying metric

𝒂
Winner

[Anshelevich, Bhardwaj, Elkind, Postl, Skowron, 2018]



Why	The	Metric?

53



Why	The	Metric?

54

Popular Tools2D Models

3D Models



Metric	Distortion

1. There exists an underlying metric 𝑑 over voters and alternatives such that:
• Consistency (denoted 𝑑 ⊳ ≻) : ∀𝑎, 𝑏 ∶ 𝑎 ≻! 𝑏 ⇒ 𝑑 𝑖, 𝑎 ≤ 𝑑(𝑖, 𝑏)
• Triangle inequality: ∀𝑥, 𝑦, 𝑧, 𝑑 𝑥, 𝑦 + 𝑑 𝑦, 𝑧 ≥ 𝑑(𝑥, 𝑧)
• Linear extension to distributions: For 𝑥 ∈ Δ 𝐴 , 𝑐! 𝑥 = 𝑑(𝑖, 𝑥) = ∑"𝑑(𝑖, 𝑎) ⋅ 𝑥 𝑎

2. If we knew the costs, we would minimize the social cost
• 𝑠𝑐 𝑥, 𝑑 = ∑!∈$𝑑(𝑖, 𝑥)

3. Because this is impossible given the limited ranked information, we want to 
best approximate the social cost in the worst case.

55



Metric	Distortion

• Distortion

dist 𝑥, ≻ = sup
Q ⊳≻

𝑠𝑐(𝑥, 𝑑)
min
0∈2

𝑠𝑐(𝑎, 𝑑)

• Given voting rule 𝑓
𝑑𝑖𝑠𝑡 𝑓 = max

≻
dist 𝑓 ≻ ,≻

What is the lowest possible distortion of deterministic 
and randomized rules? Which voting rules achieves it?



Lower	Bound

• A simple lower bound of 3 (deterministic rules) with just two candidates

⁄% & voters

⁄% & voters

𝑎 ≻ 𝑏

𝑏 ≻ 𝑎

:

:

Rule selects

w.l.o.g.
𝒂

Winner
Bad instance

Can a deterministic rule achieve distortion 3?

1 1

𝑎

⁄% & voters ⁄% & voters

𝑏

[Anshelevich, Bhardwaj, Elkind, Postl, Skowron, 2018]

𝑠𝑐 𝑎, 𝑑 = 1
𝑛
2
+ 2

𝑛
2
= 3

𝑛
2

𝑠𝑐 𝑏, 𝑑 = 1
𝑛
2
+ 0

𝑛
2
=
𝑛
2

distortion ≥ RS(0,Q)
RS(T,Q) ≥ 3



Deterministic	Rules

• Theorem [Anshelevich, Bhardwaj, Elkind, Postl, Skowron, 2018]:

Rule Distortion
𝑘-approval (𝑘 > 2) Unbounded
Plurality, Borda count Θ 𝑚
Harmonic rule*

𝑂
𝑚
log𝑚

, Ω
𝑚

log𝑚

Best positional scoring rule Ω log𝑚
STV 𝑂 log𝑚 , Ω log𝑚
Copeland’s rule 5
Best deterministic rule ≥ 3

*Deterministic version of the harmonic rule, 
which simply picks an alternative with the largest harmonic score

• Open question: What is the 
best distortion achievable by 
any positional scoring rule?

• The instance-optimal 
deterministic rule can be 
computed in polynomial time 
by solving a number of linear 
programs.



Copeland’s	Rule

• Lemma [Kempe 2020b]:
• If (𝑎5, 𝑎), … , 𝑎ℓ) is a sequence of alternatives such that a (weak) majority of voters prefer 𝑎!

to 𝑎!=5 for each 𝑖 = 1,… , ℓ − 1, then 𝑠𝑐 𝑎5, 𝑑 ≤ 2ℓ − 1 ⋅ 𝑠𝑐 𝑎ℓ, 𝑑 for every metric 𝑑
consistent with the preference profile. 

• Corollary:
• It is known that Copeland’s winner is in the uncovered set:

• If 𝑎5 is Copeland’s winner, then for every other alternative 𝑎, either sequence 𝑎5, 𝑎 or 
𝑎5, 𝑎), 𝑎 for some 𝑎) satisfies the condition above. 

