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Disclaimers

* Focused on conceptual applications
» No proofs

* Covers many different settings
» Can’t define them all super formally

* Covers multidisciplinary work
» Simplifications galore
> (And possible errors)
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Why fairness?
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Fairness research

Today
ML Al Theory
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Social Choice
1950
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Social Choice Theory

Aggregating individual preferences into “good” collective decisions
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Outline

Introduction
> Fairness in social choice

Envy-freeness
» Classification, recommender systems, clustering

Nash social welfare
» Multi-armed bandits, rankings, classification

* Core
> Federated learning, clustering

Fairness in Al/ML via Social Choice




Fairness in Social Choice



Example: Allocating Divisible Resources

* Set of agents N ' A

e Set of divisible resources M

* Each agenti € N has an additive linear

utility function u;: 24 - R : | -

> For X € [0,1]", u;(X) = Xgemtig - X4 LK, . é
* Non-negative utilities u; ; = 0 vs non-

positive utilities u; ;, < 0 (i.e., costs)

» Often stronger results for the former in

social choice, but the latter more
prevalent in ML
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Example: Allocating Divisible Resources

e Allocation 4 c') (3

\D ./

> A; 4 = fraction of good g allocated to agent i I . ‘..“

» Complete allocation: },;4; ;, = 1,Vg €M

»
* Utility to agent i under allocation A is u; (4;) oy
> But for various fairness definitions, other LK m
terms such as ui(Aj), u;(Ujes 4;), etc. may
also matter
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Proportionality

Allocation

Entitlements
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Envy-Freeness

Allocation

Ug(F ) 2 g )
U ) 2 gl )
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Proportionality and Envy-Freeness

* Proportionality

> “My utility for my allocation should be at least as much as my utility for my
entitled (equal) share of the resources”

> ui(Al-) > Uu; (% M) =%-ul~(M), VieN

* Envy-freeness

> “My utility for my allocation should be at least as much as my utility for anyone
else’s allocation”

> ui(Al-) > ul(A]),Vl,] EN
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Proportionality and Envy-Freeness

* Proportionality

> ui(Al-) > Uu; (% M) =%-ui(M), VieN

* Envy-freeness
> ui(Al-) = UL(A]),Vl,] EN

* Question: For an allocation A, which of the following is always true?
a) Ais proportional = A is envy-free
b) Ais envy-free = A is proportional
c) Both (equivalent)
Neither (incomparable)
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Proportionality and Envy-Freeness

* Proportionality

> ui(Al-) > Uu; (% M) =%-ui(M), VieN

* Envy-freeness
> ui(Al-) = UL(A]),Vl,] EN

* Question: For a complete allocation A, which of the following is always true?

A is proportional = A is envy-free
A is envy-free = A is proportional

c) Both (equivalent)
d) Neither (incomparable)
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The Core
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The Core

e Resource-scaling version

> “No group of agents S should be able to find any allocation B of their

proportionally entitled share of the resources that is a Pareto improvement”

S|

> AS C N,MM - B :ui(Bl') > ui(Ai),Vi €S

* Utility-scaling version

> “No group of agents S should be able to find any allocation B of the resources
that is a Pareto improvement even after proportional utility-scaling”

S|

> 4SS N,M - B :m-ui(Bl-) > u;(4;),ViEeS

* Comparison

» The two versions are equivalent for our example setting
» But they’re different when utilities aren’t linear additive

> Resource-scaling version may not be defined if there is no “scalable” resource, but
when defined, it’s often more appealing
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Nash Social Welfare

 Nash Social Welfare

1
> NSW(A) = ([lieny wi(4)) /W
» Geometric mean of agent utilities
» Often more appealing fairness guarantees than other popular welfare functions

o Utilitarian social welfare: USW(4) = ﬁ Yien Ui(4;)

o Egalitarian social welfare: ESW(A) = min u; (4;)
l

 Theorem [Varian ‘74]:

> Any allocation maximizing the Nash social welfare is envy-free and in the core.

e Theorem [Orlin “10]:

> An allocation maximizing the Nash social welfare can be computed in strongly
polynomial time.
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Core > Committee Selection

* Setup
> Set of voters N, set of candidates M
» Each agent i approves a subset of candidates 4; & M
o ForanyW € M, u;(W) = |W n A;| (“number of candidates | approve”)
> Goal: Find W € M with |W| < k (where k is given)

e Resource-scaling version
> W isin the core if...

