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Complexity




Introduction to Complexity

* You have a problem at hand

* You try every technique known to humankind for finding a
polynomial time algorithm but fail.

* You try every technigue known to humankind for proving
that there cannot exist a polynomial time algorithm for your
problem but fail.

* What do you do?

> Prove that it is NP-complete, of course!
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Turing Machines

* “Which problems can a computer (not) solve in a certain
amount of time?”
> How do we mathematically define what a computer is?

e Alan Turing (“Father of Computer Science”), 1936
> Introduced a mathematical model
» “Turing machine”
> All present-day computers can be simulated by a Turing machine
» Fun fact: TMs can simulate quantum computers too, just inefficiently

373F21 - Nisarg Shah 3



Turing Machines

* We won’t formally introduce...but at a high level...

* Turing machine

» Tape
o Input is given on tape
o Intermediate computations can be written there
o Output must be written there

» Head pointer
o Initially pointing at start of input on tape

> Maintains an internal “state”

> A transition function describes how to change state, move head
pointer, and read/write symbols on tape
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Computability

e Church-Turing Thesis

> “Everything that is computable can be computed by a Turing
machine”

> Widely accepted, not “proven”

> There are problems which a Turing machine cannot solve, regardless
of the amount of time available

o E.g., the halting problem

* What about the problems we can solve? How do we define
the time required?
> Need to define an encoding of the input and output
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Encoding

 What can we write on the tape?
> S = a set of finite symbols
> §* =U,50S™ = set of all finite strings using symbols from S

* Input:w € S
> Length of input = |[w| = length of w on tape

* Output: f(w) € §*
> Length of output = |[f(w)]
> Decision problems: output = “YES” or “NO”
o E.g., “does there exist a flow of value at least 7 in this network?”
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Encoding

* Example:
> “Given aq, ay, ..., ay, compute »'i-; a;”
o Suppose we are told that a; < C for all i

> What |S]| should we use?

o S =1{0,1} (|S| = 2, binary representation)
 Length of input = 0(log, a; + --- + log, a,;) = O(nlog, C)

o What about 3-ary (|S| = 3) or 18-ary (|S| = 18)?
* Only changes the length by a constant factor, still O(nlog C)

o What about unary (conceptually, |S| = 1)?
* Length blows up exponentially to O(nC)

o Binary is already good enough, but unary isn’t
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Efficient Computability

* Polynomial-time computability

» A TM solves a problem in polynomial time if there is a polynomial p

such that on every instance of n-bit input and m-bit output, the TM
halts in at most p(n, m) steps

> Polynomial: n,n?,5n1%° + 100013, n10og!%% n = o(n1%°1)
> Non-polynomial: 27, 2V1 2log* n

e Extended Church-Turing Hypothesis

> “Everything that is efficiently computable is computable by a TM in
polynomial time”

> Much less widely accepted, especially today
> But in this course, efficient = polynomial-time
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P

* P (polynomial time)

> The class of all decision problems computable by a TM in polynomial
time

* Examples
> Addition, multiplication, square root
> Shortest paths
> Network flow
> Fast Fourier transform

» Checking if a given number is a prime
[Agrawal-Kayal-Saxena 2002]
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NP

* NP (nondeterministic polynomial time) intuition

» Subset sum problem:
Given an array {-7, -3, -2, 5, 8}, is there a zero-sum subset?

> Enumerating all subsets is exponential

> But...given {-3, -2, 5}, we can verify in polynomial time that it is
indeed a valid subset and has zero sum

> A nondeterministic Turing machine could “guess” the solution and
then test if it has zero sum in polynomial time
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NP

* NP (nondeterministic polynomial time)

> The class of all decision problems for which a YES answer can be
verified by a TM in polynomial time given polynomial length “advice”
or “witness”.

» There is a polynomial-time verifier TM V and another polynomial p
such that

o For all YES inputs x, there exists advice y with |y| = p(]x]) on
which V(x, y) returns YES

o For all NO inputs x, V(x, y) returns NO for every possible y

> Informally:
o When the answer is YES, there is a short proof of it.
o When the answer is NO, there is no short proof of it.
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co-NP

* co-NP
> Same as NP, except whenever the answer is NO, there is a short
proof of it

* Open gquestions
»> NP =co-NP?
> P=NP N co-NP?
> And...drum roll please...