• This explains distortion 5 of Copeland’s rule
• Lemma quite powerful, later used by [Anagnostides, Fotakis, Patsilinakos, 2021]

• Copeland’s rule is Condorcet consistent
• [Anshelevich, Bhardwaj, Elkind, Postl, Skowron, 2018]: Any voting rule can be made 

Condorcet consistent without losing distortion because the Condorcet winner is always a 3-
approximation



Deterministic	Rules

• Theorem [Kempe 2020a]:
• The distortion of ranked pairs and Schulze’s rule is Θ 𝑚 .
• Analysis via a powerful LP duality approach

• Theorem [Munagala, Wang, 2019]:
• There exists a deterministic voting rule with distortion 2 + 5 ≈ 4.236.

• Theorem [Gkatzelis, Halpern, Shah, 2020]:
• There exists a deterministic voting rule, PluralityMatching, with distortion 3.
• Proof by confirming a conjecture by [Munagala, Wang, 2019]

• Theorem [Kizilkaya, Kempe, 2022]:
• There exists a deterministic voting rule, Plurality Veto, with distortion 3.
• Proof by confirming a conjecture by [Munagala, Wang, 2019] in a 1-paragraph proof



Domination	Graph	of	Candidate	𝑎

61

1

2

3

4

𝑎 ≻ 𝑏 ≻ 𝑐

𝑐 ≻ 𝑎 ≻ 𝑏

𝑎 ≻ 𝑐 ≻ 𝑏

𝑏 ≻ 𝑎 ≻ 𝑐

1

2

3

4

𝑎 ≻ 𝑏 ≻ 𝑐

𝑐 ≻ 𝑎 ≻ 𝑏

𝑎 ≻ 𝑐 ≻ 𝑏

𝑏 ≻ 𝑎 ≻ 𝑐

Edge (𝑖, 𝑗) exists when, in 𝑖’s vote, 𝑎 weakly defeats the top choice of 𝑗

Perfect Matching

Certificate that 𝑎 is a good choice: 
we can match each voter 𝑗 (with top choice 𝑥) to another voter 𝑖 = 𝑀(𝑗) with 𝑎 ≽H 𝑥.



Perfect	Matching	Gives	Distortion	3

62

• Lemma [Munagala, Wang, 2019; Kempe 2020a] 
• If the domination graph of 𝑎 has a perfect matching, then 𝑎 has distortion at most 3.
• Conjecture: For every profile, at least one candidate’s graph has a perfect matching.

• Proof (skip):



Plurality	Veto

• Simple voting rule that selects a candidate with a perfect matching in the 
domination graph. [Kizilkaya, Kempe, 2022]
• All alternatives start out being alive. Each voter 𝑖 gives 1 point to 𝑖’s top alternative.
• Go through voters 1-by-1 in an arbitrary order.
• Each voter 𝑖 subtracts 1 point from 𝑖’s least-favorite alive alternative. 

If that alternative’s score drops to 0, it dies.
• The alternative 𝑎 surviving until the last round wins.

• Only two queries per voter!
• Note: there are 𝑛 points in total, and we take 𝑛 points away.
• In the domination graph of 𝑎:

• For each 𝑥, we can match the 𝑡 voters who rank 𝑥 top with the 𝑡 voters who delete a point 
from 𝑥 during the execution of the rule.

• For each such voter, 𝑎 ≽! 𝑥 because 𝑎 is alive.



Randomized	Rules

• Theorem [Anshelevich, Bhardwaj, Elkind, Postl, Skowron, 2018]:
• No randomized rule has distortion better than 2.

• Same example as before
• Random Dictatorship has distortion 3 − ⁄) 0.

• Theorem [Kempe 2020a]:
• There is a randomized voting rule with access only to top choices with distortion 3 − ⁄) 3.

• Theorem [Charikar, Ramakrishnan, 2022; Pulyassary, Swamy, 2021]:
• No randomized rule has distortion better than 2.1126 for all 𝑚.

• Weaker lower bounds for fixed, finite 𝑚

• Open question: What is the optimal metric distortion of randomized rules?
• Open question: Is the instance-optimal randomized rule polytime computable?



