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Disclaimers

• Focused on conceptual applications
Ø No proofs

• Covers many different settings
Ø Can’t define them all super formally

• Covers multidisciplinary work
Ø Simplifications galore
Ø (And possible errors)
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Why fairness?
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Aggregating individual preferences into “good” collective decisions

Social Choice Theory
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• Introduction
Ø Fairness in social choice

• Envy-freeness
Ø Classification, recommender systems, clustering 

• Nash social welfare
Ø Multi-armed bandits, rankings, classification

• Core
Ø Federated learning, clustering

Outline
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Fairness in Social Choice



• Set of agents 𝑁

• Set of divisible resources 𝑀

• Each agent 𝑖 ∈ 𝑁 has an additive linear 
utility function 𝑢!: 2" → ℝ
Ø For 𝑋 ∈ 0,1 !, 𝑢" 𝑋 = ∑#∈! 𝑢",# ⋅ 𝑋#

• Non-negative utilities 𝑢!,$ ≥ 0 vs non-
positive utilities 𝑢!,$ ≤ 0 (i.e., costs)
Ø Often stronger results for the former in 

social choice, but the latter more 
prevalent in ML

Example: Allocating Divisible Resources
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• Allocation 𝐴
Ø 𝐴",# = fraction of good 𝑔 allocated to agent 𝑖
Ø ∑" 𝐴",# ≤ 1, ∀𝑔 ∈ 𝑀
Ø Complete allocation: ∑" 𝐴",# = 1 , ∀𝑔 ∈ 𝑀

• Utility to agent 𝑖 under allocation 𝐴 is 𝑢!(𝐴!)
Ø But for various fairness definitions, other 

terms such as 𝑢" 𝐴& , 𝑢"(∪&∈' 𝐴&), etc. may 
also matter

Example: Allocating Divisible Resources
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𝑢	 	
≥ 𝑢	 	≥ 𝑢	 	

𝑢	 	

Proportionality

Entitlements

Allocation

𝑢	 	
≥ 𝑢	 	
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Envy-Freeness

Entitlements

Allocation

𝑢	 	 ≥ 𝑢	 	

𝑢	 	 ≥ 𝑢	 	
… …
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• Proportionality
Ø “My utility for my allocation should be at least as much as my utility for my 

entitled (equal) share of the resources”

Ø 𝑢" 𝐴" ≥ 𝑢"
(
)
⋅ 𝑀 = (

)
⋅ 𝑢" 𝑀 , ∀𝑖 ∈ 𝑁

• Envy-freeness
Ø “My utility for my allocation should be at least as much as my utility for anyone 

else’s allocation”
Ø 𝑢" 𝐴" ≥ 𝑢" 𝐴& , ∀𝑖, 𝑗 ∈ 𝑁

Proportionality and Envy-Freeness
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• Proportionality

Ø 𝑢" 𝐴" ≥ 𝑢"
(
)
⋅ 𝑀 = (

)
⋅ 𝑢" 𝑀 , ∀𝑖 ∈ 𝑁

• Envy-freeness
Ø 𝑢" 𝐴" ≥ 𝑢" 𝐴& , ∀𝑖, 𝑗 ∈ 𝑁

• Question: For an allocation 𝐴, which of the following is always true?
a) 𝐴 is proportional ⇒ 𝐴 is envy-free
b) 𝐴 is envy-free ⇒ 𝐴 is proportional
c) Both (equivalent)
d) Neither (incomparable)

Proportionality and Envy-Freeness
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• Proportionality

Ø 𝑢" 𝐴" ≥ 𝑢"
(
)
⋅ 𝑀 = (

)
⋅ 𝑢" 𝑀 , ∀𝑖 ∈ 𝑁

• Envy-freeness
Ø 𝑢" 𝐴" ≥ 𝑢" 𝐴& , ∀𝑖, 𝑗 ∈ 𝑁

• Question: For a complete allocation 𝐴, which of the following is always true?
a) 𝐴 is proportional ⇒ 𝐴 is envy-free
b) 𝐴 is envy-free ⇒ 𝐴 is proportional
c) Both (equivalent)
d) Neither (incomparable)

Proportionality and Envy-Freeness
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The Core

Any groups can 
redistribute its
entitlements

Redistributed 
entitlements shouldn’t 
be a Pareto improvement

Entitlements

Allocation
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• Resource-scaling version
Ø “No group of agents 𝑆 should be able to find any allocation 𝐵 of their 

proportionally entitled share of the resources that is a Pareto improvement”

Ø ∄𝑆 ⊆ 𝑁, '
*
⋅ 𝑀 → 𝐵	:	𝑢" 𝐵" > 𝑢" 𝐴" , ∀𝑖 ∈ 𝑆

• Utility-scaling version
Ø “No group of agents 𝑆 should be able to find any allocation 𝐵 of the resources 

that is a Pareto improvement even after proportional utility-scaling”