P = NP?
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P versus NP

e Lance Fortnow in his article on P and NP in Communications
of the ACM, Sept 2009

ﬂ The P versus NP problem has gone \
from an interesting problem related to
logic to perhaps the most fundamental
and important mathematical question of
our time, whose importance only grows
as computers become more powerful

Qnd widespread.” /
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Millenium Problems

* Award of S1M for each problem by the Clay Math institute
1. Birch and Swinnerton-Dyer Conjecture

2. Hodge Conjecture

3. Navier-Stokes Equations

5. Poincare Conjecture (Solved)?!

6. Riemann Hypothesis

7/

Yang-Mills Theory

1Solved by Grigori Perelman (2003): Prize unclaimed
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Cook’s Conjecture

* Cook’s conjecture
> (And every sane person’s belief...)
> P islikely not equal to NP

* Why do we believe this?
> There is a large class of problems (NP-complete)
> By now, contains thousands and thousands of problems
» Each problem is the “hardest problem in NP”

> If you can efficiently solve any one of them, you can efficiently solve
every problem in NP

o Despite decades of effort, no polynomial time solution has been
found for any of them
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Reductions

* Decision problem A is p-reducible to decision problem B
(denoted A <, B) if there exists a polynomial-time TM that
can convert any instance of A into an instance of B with the
same answer
> An oracle for solving B efficiently can be used to solve A efficiently!

* Question: If A is p-reducible to B, then which of the
following is true?
a) If A cannot be solved efficiently, then neither can B.
b) If B cannot be solved efficiently, then neither can A.
c) Both.
d) None.
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Reductions

* Decision problem A is p-reducible to decision problem B
(denoted A <, B) if there exists a polynomial-time TM that
can convert any instance of A into an instance of B with the
same answer
> An oracle for solving B efficiently can be used to solve A efficiently!

* Question: If | want to prove that my problem X is “hard”, |
should:
a) Reduce my problem X to a known hard problem.
b) Reduce a known hard problem to my problem X.
c) Both.
d) None.
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NP-completeness

* NP-completeness

> A problem B is NP-complete if itis in NP and every problem A in NP
is p-reducible to B

> Hardest problems in NP

> If one of them can be solved efficiently, every problem in NP can be
solved efficiently, implying P=NP

e Observation:

> If Aisin NP, and some NP-complete problem B is p-reducible to A4,
then A is NP-complete too

o Every probleminNP <, B <, A
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NP-completeness

* But this uses an already known NP-complete problem to
prove another problem is NP-complete

* How do we find the first NP-complete problem?
> How do we know there are any NP-complete problems at all?
> Key result by Cook
> First NP-complete problem: SAT
o By a direct reduction from every problem in NP to SAT
o “From first principles”
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CNF Formulas

e Conjunctive normal form (CNF)

» Boolean variables x4, x5, ..., X,

» Their negations X1, X5, ..., Xp,

> Literal €: a variable or its negation

> Clause C = ¢4V ¥, V-V, isadisjunction of literals

> CNF formula ¢ = C; A Cy A--- A Cypy is @ conjunction of clauses
o kCNF: Each clause has at most k literals
o Exact kKCNF: Each clause has exactly k literals

> Example of (Exact) 3CNF

@ =1 VX VX3)A(X1 VX VX3)AN(X1VXyVXy)AN(X3VXgVXq)
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SAT and Exact 3SAT

 Example of (Exact) 3CNF
@® =1 VX VX3)AN(X1 VX VX3)AN(X1VXVXy)A(X3VXgVXq)

e “SAT” (Satisfiability) Problem:

» A CNF formula ¢ is satisfiable if there is an assignment of truth

values (TRUE/FALSE) to variables under which the formula evaluates
to TRUE

o That means, in each clause, at least one literal is TRUE
> SAT: “Given a CNF formula ¢, is it satisfiable?”
> Exact 3SAT: “Given an exact 3CNF formula ¢, is it satisfiable?”
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SAT and Exact 3SAT

e Cook-Levin Theorem
> SAT (and even Exact 3SAT) is NP-complete

* Doesn’t use any known NP-complete problem
> Directly reduces any given NP problem to SAT
> Reduction is a bit complex, so we’ll defer it until later

> But for now, let’s assume SAT and Exact 3SAT are NP-complete and
reduce them to other problems (and then those problems to other
problems...)
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Just A Tad Bit of History