Extensions

• Other objective functions
• Ballot formats other than ranked ballots
• Committee selection
• Information-distortion tradeoff



Other	Objective	Functions

• Bounding higher moments of distortion [Fain, Goel, Munagala, Sakshuwong, 2017; 
Fain, Goel, Munagala, Prabhu, 2019; Fain, Fan, Munagala, 2020]
• kth moment

𝑑𝑖𝑠𝑡; 𝑥, ≻ = sup
*⊳≻

𝔼"∼1 𝑠𝑐 𝑎, 𝑑 ; P5 ;

min
"∗∈.

𝑠𝑐(𝑎∗, 𝑑)

• Motivation:
• Bounding, e.g., the 2nd moment (“squared distortion”) bounds not only the expectation of the 

social cost approximation ratio, but also its variance
• Filters out rules like Random Dictatorship that achieve terrible social cost with low probability 

• Unbounded squared distortion [Fain, Goel, Munagala, Sakshuwong, 2017]
• By Markov’s inequality, one can obtain high-probability bounds on social cost approximation
• By Jensen’s inequality, any upper bound on 𝑑𝑖𝑠𝑡; is also an upper bound on 𝑑𝑖𝑠𝑡

• Open question: What is the optimal kth moment distortion of randomized rules?



Other	Ballot	Formats

• Top-𝑡 ballots
• Each voter ranks her 𝑡 most favorite alternatives
• 𝑡 = 1 ⇒ Plurality is optimal with distortion 2𝑚 − 1
• 𝑡 = 𝑚 − 1 ⇒ PluralityMatching is optimal with distortion 3

• Theorem [Kempe 2020a, Kempe 2020b]:
• The distortion of the optimal deterministic rule for top-𝑡 ballots is between )3

,
− 1 and 5)3

,
.

• Theorem [Anagnostides, Fotakis, Patsilinakos, 2021]:
• The upper bound can be improved to G3

,
.

• Open question: Close the gaps!



Other	Ballot	Formats

• Top-𝑡 ballots
• Each voter ranks her 𝑡 most favorite alternatives
• 𝑡 = 1 ⇒ Plurality is optimal with distortion 2𝑚 − 1
• 𝑡 = 𝑚 − 1 ⇒ PluralityMatching is optimal with distortion 3

• Theorem [Gross, Anshelevich, Xia, 2017]:
• The distortion of the optimal randomized rule for top-𝑡 ballots is at least 3 − 2/⌊ ⁄3 ,⌋ when 
𝑡 ≤ ⁄3 ) and at least 2 when 𝑡 ≥ ⁄3 ).

• Open question: Design randomized rules with matching upper bounds!



Other	Ballot	Formats

• More information than ranked ballots
• 𝛼-decisive metric spaces (where 𝛼 ∈ [0,1]) [Anshelevich, Postl, 2016]:

• Each voter’s distance to her top choice is at most 𝛼 times her distance to her 2nd choice
• 𝛼 = 1 provides no additional information
• 𝛼 = 0 means every voter is co-located with her top choice

• Theorem [Gkatzelis, Halpern, Shah, 2020]:
• Deterministic: No rule has distortion better than ~2 + 𝛼 − ⁄) 3 while PluralityMatching has 

distortion 2 + 𝛼.
• Randomized: No rule has distortion better than ~ =(N=R)

)− ⁄(54R)
3 while there exists a 

randomized rule (using only plurality votes) with distortion 2 + 𝛼 − ⁄) 3.

• Other types of extra information
• “Voter passion” [Abramowitz, Anshelevich, Zhu, 2019]
• Locations of alternatives known [Chen, Li, Wang, 2020; Anshelevich, Zhu, 2021]



Committee	Selection

• Voter costs for committees:
• Additive costs: 𝑐! 𝑆 = ∑"∈8𝑑 𝑖, 𝑎
• 𝑞-costs: 𝑐! 𝑆 = 𝑞th−min

"∈8
𝑑 𝑖, 𝑎

• Theorem [Goel, Hulett, Krishnaswamy, 2018]:
• Under additive costs, applying a single-winner rule with distortion 𝑑 recursively to choose a 

committee of size 𝑘 achieves distortion at most 𝑑.