Ø ∄𝑆 ⊆ 𝑁,𝑀 → 𝐵	: '
*
⋅ 𝑢" 𝐵" > 𝑢" 𝐴" , ∀𝑖 ∈ 𝑆

• Comparison
Ø The two versions are equivalent for our example setting
Ø But they’re different when utilities aren’t linear additive
Ø Resource-scaling version may not be defined if there is no “scalable” resource, but 

when defined, it’s often more appealing

The Core
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• Nash Social Welfare
Ø NSW 𝐴 = ∏"∈* 𝑢" 𝐴" +! "  
Ø Geometric mean of agent utilities
Ø Often more appealing fairness guarantees than other popular welfare functions

o Utilitarian social welfare: USW 𝐴 = (
*
⋅ ∑"∈* 𝑢" 𝐴"

o Egalitarian social welfare: ESW 𝐴 = min
"∈*

𝑢" 𝐴"

• Theorem [Varian ‘74]:
Ø Any allocation maximizing the Nash social welfare is envy-free and in the core.

• Theorem [Orlin ‘10]:
Ø An allocation maximizing the Nash social welfare can be computed in strongly 

polynomial time.

Nash Social Welfare
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• Setup
Ø Set of voters 𝑁, set of candidates 𝑀
Ø Each agent 𝑖 approves a subset of candidates 𝐴" ⊆ 𝑀
o For any 𝑊 ⊆ 𝑀, 𝑢" 𝑊 = 𝑊 ∩ 𝐴"  (“number of candidates I approve”)

Ø Goal: Find 𝑊 ⊆ 𝑀 with 𝑊 ≤ 𝑘 (where 𝑘 is given)

• Resource-scaling version
Ø 𝑊 is in the core if…

Ø there is no 𝑆 ⊆ 𝑁 and 𝑇 ⊆ 𝑀 with 𝑇 ≤ '
*
⋅ 𝑘 such that…

Ø 𝑢" 𝑇 > 𝑢" 𝑊 ,∀𝑖 ∈ 𝑆

• Open question: Does a committee in the core always exist?
Ø A variety of constant approximations provably exist even in more general settings

Core ⇒ Committee Selection
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• Key advantages of social choice fairness criteria

• Broadly defined
Ø Often depend only on the definition of who the agents are and what their 

preferences are
Ø Applicable to any setting as long as you define these two pieces of information

• They respect the preferences of the agents to whom we wish to be fair
Ø As a consequence, they are often defined beyond just binary decisions

• Notions such as the core achieve group fairness to all possible groups
Ø No need to pre-specify the groups
Ø The strength of the guarantee scales automatically with the group size and 

cohesiveness, without having to subjectively choose free parameter values

Advantages
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Envy-Freeness in ML



• Model
Ø Population of individuals given by a distribution 𝐷 over 𝑋
o Individual 𝑖 represented using data point 𝑥" ∈ 𝑋

Ø Classifier 𝑓: 𝑋 → 𝑌 maps every individual to a classification outcome

• Types of classification outcomes
Ø Hard binary classification: 𝑌 = {0,1}
Ø Hard multiclass classification: 𝑌 = 𝑝 > 2
Ø Soft binary classification: 𝑌 = [0,1]
Ø Soft multiclass classification: 𝑌 ∈ ℝ,, 𝑝 > 2

Classification
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• Objective of the principal: minimize the loss 𝔼%∼' ℓ 𝑥, 𝑓 𝑥
Ø If 𝑓(𝑥) is a distribution, ℓ 𝑥, 𝑓 𝑥 = 𝔼-∼/ 0 ℓ 𝑥, 𝑦

• Utility function 𝑢: 𝑋×𝑌 → ℝ()
Ø Utility to individual 𝑖 is 𝑢 𝑥" , 𝑓 𝑥"

• Fairness is often modeled as a constraint that uses the utility function 𝑢

Classification
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Individual Fairness

	“Similar individuals should be treated similarly”

Classifier f is individual fair if:
∀𝑥, 𝑦 ∈ 𝑁, 𝐷 𝑓 𝑥 , 𝑓 𝑦 ≤ 𝑑(𝑥, 𝑦) 

[Dwork, Hardt, Pitassi, Reingold, Zemel, 2012]
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Individual Fairness

	“Similar individuals should be treated similarly”

Classifier f is individual fair if:
∀𝑥, 𝑦 ∈ 𝑁, 𝐷 𝑓 𝑥 , 𝑓 𝑦 ≤ 𝑑(𝑥, 𝑦) 

[Dwork, Hardt, Pitassi, Reingold, Zemel, 2012]
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Envy-Freeness

	“Equal individuals shouldn’t envy each other”

Classifier f is envy-free if:
∀𝑥, 𝑦 ∈ 𝑁,  𝑢% 𝑓 𝑥 ≥ 𝑢% 𝑓 𝑦

[Balcan, Dick, Noothigattu, Procaccia, 2019]
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• Observation: Envy-freeness is too strong for deterministic classifiers
Ø Loss of optimal deterministic EF classifier ≥ 1 