[Cook 1971]

> Proved Exact 3SAT is NP-complete in seminal paper

[Karp 1972]

> Showed that 20 other problems are also NP-complete
> “Karp's 21 NP-complete problems”

> Renewed interest in this idea

1982: Cook wins the Turing award

1985: Karp wins the Turing award
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Polynomial-Time Reductions

constraint satisfaction

X AN 1

Dick Karp (1972)

X0
oK «&’:&i\‘( =3 1985 Turing Award
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Journal of Computational and Applied

Mathematics
16, 15 June 2011, Pages 4851-4865

Volume 235, Issue

Name of problem

Survey of polynomial transformations between
NP-complete problems

arra 98, Juan

Number Name of problem

Satisfiability (SAT) 2 3-Satishability (3SAT)
Clique (clique cover) 4 Vertex cover
Subset sum 6 Hitting string
I1‘;6_: 260 ‘—#258 - Chinese postman for mixed graphs 8 Graph colorability
- —~ |257»* :
(270) \ |259* |267P‘ \ 9 Three-Dimensional matching (3DM) 10 Rectilinear picture
¥ Sre — o compression
11 Tableau equivalence 12 Consistency of databases
frequency tables
13 Hamiltonian Circuit (Directed Hamiltonian path, 14 Independent set
Undirected Hamiltonian path)
15 Setbasis 16 Hitting set
/ "" \
/ o [:254:] 17 Comparative containment 18 Multiple copy file
A | ‘ r251| (25)14) A ~— )
, 21 )( 79 20 (17)] —> (139) allocation
> | ‘ 19 ) i
Sl & -~ - 19 Shortest common supersequence 20 Longest common
— X @72) | ( 18 J ( 86 ) |\A9f ;
( ) N, - - oy subsequence
o 1 37 ) ( 1 31
St — <o 21 Minimum cardinality key 22 Partition
~—(32) 1129}'
S . .
( 33 ) g 123' 23 Kth largest subset 24 Capacity assignment
A —~—
(34 ] ‘127 > 25 Conjunctive Boolean query 26 Exact cover by 3-sets (X3C)
=
\ Y357 | P —
Ys 3}5 1,?.6" "80 \ "273-. 27 Minimum test set 28 3-Matroid intersection
| 51 :| 29 3-Partition 30 Numerical three-
. dimensional matching
- it f . ° °
RE * 1 1 2 ( :‘160‘: o [
83'82"81)50156[55' . .
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Complexity

NP-hard
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coNP—hard

NP-Complete
P=NP=
NP-Complete

Complexity

By Behnam Esfahbod, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=3532181




Reductions
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Independent Set

* Problem A
> Input: Undirected graph ¢ = (V,E), integer k
> Question: Does there exist a subset of vertices S € VV with |S| = k
such that for each edge, at most one of its endpointsisin S? P

Example: @ - independent set
* Does this graph have an
independent set of size 67
* Yes!
* Does this graph have an
independent set of size 77
* No!
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Independent Set

* Problem A
> Input: Undirected graph ¢ = (V,E), integer k
> Question: Does there exist a subset of vertices S € VV with |S| = k
such that for each edge, at most one of its endpointsisin S? P

Example: @ - independent set
* Does this graph have an
independent set of size 67
* Yes!
* Does this graph have an
independent set of size 77
* No!
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Independent Set

[° Claim: Independent Set is in NP }

> Recall: We need to show that there is a polynomial-time algorithm
which

o Can accept every YES instance with the right polynomial-size advice
o Will not accept a NO instance with any advice

> Advice: the actual independent set S
> Algorithm: check if S is an independent set and if |S| = k
> Simple!
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Independent Set

[° Claim: Exact 3SAT <,, Independent Set ]

> Given a formula ¢ of Exact 3SAT with k clauses, construct an instance
(G, k) of Independent Set as follows

o Create 3 vertices for each clause (one for each literal)
o Connect them in a triangle
o Connect the vertex of each literal to each of its negations
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Independent Set

> Why does this work?
o Exact 3SAT = YES = Independent Set = YES
* From each clause, take any literal that is TRUE in the assignment
o Independent Set = YES =  Exact 3SAT = YES
* Independent set S must contain one vertex from each triangle
* No literal and its negation are both in §

* Set literals in S to TRUE, their negations to FALSE, and the rest to
arbitrary values
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Subset Sum