> thereisnoS € Nand T € M with |[T| < % k such that...
> ul-(T) > ui(W), Vies

* Open question: Does a committee in the core always exist?
» A variety of constant approximations provably exist even in more general settings
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Advantages

Key advantages of social choice fairness criteria

Broadly defined

» Often depend only on the definition of who the agents are and what their
preferences are

> Applicable to any setting as long as you define these two pieces of information

They respect the preferences of the agents to whom we wish to be fair
> As a consequence, they are often defined beyond just binary decisions

Notions such as the core achieve group fairness to all possible groups
> No need to pre-specify the groups

» The strength of the guarantee scales automatically with the group size and
cohesiveness, without having to subjectively choose free parameter values

Fairness in Al/ML via Social Choice




Envy-Freeness in ML



Classification

 Model
> Population of individuals given by a distribution D over X

o Individual i represented using data point x; € X
> Classifier f: X — Y maps every individual to a classification outcome

* Types of classification outcomes
> Hard binary classification: Y = {0,1}
» Hard multiclass classification: |[Y| =p > 2
» Soft binary classification: Y = [0,1]
» Soft multiclass classification: Y € RP, p > 2
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Classification

* Objective of the principal: minimize the loss E,..p [f(x,f(x))]
> If f(x) is a distribution, £(x, f(x)) = Ey~roolf(x, y)]

 Utility function u: XXY — R
> Utility to individual i is u(x;, f(x;))

* Fairness is often modeled as a constraint that uses the utility function u
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Individual Fairness

[Dwork, Hardt, Pitassi, Reingold, Zemel, 2012]

“Similar individuals should be treated similarly”

Classifier f is individual fair if:
Vx,y €N, D(f(x), f(»)) < d(x,y)
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Individual Fairness

[Dwork, Hardt, Pitassi, Reingold, Zemel, 2012]

“Similar individuals should be treated similarly”

Classifier f is individual fair if:
Vx,y €N, D(f(x), f(»)) < d(x,y)
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Envy-Freeness

[Balcan, Dick, Noothigattu, Procaccia, 2019]

“Equal individuals shouldn’t envy each other”

Classifier f is envy-free if:

vx,y €N, uy(f(x)) = ue(f ()

jdl ®
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Envy-Freeness

[Balcan, Dick, Noothigattu, Procaccia, 2019]

* Observation: Envy-freeness is too strong for deterministic classifiers
» Loss of optimal deterministic EF classifier > 1

Utilities Losses

1 0 0 1 0 0

g 1/ Y 1 0 M
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Envy-Freeness

[Balcan, Dick, Noothigattu, Procaccia, 2019]

* Observation: Envy-freeness is too strong for deterministic classifiers
> Loss of optimal randomized EF classifier < 1/,

Fairness in Al/ML via Social Choice
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Preference-Informed IF

[Kim, Korolova, Rothblum, Yona, 2019]

“Similar individuals shouldn’t envy each other too much”

Classifier f is PIIF if:
Vx,y €EN,3z€Y,D(z f(¥)) < d(x,y) A (f(x)) = uy(z)

—

cv

jdl ®

Fairness in Al/ML via Social Choice




Approximate EF

“Equal individuals shouldn’t envy each other too much”

Classifier f is approximately EF if:
vVx,y €N, ux(f(x)) 2 ux(f()’)) — €

jdl ®
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Approximate EF

“Similar individuals shouldn’t envy each other too much”

Classifier f is approximately EF if:
Vx,y €N, ux(f(x)) = ux(f()’)) —d(x,y)

Fairness in Al/ML via Social Choice



Average Group Envy-Freeness

[Hossain, Mladenovic, S, 2020]

“Equal groups shouldn’t envy each other too much on average”

Classifier f is apx. average group EF w.r.t. groups G1 and G, if:

Ex~g, y~G, [ux(f(Y)) — ux(f(x))] <0

* Applicable for decision-making with limited resources
» E.g., deciding on loan or bail applications
» Envy cannot be prevented

* Can be imposed for several pairs of groups simultaneously

> # training samples needed depends on the complexity of the family of classifiers
and log(#pairs of groups)
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Average Group Envy-Freeness

[Hossain, Mladenovic, S, 2020]

”