Envy-Freeness
[Balcan, Dick, Noothigattu, Procaccia, 2019]

1
(1/γ)

0 𝟎
(1-1/γ)

1/γ 1 0

Utilities Losses

1
(1/γ)

0 𝟎
(1-1/γ)

0 1 1
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• Observation: Envy-freeness is too strong for deterministic classifiers
Ø Loss of optimal randomized EF classifier ≤ ⁄( 1 

Envy-Freeness
[Balcan, Dick, Noothigattu, Procaccia, 2019]

1
(1/γ)

0 𝟎
(1-1/γ)
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Utilities Losses

1
(1/γ)

0 𝟎
(1-1/γ)
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Preference-Informed IF

	“Similar individuals shouldn’t envy each other too much”

Classifier f is PIIF if:
∀𝑥, 𝑦 ∈ 𝑁, ∃𝑧 ∈ 𝑌, 𝐷 𝑧, 𝑓 𝑦 ≤ 𝑑(𝑥, 𝑦) ∧ 𝑢% 𝑓 𝑥 ≥ 𝑢% 𝑧

[Kim, Korolova, Rothblum, Yona, 2019]
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Approximate EF

	“Equal individuals shouldn’t envy each other too much”

Classifier f is approximately EF if:
∀𝑥, 𝑦 ∈ 𝑁,  𝑢% 𝑓 𝑥 ≥ 𝑢% 𝑓 𝑦 − 𝜀
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Approximate EF

	“Similar individuals shouldn’t envy each other too much”

Classifier f is approximately EF if:
∀𝑥, 𝑦 ∈ 𝑁,  𝑢% 𝑓 𝑥 ≥ 𝑢% 𝑓 𝑦 − 𝑑(𝑥, 𝑦)
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• Applicable for decision-making with limited resources
Ø E.g., deciding on loan or bail applications
Ø Envy cannot be prevented

• Can be imposed for several pairs of groups simultaneously
Ø # training samples needed depends on the complexity of the family of classifiers 

and log(#pairs of groups)

Average Group Envy-Freeness

“Equal groups shouldn’t envy each other too much on average”

Classifier f is apx. average group EF w.r.t. groups 𝐺* and 𝐺+ if:
𝔼%∼,!,-∼," 𝑢% 𝑓 𝑦 − 𝑢% 𝑓 𝑥 ≤ 0

[Hossain, Mladenovic, S, 2020]
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• Extends various traditional ML fairness definitions
Ø 𝐺2 , 𝐺3 groups based on a sensitive attribute
Ø ‘+’ deserves positive treatment (utility 1), ‘-’ does not
Ø Demographic parity: 𝐺3 , 𝐺2 , (𝐺2 , 𝐺3)
Ø Equal opportunity: 𝐺34, 𝐺24 , (𝐺24, 𝐺34)
Ø Equalized odds: 𝐺34, 𝐺24 , (𝐺24, 𝐺34), 𝐺35, 𝐺25 , (𝐺25, 𝐺35)
Ø Average group EF extends these notions from the limited case of binary 

classification + binary utilities to the general case

Average Group Envy-Freeness

“Equal groups shouldn’t envy each other too much on average”

Classifier f is apx. average group EF w.r.t. groups 𝐺* and 𝐺+ if:
𝔼%∼,!,-∼," 𝑢% 𝑓 𝑦 − 𝑢% 𝑓 𝑥 ≤ 0

[Hossain, Mladenovic, S, 2020]
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• Idea: Train a different classifier for each group

• Problem: It may harm groups from which we do not have sufficient data

• Goal: Collectively train decoupled classifiers (one for each group) such that 
each group prefers (in the average envy-freeness sense) its own classifier to
Ø A pooled classifier that ignores group membership (individual rationality) 
Ø The classifier assigned to any other group (envy-freeness)

Envy-Freeness ⇒ Groups Revisited
[Ustun, Liu, Parkes, 2019]

When different groups require different treatments
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• Example with three groups: (male, young), (male, old), (female)
Ø No group should prefer _ℎ6 or the classifier of another group to their own

• Generalization: #training samples needed depends on the complexity of the 
family of classifiers and log(#pairs of groups)

Envy-Freeness ⇒ Groups Revisited
[Ustun, Liu, Parkes, 2019]
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Envy-Freeness ⇒ Recommendations
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• Model
Ø Individuals represented by data points in set 𝑋
Ø A set items 𝑌
Ø A set of contexts 𝐶

• Recommendation policy 𝜋
Ø 𝜋0 𝑦 𝑐  = probability of recommending item 𝑦 to user 𝑥 given a context 𝑐