• Theorem [Caragiannis, Shah, Voudouris, 2022]:
• Under 𝑞-costs, the optimal distortion of deterministic rules follows a trichotomy:

• 𝑞 ∈ [1, ⁄; N] : ∞
• 𝑞 ∈ ( ⁄; N , ⁄; )] : Θ(𝑛)
• 𝑞 ∈ ( ⁄; ) , 𝑘] : 3
• Open question: For 𝑞 > ⁄; ), what distortion can be achieved in polynomial time?

• Current best is 9



Many,	Many	Open	Questions

• Extensions for metric distortion less-studied than for utilitarian distortion

• Participatory budgeting? 

• Strategyproofness? 

• Ranked ballots + additional queries?

• Information-distortion tradeoff? [Kempe 2020a] 

• …
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Actually,	More Voting	First!

• Distributed elections
• Voters partitioned into groups that conduct separate elections [Borodin, Lev, Shah, 

Strangway, 2019; Filos-Ratsikas, Micha, Voudouris, 2020; Filos-Ratsikas, Voudouris, 2021; 
Anshelevich, Filos-Ratsikas, Voudouris, 2022]

• Representative candidates
• Alternatives sampled from the pool of voters [Cheng, Dughmi, Kempe, 2017; Cheng, Dughmi, 

Kempe, 2018]

• Voter abstentions
• What if only a fraction of the voters vote? [Borodin, Lev, Shah, Strangway, 2019; Seddighin, 

Latifian, Ghodsi, 2021; Anagnostides, Fotakis, Patsilinakos, 2021]

• Approval-based cost functions for metric distortion [Pierczynski, Skowron, 2019]



Beyond	Voting

• One-Sided Matching
• Match 𝑚 agents to 𝑚 items, where agents have cardinal utilities for the items but only 

provide ordinal rankings

• Theorem [Filos-Ratsikas, Frederiksen, Zhang, 2014]:
• The best distortion of any randomized rule is Θ 𝑚 .

• Theorem [Amanatidis, Birmpas, Filos-Ratsikas, Voudouris, 2021]:
• The best distortion of any deterministic rule is Θ 𝑚) .
• They also analyze the information-distortion tradeoff via queries.

• Surprisingly, identical bounds as single-winner voting!
• Other work [Ma, Menon, Larson, 2021; Bishop, Chan, Mandal, Tran-Thanh, 2022]



Beyond	Voting

• Resource allocation
• Allocate 𝑚 goods to 𝑛 agents
• [Halpern, Shah, 2021]: When every agent ranks the goods
• [Ebadian, Freeman, Shah, 2022]: When 𝑘 agents provide no information while the rest 

provide cardinal utilities

• Secretary problem [Hoefer, Kodric, 2017]

• Graph-theoretic problems
• Maximum-weight matching [Anshelevich, Sekar, 2016a]
• Max 𝑘-sum, densest 𝑘-subgraph, maximum traveling salesman [Anshelevich, Sekar, 2016b]
• Min-weight and max-min bipartite matching, facility location, 𝑘-center, 𝑘-median [Filos-

Ratsikas, Voudouris, 2021; Anshelevich, Zhu, 2021]



• Common ballot designs
• Pairwise comparisons, “Do you like 

candidate 𝑎 at least twice as much as 
candidate 𝑏?”, …

• Better models of cognitive burden
• Psychology, HCI, …

• Voter errors in answering ballots
• Expressive ballots can also induce errors

• Intangible aspects of ballot design
• Barcelona PB team: “Knapsack votes are 

good because they help voters 
understand the limitations of the budget.”

Future	Work:	Ballot	Design



• Distortion & Truthfulness
• With ranked ballots, near-optimal 

distortion can be achieved via truthful 
aggregation

• What happens with other ballot formats?

• Distortion & Axioms
• Can we achieve low distortion together 

with popular axioms?
• Especially, proportional representation for 

committee selection

• Distortion & Explainability
• Explaining the voting rule vs explaining 

what it does

Future	Work:	Distortion	vs	Other	Desiderata



• Design optimal voting rules for more 
complex voting paradigms
• Participatory budgeting
• Districting

• Model end-to-end voting 
• In participatory budgeting, voting is but 

the final step of a year-long process

• Compare models of democracy
• E.g., direct democracy, representative 

democracy, and liquid democracy 

Future	Work:	More	Complex	Voting	Paradigms
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