“Equal groups shouldn’t envy each other too much on average

Classifier f is apx. average group EF w.r.t. groups G1 and G, if:

Ex~g, y~G, [ux(f(Y)) — ux(f(x))] <0

* Extends various traditional ML fairness definitions
> G, G, groups based on a sensitive attribute
‘+’ deserves positive treatment (utility 1), " does not
Demographic parity: (G,,, Gp), (G, G,)
Equal opportunity: (G, G/), (G5, G)
Equalized odds: (G}, GJ"), (G., G}), (G, G), (G, Gy)

Average group EF extends these notions from the limited case of binary
classification + binary utilities to the general case

vV VYV V V VY
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Envy-Freeness = Groups Revisited

[Ustun, Liu, Parkes, 2019]

(>

&

|

'H
4
+ 34

When different groups require different treatments

* |dea: Train a different classifier for each group

* Problem: It may harm groups from which we do not have sufficient data

* Goal: Collectively train decoupled classifiers (one for each group) such that
each group prefers (in the average envy-freeness sense) its own classifier to

> A pooled classifier that ignores group membership (individual rationality)
> The classifier assigned to any other group (envy-freeness)
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Envy-Freeness = Groups Revisited

[Ustun, Liu, Parkes, 2019]

ho
male female
h 3

young old young old

hq ho

* Example with three groups: (male, young), (male, old), (female)
> No group should prefer flo or the classifier of another group to their own

* Generalization: #training samples needed depends on the complexity of the
family of classifiers and log(#pairs of groups)
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Envy-Freeness = Recommendations
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Envy-Freeness = Recommendations

[Do, Corbett-Davies, Atif, Usunier, 2023]

Model

> Individuals represented by data points in set X
» Asetitems?Y

» A set of contexts C

Recommendation policy
> 1, (y|c) = probability of recommending item y to user x given a context ¢

Utility function: u,(my) = Ecc,, yorm (o) [Vx(V]C)]

Envy-freeness: Vx,x' € X, u,(my) = uy(m,r) — ¢
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Envy-Freeness = Recommendations
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Two-Sided Fairness in Recommendations

[Biswas, Patro, Ganguly, Gummadi, Chakraborty, 2023]

Many-to-many matching
> Each user is recommended k products
» Each product may be recommended to a different number of users

Relevance of products to users given by V: XXY - R

Recommendation policy
» Each user x is recommended ,, € Y with |, | = k
> Let Y, be the top-k products for user x by relevance

Utilities
ZyETL'x V(x!y)
ZyETE;E V(x!y)

> Utility to user x given by u,(m,) =

> Utility to product y given by E,, (1), the number of users y is exposed to

Fairness in Al/ML via Social Choice




Two-Sided Fairness in Recommendations

[Biswas, Patro, Ganguly, Gummadi, Chakraborty, 2023]

* Two-sided fairness
> Fairness for users: envy-freeness up to one (EF1)
Vx,x' € X,3y € My Uy (y) = uy (s \ {¥})
> Fairness for products: minimum exposure E
Vy €Y, E,(m) = E

* Theorem: There exists an efficient algorithm that achieves EF1 among all
users and the minimum exposure guarantee among at least m — k products.

* Future directions: Fairness to products in terms of the relevance,
asymmetric entitlements of users
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Two-Sided Fairness in Recommendations

[Freeman, M, S, 2021]

Many-to-many matching
> Each user is recommended k products
» Each product is recommended to k users

Relevance of products to users given by V: XXY - R

Recommendation policy
» Each user x is recommended ,, € Y with |, | = k

> Each product y is recommended to 7, © X with |T[y| =k

Utilities
> Utility to user x given by u, () = Yyer, V(X, ¥)
> Utility to product y given by u,, (ny) = erny V(x,y)
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Two-Sided Fairness in Recommendations

[Freeman, M, S, 2021]

e Two-sided fairness

> Fairness for users: envy-freeness up to one (EF1)
Vx,x" € X,3y € myr: uy(my) = up(myr \ {y})
> Fairness for products: envy-freeness up to one (EF1)
Vy,y' €Y,3x € my;: uy(ny) > uy(ny, \ {x})
* Theorem: When each side agrees on the ranking of the other side by

relevance, a policy that is EF1 w.r.t. both users and products exists and can
be computed efficiently.

* Open question: Does a policy that is EF1 w.r.t. both sides always exist?