• Utility function: 𝑢% 𝜋% = 𝔼.∼/#,-∼0$(⋅|.) 𝑣% 𝑦 𝑐 	

• Envy-freeness: ∀𝑥, 𝑥5 ∈ 𝑋, 𝑢% 𝜋% ≥ 𝑢% 𝜋%% − 𝜀

Envy-Freeness ⇒ Recommendations
[Do, Corbett-Davies, Atif, Usunier, 2023]
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Envy-Freeness ⇒ Recommendations
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• Many-to-many matching
Ø Each user is recommended 𝑘 products
Ø Each product may be recommended to a different number of users

• Relevance of products to users given by 𝑉: 𝑋×𝑌 → ℝ

• Recommendation policy 𝜋
Ø Each user 𝑥 is recommended 𝜋0 ⊆ 𝑌 with |𝜋0| = 𝑘
Ø Let 𝑌0∗ be the top-k products for user 𝑥 by relevance

• Utilities

Ø Utility to user 𝑥 given by 𝑢0 𝜋0 =
∑#∈%& 9(0,-)
∑#∈%&∗ 9(0,-)

Ø Utility to product 𝑦 given by 𝐸-(𝜋), the number of users 𝑦 is exposed to

Two-Sided Fairness in Recommendations
[Biswas, Patro, Ganguly, Gummadi, Chakraborty, 2023]

Fairness in AI/ML via Social Choice 38



• Two-sided fairness

Ø Fairness for users: envy-freeness up to one (EF1)

∀𝑥, 𝑥< ∈ 𝑋, ∃𝑦 ∈ 𝜋0(: 	𝑢0 𝜋0 ≥ 𝑢0 𝜋0( ∖ {𝑦}

Ø Fairness for products: minimum exposure h𝐸

                  ∀𝑦 ∈ 𝑌, 𝐸-(𝜋)	≥ h𝐸

• Theorem: There exists an efficient algorithm that achieves EF1 among all 
users and the minimum exposure guarantee among at least 𝑚 − 𝑘 products.

• Future directions: Fairness to products in terms of the relevance, 
asymmetric entitlements of users

Two-Sided Fairness in Recommendations
[Biswas, Patro, Ganguly, Gummadi, Chakraborty, 2023]
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• Many-to-many matching
Ø Each user is recommended 𝑘 products
Ø Each product is recommended to 𝑘 users

• Relevance of products to users given by 𝑉: 𝑋×𝑌 → ℝ

• Recommendation policy 𝜋
Ø Each user 𝑥 is recommended 𝜋0 ⊆ 𝑌 with |𝜋0| = 𝑘
Ø Each product 𝑦 is recommended to 𝜋- ⊆ 𝑋 with 𝜋- = 𝑘

• Utilities
Ø Utility to user 𝑥 given by 𝑢0 𝜋0 = ∑-∈=& 𝑉(𝑥, 𝑦)
Ø Utility to product 𝑦 given by 𝑢- 𝜋- = ∑>∈=)𝑉(𝑥, 𝑦)

Two-Sided Fairness in Recommendations
[Freeman, M, S, 2021]
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• Two-sided fairness

Ø Fairness for users: envy-freeness up to one (EF1)

∀𝑥, 𝑥< ∈ 𝑋, ∃𝑦 ∈ 𝜋0(: 	𝑢0 𝜋0 ≥ 𝑢0 𝜋0( ∖ {𝑦}

Ø Fairness for products: envy-freeness up to one (EF1)

               ∀y, y< ∈ Y, ∃𝑥 ∈ 𝜋-: 	𝑢? 𝜋? ≥ 𝑢? 𝜋-< ∖ {𝑥}

• Theorem: When each side agrees on the ranking of the other side by 
relevance, a policy that is EF1 w.r.t. both users and products exists and can 
be computed efficiently. 

• Open question: Does a policy that is EF1 w.r.t. both sides always exist?

• Future directions: Non-stationary recommendations, different entitlements

Two-Sided Fairness in Recommendations
[Freeman, M, S, 2021]
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• Goal: Partition the agents into 𝑘 clusters, i.e., 𝐶 = (𝐶*, … , 𝐶6)

Non-Centroid Clustering
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Non-Centroid Clustering

• Goal: Partition the agents into 𝑘 clusters, i.e., 𝐶 = (𝐶*, … , 𝐶6)
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• Model
Ø Set of agents 𝑁 partitioned into 𝐶 = (𝐶(, … , 𝐶@)
Ø Cluster containing agent 𝑖 denoted by 𝐶(𝑖)
Ø Distance metric 𝑑:𝑁×𝑁 → ℝA6

• 𝛼-Envy-freeness: For each 𝑖 ∈ 𝑁 and 𝑗 ∈ [𝑘] with 𝑖 ∉ 𝐶7, either 𝐶 𝑖 = {𝑖} or
1

𝐶 𝑖 − 1p"(∈B "
𝑑(𝑖, 𝑖<) ≤

𝛼
|𝐶&|

p
"(∈B*

𝑑(𝑖, 𝑖<)

• Theorem: A 1-envy-free clustering does not always exist, but an 𝑂(1)-envy-
free clustering always does (and can be computed efficiently).