4 )
 Problem

> Input: Set of integers S = {wy, ..., w,,}, integer W

9 > Question: Is there S" € S that adds up to exactly W? y

 Example

> S =1{1,4,16,64,256,1040,1041,1093,1284, 1344}, W = 37547
> Yes!

ol+16+ 64+ 256 + 1040 + 1093 + 1284 = 3754
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Subset Sum

[° Claim: Subset Sum is in NP ]

> Recall: We need to show that there is a polynomial-time algorithm
which

o Can accept every YES instance with the right polynomial-size advice
o Will not accept a NO instance with any advice

> Advice: the actual subset S’
> Algorithm: check that S’ is indeed a subset of S and sums to W
> Simple!
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Subset Sum

[° Claim: Exact 3SAT <p Subset Sum ]

> Given a formula ¢ of Exact 3SAT, we want to construct (S, W) of Subset
Sum with the same answer

> In the table in the following slide:
o Columns are for variables and clauses
o Each row is a numberin S, represented in decimal

o Number for literal € : has 1 in its variable column and in the column
of every clause where that literal appears

e Number selected = literal set to TRUE

o “Dummy” rows: can help make the sum in a clause column 4 if and
only if at least one literal is set to TRUE
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Decimal

SUbset Sum representation

8 im: <
[ Claim: Exact 3SAT <, Subset Sum] --H---
X

- Y
C3=}V§VZ - Z

dummies to get
clause columns
to sum to 4

2 -
HOOOOOOOOOOHn—-
HOOOOOOOOHHO
'OOOOOOH =0 0O o0
HOOOON»—aO —_ O =
HOONHOOO —_ = O O
HNHOOOO'—- O = O - ON
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Subset Sum

* Note
> The Subset Sum instance we constructed has “large” numbers

o Their values are exponentially large (~10#vartables+#clauses)
o But the number of bits required to write them is polynomial

> Can we hope to construct Subset Sum instance with numbers whose
values are only poly(#variables, #clasuses) large?

o Unlikely, as that would prove P = NP!

o Like Knapsack, Subset Sum can be solved in pseudo-polynomial time
(i.e., in polynomial time if the numbers are only polynomially large in
value)
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Review of Reductions

* If you want to show that problem B is NP-complete

e Step 1: Show that Bisin NP

» Some polynomial-size advice should be sufficient to verify a YES
instance in polynomial time

> No advice should work for a NO instance

> Usually, the solution of the “search version” of the problem works
o But sometimes, the advice can be non-trivial

o For example, to check LP optimality, one possible advice is the
values of both primal and dual variables, as we saw in the last
lecture
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Review of Reductions

* If you want to show that problem B is NP-complete

e Step 2: Find a known NP-complete problem A and reduce it
to B (i.e., show A <), B)
> This means taking an arbitrary instance of A, and solving it in
polynomial time using an oracle for B

o Caution 1: Remember the direction. You are “reducing known NP-
complete problem to your current problem”.

o Caution 2: The size of the B-instances you construct should be
polynomial in the size of the original A-instance

> This would show that if B can be solved in polynomial time, then A
can be as well

> Some reductions are trivial, some are notoriously tricky...
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Binary Integer Linear
Programming (BILP)

* Problem
> Input: c € R",b € R™, A € R™" k € R
> Question: Does there exist x € {0,1}" such that cTx > k and Ax < b?

\_

> Decision variant of “maximize c” x subject to Ax < b” but instead of
any x € R™ with x > 0, we are restricting x to binary.

> Does restricting search space make the problem easier or harder?
o This is actually NP-complete!
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BILP Feasibility

* An even simpler problem
> Special case where ¢ = k = 0, so cTx > k is always true

(s Problem h
> Input: b € R™, 4 € R™"
. Question: Does there exist x € {0,1}"* such that Ax < b? )

> Just need to find a feasible solution
> This is still NP-complete!
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BILP Feasibility

[° Claim: BILP Feasibility is in NP ]

> Recall: We need to show that there is a polynomial-time algorithm
which

o Can accept every YES instance with the right polynomial-size advice
o Will not accept a NO instance with any advice

» Advice: simply a vector x satisfying Ax < b
> Algorithm: Check if Ax < b
> Simple!
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BILP Feasibility