* Future directions: Non-stationary recommendations, different entitlements
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Non-Centroid Clustering

* Goal: Partition the agents into k clusters, i.e., C = (Cy, ..., Ci)
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Non-Centroid Clustering

* Goal: Partition the agents into k clusters, i.e., C = (Cy, ..., Ci)
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Non-Centroid Clustering

[Ahmadi, Awasthi, Khuller, Kleindessner, Morgenstern, Sukprasert, Vakilian, 2022]
[Aamand, Chen, Liu, Silwal, Sukprasert, Vakilian, Zhang, 2023]

* Model
> Set of agents N partitioned into C = (Cy, ..., Cy)
> Cluster containing agent i denoted by C (i)
» Distance metricd: NXN - R,

. a—Envy—freeness: Foreachi € Nandj € [k] with i & C;, either C(i) = {i} or

COTT o ST v, 1)

* Theorem: A 1-envy-free clustering does not always exist, but an O (1)-envy-
free clustering always does (and can be computed efficiently).
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Non-Centroid Clustering

[Li, M, Nikolov, S, 2023]

* Model
> Set of agents N partitioned into C = (Cy, ..., Cy)

> Cluster containing agent i denoted by C (i)
> Binary costs d: NXN — {0,1}

* Theorem: There exists a balanced clustering (|C(i)| = |C(j)| £ 1, Vi, ) such
that for all i € N and j € [k], Eyrec(p A (i, i) < Ejre, d(0, i) + 0("/x)-

* If we divide by the sizes of the clusters (= "/}.), then the additive term
becomes 0(1)
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Nash Social Welfare in ML



Multi-Armed Bandits

251 Uz Us Uk

p = argmaxjeg) Kj

O —

Exploration vs Exploitation

Regret: Ry = Tu* — X1, u(t)
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Multi-Agent Multi-Armed Bandits

[Hossain, M, S, 2021]

Wi = argmax;eg Wi = argmax;eix)ti;

O=—- O=—

(=~ Uy = argmax;e[xin;

|
N agents

What is a fair policy?
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Multi-Agent Multi-Armed Bandits

[Hossain, M, S, 2021]

 Distribution p = [p4, ..., px] gives expected reward Zﬁl pj - Uij toagenti

* Maximizing welfare functions
a) Utilitarian welfare Z?’:lZ;{:l Dj* Uij pd =1

- K
eN Z]_lp] Hij

c) Nash welfare [TV, Z]’.‘;lpj © Wij pi = 2/3

* Regret: Ry = NSW (p", 1) — Xi=1 NSW (p(0), 1)

* Theorem: A variation of UCB achieves the optimal @(\/T) regret

> Regret bound and computation improved by subsequent work [Jones, Nguyen,
Nguyen, 2023]
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Fair Exploration

[Barman, Khan, Maiti, Sawarni, 2023]

Karms
)

[ |
o G
W= argmaxjeg) 1j
T 0 T "
M
1 2 3 T-1 T

Agent t arrives at time t

We chose distribution P, which gives the agent utility Ej_.p, [uj]

Regret: Ry = u™ — (HE;lEj,pt [/,tj])l/T

Theorem: A variation of UCB achieves near-optimal regret in terms of T
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Fair Exploration

[Baek, Farias, 2021]

K arms
I\
[ |
- —
- 34 L B

W= argmaxjex) 4j

* Agent t arrives at time t and belongs to group g;, where g = g w.p. pg

* Policy: choose arm a; at time t

» Regret for group g: us(mw) = ZtE[T]:gFg(M* - .Uat)
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Fair Exploration

[Baek, Farias, 2021]

Karms
)

[ |
o G
W= argmaxjeg) 1j
T 0 T "
M
1 2 3 T-1 T

- Utility to group g: u9(m) = R7(n°) — R (1), where n° is the policy
minimizing the overall regret (“default” or “outside” option)

* Nash social welfare objective: NSW () = [, u9(m)

* Theorem: A version of UCB exactly optimizes this NSW objective.
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Classification

[Krishnaswamy, Jiang, Wang, Cheng, Munagala, 2021]

e Standard Notion of Fairness: Statistical Parity or Equalized odds
x=0

'+
+
1

Can every group of individuals be treated at least as well as it can be classified in itself?
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Classification