Non-Centroid Clustering
[Ahmadi, Awasthi, Khuller, Kleindessner,  Morgenstern, Sukprasert, Vakilian, 2022]

[Aamand, Chen, Liu, Silwal, Sukprasert, Vakilian, Zhang,  2023]
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• Model
Ø Set of agents 𝑁 partitioned into 𝐶 = (𝐶(, … , 𝐶@)
Ø Cluster containing agent 𝑖 denoted by 𝐶(𝑖)
Ø Binary costs 𝑑:𝑁×𝑁 → {0,1}

• Theorem: There exists a balanced clustering ( 𝐶 𝑖 = 𝐶 𝑗 ± 1, ∀𝑖, 𝑗) such 
that for all 𝑖 ∈ 𝑁 and 𝑗 ∈ [𝑘], ∑!%∈/ ! 𝑑(𝑖, 𝑖5) ≤ ∑!%∈/& 𝑑 𝑖, 𝑖5 + X𝑂 ⁄9 6 .

• If we divide by the sizes of the clusters ≈ ⁄9 6 , then the additive term 
becomes 𝑜(1)

Non-Centroid Clustering
[Li, M, Nikolov, S, 2023]
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Nash Social Welfare in ML



K arms

𝜇∗ = 𝑎𝑟𝑔𝑚𝑎𝑥(∈[+]	 𝜇(

Exploration vs Exploitation

Regret: 𝑅: = 𝑇𝜇∗ − ∑<=*: 𝜇(𝑡)

…………

𝜇! 𝜇" 𝜇# 𝜇$

Multi-Armed Bandits
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K arms

𝝁𝟏𝟏

𝝁𝟐𝟏
⋮
𝝁𝑵𝟏

…

𝑵 agents

𝝁𝟏𝟐

𝝁𝟐𝟐
⋮
𝝁𝑵𝟐

𝝁𝟏𝟑

𝝁𝟐𝟑
⋮
𝝁𝑵𝟑

𝝁𝟏𝑲

𝝁𝟐𝑲
⋮

𝝁𝑵𝑲

𝜇!∗ = 𝑎𝑟𝑔𝑚𝑎𝑥+∈[$]𝜇!+ 𝜇/∗ = 𝑎𝑟𝑔𝑚𝑎𝑥+∈[$]𝜇/+ 𝜇0∗ = 𝑎𝑟𝑔𝑚𝑎𝑥+∈[$]𝜇0+

What is a fair policy?

Multi-Agent Multi-Armed Bandits
[Hossain, M, S, 2021]

…

Fairness in AI/ML via Social Choice 48



• Distribution 𝑝 = [𝑝*, … , 𝑝>] gives expected reward ∑7=*> 𝑝7 a 𝜇!7 to agent 𝑖

• Maximizing welfare functions

a) Utilitarian welfare ∑"C(* ∑&C(D 𝑝& r 𝜇"&

b) Egalitarian welfare min
"∈*

∑&C(D 𝑝& ⋅ 𝜇"&

c) Nash welfare ∏𝒊C𝟏
𝑵 ∑𝒋C𝟏𝑲 𝒑𝒋 r 𝝁𝒊𝒋

• Regret: 𝑅: = 𝑁𝑆𝑊(𝑝∗, 𝜇) − ∑<=*: 𝑁𝑆𝑊(𝑝 𝑡 , 𝜇)

• Theorem: A variation of UCB achieves the optimal Θ 𝑇  regret
Ø Regret bound and computation improved by subsequent work [Jones, Nguyen, 

Nguyen, 2023]

Multi-Agent Multi-Armed Bandits

1
1
0

0
0
1

𝑝(J = 1

𝑝(2 = 1/2

𝑝KJ = 0

𝑝K2 = 1/2

𝑝(L = 2/3 𝑝KL = 1/3

[Hossain, M, S, 2021]
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• Agent 𝑡 arrives at time 𝑡

• We chose distribution 𝑃<, which gives the agent utility 𝐸7∽@- 𝜇7

• Regret: 𝑅: = 𝜇∗ − ΠA=*B 𝐸7∽@- 𝜇7
*/:

• Theorem: A variation of UCB achieves near-optimal regret in terms of 𝑇

Fair Exploration
[Barman, Khan, Maiti, Sawarni, 2023]

K arms

.  .  . 

.  .  . 

1 2 3

𝜇∗ = 𝑎𝑟𝑔𝑚𝑎𝑥&∈[D]	𝜇&

T-1 T
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• Agent 𝑡 arrives at time 𝑡 and belongs to group 𝑔<, where 𝑔< = 𝑔 w.p. 𝑝$
• Policy: choose arm 𝑎< at time 𝑡
• Regret for group 𝑔:  𝑢:

$ 𝜋 = ∑<∈ : :$-=$ 𝜇
∗ − 𝜇E-

Fair Exploration
[Baek, Farias, 2021]

K arms

.  .  . 

.  .  . 