[° Claim: Exact 3SAT <,, BILP Feasibility }

» Take any formula ¢ of Exact 3SAT

» Create a binary variable x; for each variable x; in ¢
o We’'ll represent its negation X; with 1 — x;

> For each clause C, we want at least one of its three literals to be TRUE
o Just make sure their sum is at least 1
oEg,C=xVi,Viz=2x1+(1—-x)+(1—x3)=>1

> Easy to check that
o this is a polynomial reduction
o Resulting system has a feasible solution if and only if ¢ is satisfiable
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[LP Feasibility

: )
 Problem
> Input: b € R™, 4 € R™*"
L Question: Does there exist x € Z" such that Ax < b? y

> To prove that this is NP-hard, there is an obvious reduction from BILP
feasibility to ILP feasibility

> What about membership in NP?

» Advice: simply a vector x satisfying Ax < b
> Algorithm: Check if Ax < b

> Simple?

o No, not clear if, in every YES instance, there’s a polynomial-length
“advice” vector x satisfying Ax < b

373F21 - Nisarg Shah




On the Complexity of Integer Programming

CHRISTOS H. PAPADIMITRIOU

Massachusetts Institute of Technology, Cambridge, Massachuselts,
and National Technical University, Athens, Greece

ABSTRACT. A simple proof that integer programming 1s in 4% 1s given. The proof also establishes that
there 1s a pseudopolynomial-ime algorithm for integer programming with any (fixed) number of
constraints.

KEY WORDS AND PHRASES: nteger linear programming, %, A7, pseudopolynomual algorithms

CR CATEGORIES" 525,5.3,54
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So far...

* To establish NP-completeness of problem B, we always
reduced Exact 3SAT to B

> But we can reduce any other problem A that we have already
established to be NP-complete

> Sometimes this might lead to a simpler reduction because A might
already be “similar” to B

* Let’s see an example!
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Vertex Cover

» Problem )
> Input: Undirected graph ¢ = (V,E), integer k
> Question: Does there exist a vertex cover of size k?

o That is, does there exist S € V with |S| = k such that every edge is
\_ incident to at least one vertexin S? )

Example: @ - vertex cover
* Does this graph have a
vertex cover of size 4?

* Yes!
* Does this graph have a
vertex cover of size 3?

* No!

373F21 - Nisarg Shah




Vertex Cover

» Problem )
> Input: Undirected graph ¢ = (V,E), integer k
> Question: Does there exist a vertex cover of size k?

o That is, does there exist S € V with |S| = k such that every edge is
\_ incident to at least one vertexin S? )

Question: @ - vertex cover
e Did we see this graph in

the last lecture? @ - independent set
* Yes!
* For independent set
of size 6
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Vertex Cover

» Problem )
> Input: Undirected graph ¢ = (V,E), integer k
> Question: Does there exist a vertex cover of size k?

o That is, does there exist S € V with |S| = k such that every edge is
\_ incident to at least one vertexin S? )

Question: @ - vertex cover
e Did we see this graph in

the last lecture? @ - independent set
* Yes!
* For independent set
of size 6
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Vertex Cover

* Vertex cover and independent set are intimately connected!

* Claim: G has a vertex cover of size k if and only if G has an
independent set of sizen — k

* Stronger claim: S is a vertex cover if and only if V\S is an
independent set
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Vertex Cover

* Claim: § is a vertex cover if and only if /'\S is an independent
set

* Proof:
> S is a vertex cover
> IFF: For every (u,v) € E, at least one of {u, v}isin S
> IFF: For every (u,v) € E, at most one of {u, v} isin VV\S
> IFF: No two vertices of V\S are connected by an edge
> IFF: V\S is an independent set m
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Vertex Cover
* Claim: Independent Set <,, Vertex Cover

> Take an arbitrary instance (G, k) of Independent Set

> We want to check if there is an independent set of size k
> Just convert it to the instance (G,n — k) of Vertex Cover
> Simple!

o A reduction from Exact 3SAT would have basically repeated the
reduction we already did for Exact 3SAT <,, Independent Set

> Note: | didn’t argue that Vertex Cover is in NP
o This is simple as usual. Just give the actual vertex cover as the advice.
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Set Cover

(e Problem B
> Input: A universe of elements U, a family of subsets S, and an integer k
7 Question: Do there exist k sets from S whose union is U? y
 Example

> U =1{1,2,3,4,56,7}

> S =1{{1,3,7},{2,4,6},{4,5}, {1},{1,2,6}}
> k =3?Yes! {{1,3,7},{4,5},{1,2,6}}

> k = 2? No!
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Set Cover

[° Claim: Set Cover is in NP ]

> Easy. Let the advice be the actual k sets whose union is U.