[Krishnaswamy, Jiang, Wang, Cheng, Munagala, 2021]

Utility of an individual: u; (f) = 1[f(x;) = y;]

ege 1
 Utility of a group: us(f) = ml YiesUi (f)

*  Optimal Classifier for a group: f§' = argmaxscrus(f)
* Best-effort Guarantees
* Return f such that ug(f) = a - us(f5), witha < 1, foreach S € N
* Observation: No imperfect classifier f provides any reasonable guarantee to best-effort

e LletS={ieN:f(x;) #y;}anduy,(fs) =1

Randomized Classifiers: Let Df be a distribution over F
« w;(Dy) = Efp lu;(f)]

+ us(Df) = 1 Bies Epen (]
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Classification

[Krishnaswamy, Jiang, Wang, Cheng, Munagala, 2021]

e  Theorem: There is an instance in which there is no distribution Df over classifiers

such that for all S € N with u,(f5) =1, uS(Df) > I|1flll

D¥SW = Argmaxp ca(r) [lien wi(Df )

e Theorem:

1. Foreverygroup S € N that admits a perfect classifier, uS(Df SW) > INI

2. Forevery group S € N, uS(Df WY > 151 = [us(f)]?

Fairness in Al/ML via Social Choice
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Fair Rankings for Products

[Saito, Joachims, 2022]

X
s y
- Vxy = ~T

1 - k=1 k

@ - e(k): probability of exposure at position k

Recommendation Policy: (y, x, k) probability y to exposed at position k in x’s ranking

Utility of item for a policy: u, (1) = X ex ZLyzll V(ix,y) - e(k) n(y, x k)

NSW: arxgmax; [1yey u, () s. t.
Zyey n(y,x, k) =1,Vx,k;

. Lyzlln(y, x, k) =1,Vy,k;

Theorem (informal): NSW achieves Pareto optimality and approximates envy-freeness
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Core in ML



Federated Learning

> A <> RN
S H'ﬂ' S
. él ég -
6 0 [
éz é4- n
D o : 0 ¢ =

 Goal: Choose fg: R > R fromF = {fg: 8 € P € R%}
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Federated Learning

— P
S5 Dimiom H‘.'..’.' b -
. él ég -
6 0 [
éz é4- n
=T 6 6 —J~ D
bs : =

 Goal: Choose fg: R > R fromF = {fg: 8 € P € R%}
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Federated Learning

[Chaudhury, Li, Kang, Li, Mehta, 2022]

Utility of each agent:
* w(0) =M — Egyy)-p,; [£i(fo(x), )]
* Goal: Choose 6 that is fair for all agents
* Core: A parameter vector 0 € P isin the coreif forall ' € P and S € N, it holds

S . . o .
u;(0) = ﬁui(e’) for all i € S, with at lost one strict inequality

e Pareto Optimality: A parameter vector @ € P is Pareto Optimal if there exists no 8’ € P
such that u;(6") = u;(0) for all i € N, with at lost one strict inequality

* Proportionality: A parameter vector 8 € P is proportionally fair if for all 8’ € P, it holds

u;(8) = %@l) foralli € N

Fairness in Al/ML via Social Choice




Federated Learning

[Chaudhury, Li, Kang, Li, Mehta, 2022]
 Theorem: When the agents’ utilities are continuous and the set of maximizers of any

conical combination of the agents’ utilities is convex, a parameter vector 8 € P in the
core always exists

* Theorem: When the agents’ utilities are concave, then the parameter vector 6 € P
that maximizes the NSW is in the core

maximize [[;cy u;(6) maximize };;cy log(u;(60))

subjectto 8 € P subjectto 8 € P

Fairness in Al/ML via Social Choice




Clustering
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Clustering in ML

e Goal:
> Analyze data sets to summarize their characteristics
> Objects in the same group are similar

Fairness in Al/ML via Social Choice




Clustering in Economics

e Goal:

> Allocate a set of facilities that serve a set of agents (e.g. hospitals)

@&,@ i
{r}
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Centroid Clustering

* Input:
» Set N of n data points
» Set M of m feasible cluster centers
> Vi,j € NUM :we have d(i,j) (which forms a Metric Space)
e d(i,i)=0,ViENUM
« d(i,j)=d(j,i),Vi,j ENUM
o d(i,j) <d(i,?)+d(£,j),Vij€€NUM, (Triangle Inequality)
* Output:
» Aset C €M of k centers, i.e. C = {cq, ..., Cx }
» Each data point is assigned to its closest cluster center

e C(i) = argmin e d(i,c)