1 2 3

𝜇∗ = 𝑎𝑟𝑔𝑚𝑎𝑥&∈[D]	𝜇&

T-1 T
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• Utility to group 𝑔: 𝑢$ 𝜋 = 𝑅:
$ 𝜋) − 𝑅:

$ 𝜋 , where 𝜋) is the policy 
minimizing the overall regret (“default” or “outside” option)

• Nash social welfare objective: 𝑁𝑆𝑊 𝜋 = ∏$𝑢$ 𝜋
• Theorem: A version of UCB exactly optimizes this NSW objective.

Fair Exploration
[Baek, Farias, 2021]

K arms

.  .  . 

.  .  . 

1 2 3

𝜇∗ = 𝑎𝑟𝑔𝑚𝑎𝑥&∈[D]	𝜇&

T-1 T
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• Standard Notion of Fairness: Statistical Parity or Equalized odds

Can every group of individuals be treated at least as well as it can be classified in itself?

Classification
[Krishnaswamy, Jiang, Wang, Cheng, Munagala, 2021]
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• Utility of an individual: 𝑢" 𝑓 =	𝕝[𝑓(𝑥") = 	𝑦"]

• Utility of a group: 𝑢' 𝑓 = (
'
	∑"∈' 𝑢" (𝑓)

• Optimal Classifier for a group: 𝑓'∗ = 𝑎𝑟𝑔𝑚𝑎𝑥/∈O𝑢'(𝑓)

• Best-effort Guarantees

• Return 𝑓 such that 𝑢' 𝑓 ≥ 𝛼 ⋅ 𝑢'(𝑓'∗), with 𝛼 ≤ 1, for each 𝑆 ⊆ 𝑁

• Observation: No imperfect classifier 𝑓 provides any reasonable guarantee to best-effort 

• Let 𝑆 = {𝑖 ∈ 𝑁: 𝑓 𝑥" ≠ 𝑦"} and 𝑢P 𝑓'∗ = 1

• Randomized Classifiers: Let 𝐷/ be a distribution over F

• 𝑢" 𝐷/ = 𝔼/~R+[𝑢"(𝑓)]  

• 𝑢' 𝐷/ = (
'
	∑"∈'𝔼/~R+[𝑢" 𝑓 ]

Classification
[Krishnaswamy, Jiang, Wang, Cheng, Munagala, 2021]
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• Theorem: There is an instance in which there is no distribution 𝐷/ over classifiers 

such that for all 𝑆 ⊆ 𝑁 with 𝑢P 𝑓'∗ = 1, 𝑢P 𝐷/ > '
|*|

• 𝑫𝒇𝑵𝑺𝑾 = 𝒂𝒓𝒈𝒎𝒂𝒙𝑫𝒇∈𝚫(𝑭)∏𝒊∈𝑵𝒖𝒊(𝑫𝒇 )

• Theorem: 

1. For every group 𝑆 ⊆ 𝑁 that admits a perfect classifier, 𝑢' 𝐷/*'Z ≥ '
|*|

2. For every group 𝑆 ⊆ 𝑁, 𝑢' 𝐷/*'Z ≥ '
*
𝑢' 𝑓'∗ K

 

Classification
[Krishnaswamy, Jiang, Wang, Cheng, Munagala, 2021]

Fairness in AI/ML via Social Choice 55



Rankings

Fairness in AI/ML via Social Choice 56



	 	 	 	 	 	 	 	 	 	

•  Recommendation Policy: 𝜋(𝑦, 𝑥, 𝑘) probability 𝑦 to exposed at position 𝑘 in 𝑥’s ranking

• Utility of item for a policy: 𝑢- 𝜋 = ∑0∈[∑@C(
|\| 𝑉(𝑥, 𝑦) ⋅ 𝑒 𝑘 ⋅ 𝜋(𝑦, 𝑥, 𝑘)		

• NSW: 𝑎𝑟𝑥𝑔𝑚𝑎𝑥=∏-∈\ 𝑢-(𝜋	) s. t.

• ∑-∈\ 𝜋 𝑦, 𝑥, 𝑘 = 1 , ∀𝑥, 𝑘; 

•  ∑@C(
|\| 𝜋 𝑦, 𝑥, 𝑘 = 1, ∀𝑦, 𝑘;  

• Theorem (informal): NSW achieves Pareto optimality and approximates envy-freeness

𝑥 𝑦
𝑉(𝑥, 𝑦)

1 𝑘 − 1 𝑘… …

𝑒 𝑘 : 	probability of exposure at posigon	𝑘

Fair Rankings for Products
[Saito, Joachims, 2022]
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Core in ML



• Goal: Choose 𝑓F: 	ℝG → ℝ   from 𝐹 = {𝑓F: 	𝜃 ∈ 𝑃 ⊆ ℝG} 

∽ 𝐷*

∽ 𝐷H

∽ 𝐷+ 

∽ 𝐷I

𝜃H

𝜃H

𝜃H

𝜃H

𝜃H

o𝜃* o𝜃H

o𝜃+ o𝜃I

Federated Learning
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• Goal: Choose 𝑓F: 	ℝG → ℝ   from 𝐹 = {𝑓F: 	𝜃 ∈ 𝑃 ⊆ ℝG} 