[ e Claim: Vertex Cover Sp Set Cover ]

> Given an instance of vertex cover with graph G = (V, E) and integer k,
create the following set cover instance

oSetU=E
o Foreach v € V, S contains a set §;, of all the edges incident on v

o Selecting k set whose union is U = selecting k vertices such that
union of their incident edges covers all edges

o Hence, the two problems obviously have the same answer
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Polynomial-Time Reductions

constraint satisfaction

X AN 1

Dick Karp (1972)

X0
oK «&’:&i\‘( =3 1985 Turing Award
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Cook-Levin Theorem

* We did not prove “the first NP-completeness” result

 Theorem: Exact 3SAT is NP-complete

> We need to prove this without using any other “known NP-complete”
problem

> We want to directly show that every problem in NP can be reduced to
Exact 3SAT

* We will first reduce any NP problem to SAT, and then reduce
SAT to Exact 3SAT
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Cook-Levin Theorem

* We’re not going to prove it in this class, but the key idea is
as follows

> If a problem is in NP, then 3 Turing machine T'(x, y) which
o takes as input a problem instance x and an advice y of size p(|x|)
o verifies in g(]x|) time whether x is a YES instance
o both p and g are polynomials

> x isa YES instance iff 3y T(x,y) = ACCEPT
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Cook-Levin Theorem

e xisaYESinstance iff 3y T(x,y) = ACCEPT

> We need to convert 3y T (x,y) = ACCEPT into whether a SAT
formula ¢ is satisfiable

e Recall that a Turing machine T consists of a memory tape, a
head pointer, a state, and a transition function

 What describes T at any given step of its computation?
> What is written in each cell of its memory tape?
> Which cell of the tape is the read/write head currently pointing to?
> What state is the Turing machine in?
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Cook-Levin Theorem

e xisaYESinstance iff 3y T(x,y) = ACCEPT

> We need to convert 3y T(x,y) = ACCEPT into 3z ¢(z) = TRUE,
where z consists of Boolean variables and ¢ is a SAT formula

e Variables:

> T; jx = True if machine’s tape cell i contains symbol j at step k of the
computation

> H; ;. = True if the machine’s read/write head is at tape cell i at step k
of the computation

> Qg x = True if machine is in state q at step k of the computation

> Cell index i and computation step k only need to be polynomially
large as T works in polynomial time
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Cook-Levin Theorem

x is a YES instance iff 3y T(x,y) = ACCEPT

> We need to convert 3y T(x,y) = ACCEPT into 3z ¢(z) = TRUE,
where z consists of Boolean variables and ¢ is a SAT formula

Clauses:

> Express how the variables must be related using the transition
function

> Express that the Turing machine must reach the state ACCEPT at
some step of the computation

This establishes that SAT is NP-complete.
Next: SAT <, Exact 35AT.
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Cook-Levin Theorem

e Claim: SAT <p Exact 3SAT

» Take an instance ¢ = C; A C, A --- of SAT
> Replace each clause with multiple clauses with exactly 3 literals each

» For a clause with one literal, C = #5:
o Add two variables z4, z,, and replace C with four clauses

(L1VZIVZ)ONELVZZVZ)NEVZIVZ) N1V ZLV Zy)
o Verify that this is logically equivalent to ¢4

» For a clause with two literals, C = (£1 V ¥5):
o Add variable z; and replace it with the following:

(P1VE,VzZ)NEL VL,V Z7)
o Verify that this is logically equal to (1 V £5)
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Cook-Levin Theorem

e Claim: SAT <p Exact 3SAT

> For a clause with three literals, C = 1V £, V £5:
o Perfect. No need to do anything!