Fairness in Al/ML via Social Choice




Famous-Objective Functions

e k-median: Minimizes the sum of the distances
+ min Tien d(@ CQD))
|C|<sk

. k-means: Minimizes the sum of the square of the distances
° . 2 . .
min ey (1, C(1))
|C|<sk

e [k-center: Minimizes the maximum distance
e min maxd(i, C(i
min ma; (i, C(1))
|C|<sk
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Fairness in Clustering

[Chen, Fain, Lyu, Munagala, 2019]

e Fair Clustering through Proportional Entitlement:
» Every group of n/k agents “deserves” its own cluster center

e Definition in Committee Selection: W is in the core if

ForallS € Nand TS M

If |S| = |T|- n/k (large)

Then, |A; nW| = |A; N T|forsomei €S

“If a group can afford T, then T should not be a (strict) Pareto improvement for
the group”

YV VY

e Definition in Clustering: C is in the core if

Forall§ € Nand y & M

If |S| = n/k (large)

Then, d(i,C(i)) < d(i,y) forsomei € S

“If a group can afford a center y, then y should not be a (strict) Pareto
improvement for the group”

Y VVY
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Core in Centroid Clustering

[Chen, Fain, Lyu, Munagala, 2019]

Example
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Core in Centroid Clustering

[Chen, Fain, Lyu, Munagala, 2019]

Example
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Core in Centroid Clustering

[Chen, Fain, Lyu, Munagala, 2019]

Example

k=2
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Core in Centroid Clustering

[Chen, Fain, Lyu, Munagala, 2019]

Example
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Core in Centroid Clustering

[Chen, Fain, Lyu, Munagala, 2019]

Example

o
g
o

k=2
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Core in Centroid Clustering
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Core in Centroid Clustering

[Chen, Fain, Lyu, Munagala, 2019]

e Aclustering solution in the core does not always exist

a-Core:
A solution Cis in the a-core, with a = 1 if there is no group of
points S €N with |S|=n/k and y € M such that:

VieS, a-d(i,y) <d(i,C(i))
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Core in Centroid Clustering

[Chen, Fain, Lyu, Munagala, 2019]
[M, S, 2020]

* Theorem [Chen et al.]:
* There exists an algorithm called, Greedy Capture, that returns a clustering solution

in the (1 + \/i)—core under any metric space
* For arbitrary metric spaces and a < 2, a clustering solution in the a-core is not
guaranteed to exist

* Theorem [M and S]:
 For L,, Greedy Capture returns a clustering solution in the 2-core
* ForL; and L, Greedy Capture does not always return a clustering solution in the

a-core, witha < 1 ++/2
* For L, and a < 1.154, a clustering solution in the a-core is not guaranteed to exist
e ForL;and L, and a < 1.4, a clustering solution in the a-core is not guaranteed to

exist

Fairness in Al/ML via Social Choice




Core vs Classic Objectives

Fairness in Al/ML via Social Choice



Non-Centroid Clustering

* Input:
» Set N of n data points
»>Vi,j € NUM :we have d(i,j) (which forms a Metric Space)
c d(i,i)=0,VYieENUM
* d(i,j)=4d(,i),Vij ENUM
e d(i,j) <d(i,?) +d(£,j),Vij,€€NUM, (Triangle Inequality)
* Output:
» Partition the individuals into k clusters, i.e. C = {C4, ..., Cy}

e Loss for Each Cluster:
»ForSC Nandi€S, £,(5)=0
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Core in Non-Centroid Clustering

[Caragiannis, M, S, 2023]

a-Core: A solution Cisin the a-core, with a = 1, if there is no group of points S €N
with |S|= n/k such that:

Vi € S,4;(S) < £;(C())

Average Loss: Foreach SS N, £;(S) = ﬁ Diresd(i, i)

e Theorem:
* Greedy Capture returns a clustering solution in the (n/k)-core under any metric
space

* For arbitrary metric spaces and a < 1.366, a clustering solution in the a-core is not
guaranteed to exist

Open Question: Does a clustering solution in the O(1)-core always exist?
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Core vs Envy-Freeness

1000 T -,
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Thank you!

Questions?
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