𝜃H

𝜃H

𝜃H

𝜃H

𝜃H

o𝜃* o𝜃H

o𝜃+ o𝜃I

∽ 𝐷*

∽ 𝐷H

∽ 𝐷+ 

∽ 𝐷I

Federated Learning
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• Utility of each agent:  

• 𝑢" 𝜃 = 𝑀 − 𝔼 0,- ∽R-	[ℓ"(𝑓 𝑥 , 𝑦)]

• Goal: Choose 𝜃 that is fair for all agents

• Core: A parameter vector 𝜃 ∈ 𝑃 is in the core if for all 𝜃′ ∈ 𝑃 and 𝑆 ⊆ 𝑁, it holds 

𝑢" 𝜃 ≥ '
|*|
𝑢" 𝜃<  for all 𝑖 ∈ 𝑆, with at lost one strict inequality

• Pareto Optimality: A parameter vector 𝜃 ∈ 𝑃 is Pareto Optimal if there exists no 𝜃′ ∈ 𝑃 

such that 𝑢" 𝜃′ ≥ 𝑢" 𝜃  for all 𝑖 ∈ 𝑁, with at lost one strict inequality

• Proportionality: A parameter vector 𝜃 ∈ 𝑃 is proportionally fair if for all  𝜃′ ∈ 𝑃, it holds  

𝑢" 𝜃 ≥ _- ^(

|*|
  for all 𝑖 ∈ 𝑁

Federated Learning
[Chaudhury, Li, Kang, Li, Mehta, 2022]
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• Theorem:	When  the agents’ utilities are continuous and the set of maximizers of any 
conical combination of the agents’ utilities is convex, a parameter vector  𝜃 ∈ 𝑃	in the 
core always exists

• Theorem:	When  the agents’ utilities are concave, then the parameter vector  𝜃 ∈ 𝑃	
that maximizes  the NSW is in the core

   
    maximize ∏"∈* 𝑢"(𝜃)   maximize ∑"∈* log(𝑢"(𝜃))
     
    subject to 𝜃 ∈ 𝑃	    subject to 𝜃 ∈ 𝑃	

Federated Learning
[Chaudhury, Li, Kang, Li, Mehta, 2022]
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Clustering
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• Goal:
Ø Analyze data sets to summarize their characteristics
Ø Objects in the same group are similar

Clustering in ML
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• Goal:
Ø Allocate a set of facilities that serve a set of agents (e.g. hospitals)

Clustering in Economics
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• Input:
Ø Set 𝑁 of 𝑛 data points
Ø Set 𝑀 of 𝑚 feasible cluster centers
Ø ∀𝑖, 𝑗 ∈ 𝑁 ∪𝑀	: we have 𝑑 𝑖, 𝑗 	(which forms a Metric Space)

• 𝒅(𝒊, 𝒊) = 𝟎, ∀	𝑖 ∈ 𝑁 ∪𝑀 
• 𝒅 𝒊, 𝒋 = 𝒅(𝒋, 𝒊), ∀	𝑖, 𝑗	 ∈ 𝑁 ∪𝑀
• 𝒅 𝒊, 𝒋 ≤ 𝒅 𝒊, ℓ + 𝒅 ℓ, 𝒋 , ∀	𝑖, 𝑗, ℓ ∈ 𝑁 ∪𝑀, (Triangle Inequality)

• Output:
Ø A set 𝐶 ⊆M of 𝑘 centers, i.e. 𝐶 = {𝑐(, … , 𝑐@} 
Ø Each data point is assigned to its closest cluster center

• 𝐶(𝑖) = 𝑎𝑟𝑔𝑚𝑖𝑛L∈B 	𝑑(𝑖, 𝑐)

Centroid Clustering
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• 𝑘-median: Minimizes the sum of the distances 
• min	

B⊆!:
B b@	

∑"∈* 𝑑(𝑖, 𝐶(𝑖))	

• 𝑘-means: Minimizes the sum of the square of the distances
• min	

B⊆!:
B b@	

∑"∈* 𝑑K(𝑖, 𝐶(𝑖))	

 
• 𝑘-center: Minimizes the maximum distance 

• min	
B⊆!:
B b@	

max
"∈*

 𝑑(𝑖, 𝐶(𝑖))

Famous-Objective Functions
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• Fair Clustering through Proportional Entitlement:
Ø Every group of n/k agents “deserves” its own cluster center

• Definition in Committee Selection:	𝑊	is in the core if 
Ø For all 𝑆	 ⊆ 	𝑁 and 𝑇 ⊆ 𝑀 
Ø If 𝑆 ≥ 𝑇 ⋅ 	𝑛/𝑘 (large) 
Ø Then, |𝐴+ ∩𝑊| ≥ |𝐴+ ∩ 𝑇| for some 𝑖 ∈ 𝑆 
Ø “If a group can afford 𝑇, then 𝑇 should not be a (strict) Pareto improvement for 

the group” 

• Definition in Clustering: 𝐶 is in the core if 
Ø For all 𝑆	 ⊆ 	𝑁 and 𝑦 ⊆ 𝑀 
Ø If 𝑆 ≥ 	𝑛/𝑘 (large) 
Ø Then, 𝑑 𝑖, 𝐶(𝑖) ≤ 𝑑 𝑖, 𝑦  for some 𝑖 ∈ 𝑆
Ø “If a group can afford a center	𝑦, then 𝑦 should not be a (strict) Pareto 

improvement for the group” 

Fairness in Clustering
[Chen, Fain, Lyu, Munagala, 2019]
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Core in Centroid Clustering
[Chen, Fain, Lyu, Munagala, 2019]
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[Chen, Fain, Lyu, Munagala, 2019]
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[Chen, Fain, Lyu, Munagala, 2019]
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Core in Centroid Clustering
[Chen, Fain, Lyu, Munagala, 2019]
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𝜶-Core: 
A solution C is in the 𝛼-core, with 𝛼 ≥ 1 if there is no group of 
points S ⊆N with |S|≥ 𝑛/𝑘 and 𝑦 ∈ 𝑀 such that:

∀𝑖 ∈ 𝑆, 𝛼 ⋅ 𝑑 𝑖, 𝑦 < 𝑑(𝑖, 𝐶(𝑖)) 

• A clustering solution in the core does not always exist

Core in Centroid Clustering
[Chen, Fain, Lyu, Munagala, 2019]
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• Theorem [Chen et al.]:  
• There exists an algorithm called, Greedy Capture, that returns a clustering solution 

in the 1 + 2 -core under any metric space
• For arbitrary metric spaces and 𝛼 < 2, a clustering solution in the 𝛼-core is not 

guaranteed to exist 

• Theorem [M and S]: 
• For 𝐿K, Greedy Capture returns a clustering solution in the 2-core
• For 𝐿( and 𝐿d, Greedy Capture does not always return a clustering solution in the 

𝛼-core, with 𝛼 < 1 + 2
• For 𝐿K	and 𝛼 < 1.154, a clustering solution in the 𝛼-core is not guaranteed to exist 
• For 𝐿( and 𝐿d, and 𝛼 < 1.4, a clustering solution in the 𝛼-core is not guaranteed to 

exist

Core in Centroid Clustering
[Chen, Fain, Lyu, Munagala, 2019]
[M, S, 2020]
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∞	 ∞	𝟏	

𝑘 = 3

Core vs Classic Objectives
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• Input:

ØSet 𝑁 of 𝑛 data points
Ø∀𝑖, 𝑗 ∈ 𝑁 ∪𝑀	: we have 𝑑 𝑖, 𝑗 	(which forms a Metric Space)

• 𝒅(𝒊, 𝒊) = 𝟎, ∀	𝑖 ∈ 𝑁 ∪𝑀 
• 𝒅 𝒊, 𝒋 = 𝒅(𝒋, 𝒊), ∀	𝑖, 𝑗	 ∈ 𝑁 ∪𝑀
• 𝒅 𝒊, 𝒋 ≤ 𝒅 𝒊, ℓ + 𝒅 ℓ, 𝒋 , ∀	𝑖, 𝑗, ℓ ∈ 𝑁 ∪𝑀, (Triangle Inequality)

• Output:

ØPartition the individuals into 𝑘 clusters, i.e. 𝐶 = {𝐶*, … , 𝐶6} 

• Loss for Each Cluster:
ØFor 𝑆 ⊆ 𝑁 and 𝑖 ∈ S, ℓ! 𝑆 ≥ 0

Non-Centroid Clustering
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• 𝜶-𝑪𝒐𝒓𝒆:	 A solution C is in the 𝛼-core, with 𝛼 ≥ 1, if there is no group of points S ⊆N 
with |S|≥ 𝑛/𝑘 such that:

∀𝑖 ∈ 𝑆, ℓ" 𝑆 < ℓ"(𝐶(𝑖)) 

• Average Loss: For each  S ⊆ 𝑁,  ℓ" 𝑆 = (
'
	∑"(∈' 𝑑(𝑖, 𝑖′)  

• Theorem: 
• Greedy Capture returns a clustering solution in the (𝑛/𝑘)-core under any metric 

space
• For arbitrary metric spaces and 𝛼 < 1.366, a clustering solution in the 𝛼-core is not 

guaranteed to exist 

• Open Question: Does a clustering solution in the 𝑂(1)-core always exist? 

Core in Non-Centroid Clustering
[Caragiannis, M, S, 2023]
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∞	 ∞	𝟏	

𝑘 = 3

Core vs Classic Objectives
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Thank you!

Questions?
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