» For a clause with 4 or more literals, C = (1 V¥,V -V ¥}):
o Add variables z4, z,, ..., z},_3 and replace it with:

(P1VE,VZ)NE3VZEVZ) N4V Zo VZ3) Ao
AN(Ex—2V Zg—aV Zi3) N (Eg—1 VOV Z_3)
o Check:
 If any ¥; is TRUE, then there exists an assignment of z variables
to make this TRUE
* If all £; are FALSE, then no assignment of z variables will make
this TRUE
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NP vs co-NP

 Complements of each other
> NP = short proof for YES, co-NP = short proof for NO

> If a problem “Does there exist...” is in NP, then its complement “Does
there not exist...” is in co-NP, and vice-versa

> The same goes for NP-complete and co-NP-complete

 Example
> SAT is NP-complete (“Does there exist x satisfying ¢?”)

o So “Does there exist no x satisfying ¢?”, i.e., “Is ¢ always FALSE?”
is coNP-complete

> Then, Tautology (“Is ¢ always TRUE?”) is also coNP-complete
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NP N co-NP

e Clearly, P € NP N co-NP
> No advice needed; can just solve the problem in polytime
> Major open question: Is P = NP N co-NP?

* NP N co-NP: Short proof of both YES and NO
» Hunt for problems not known in P but still in NP N co-NP
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NP N co-NP

* Linear programming
> [Gale—Kuhn—Tucker 1948]: LP is in NP N co-NP
> Question: max objective value = threshold?
> Proof of YES: Provide a feasible solution with objective = threshold
» Proof of NO: Provide optimal primal and dual solutions

Cuarrer XIX

LINEAR PROGRAMMING AND THE THEORY OF GAMES!
By Davip GaLe, Harorp W. KunN, aND ALBERT W. TUCKER *

The basic “scalar” problem of linear programming is to maximize (or
minimize) a linear function of several variables constrained by a system
of linear inequalities [Dantzig, IT]. A more general ‘‘vector” problem
calls for maximizing (in a sense of partial order) a system of linear func-
tions of several variables subject to a system of linear inequalities and,
perhaps, linear equations [Koopmans, IITI]. The purpose of this chapter
is to establish theorems of duality and existence for general “matrix”
problems of linear programming which contain the “scalar’” and “vector”
problems as special cases, and to relate these general problems to the
theory of zero-sum two-person games.
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NP N

co-NP

* Linear programming
> But later, Khachiyan [1979] proved that LP isin P
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NP N co-NP

* Primality testing (“Is n a prime?”)
> [Pratt 1975]: PRIMES is in NP N co-NP
> Proof of NO: Easy, provide a non-trivial factor
> Proof of YES: relies on interesting math
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EVERY PRIME HAS A SUCCINCT CERTIFICATE*

VAUGHAN R. PRATT*%

Abstract. To prove that a number n is composite, it suffices to exhibit the working for the multiplica-
tion of a pair of factors. This working, represented as a string, is of length bounded by a polynomial
in log, n. We show that the same property holds for the primes. It is noteworthy that almost no other
set is known to have the property that short proofs for membership or nonmembership exist for all
candidates without being known to have the property that such proofs are easy to come by. It remains
an open problem whether a prime n can be recognized in only log3 n operations of a Turing machine
for any fixed o.

The proof system used for certifying primes is as follows.

AxIoM. (x, y, 1).

INFERENCE RULES.

Ry: (p,x,a),q+ (p,x,qa) provided x*~ "4 % | (mod p) and g|(p — 1).
R,: (p,x,p— 1)~ p provided x*~! =1 (mod p).

THEOREM 1. p is a theorem = p is a prime.
THEOREM 2. p is a theorem > p has a proof of [4 log, p] lines.




NP N co-NP

* Primality testing (“Is n a prime?”)
> Later, Agrawal, Kayal, and Saxena [2004] proved that PRIMES is in P
o Milestone result!

Annals of Mathematics, 160 (2004), 781-793

PRIMES is in P

By MANINDRA AGRAWAL, NEERAJ KAYAL, and NITIN SAXENA™*

Abstract

We present an unconditional deterministic polynomial-time algorithm that
determines whether an input number is prime or composite.
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NP N co-NP

* Factoring (“Does n have a factor < k?”)
> FACTOR is in NP N co-NP

o Proof of YES: Just present such a factor

o Proof of NO:

* Present the entire prime factorization of n along with a short
proof that each presented factor is a prime

» Verifier TM can check that each factor is indeed a prime, their
product is indeed n, and none of the factorsis < k

* Actually, proofs of primality are not required anymore since
we know the TM can just run the AKS algorithm to check if
the factors are prime

373F21 - Nisarg Shah




NP N co-NP

* Factoring (“Does n have a factor < k?”)
» Major open question: Is FACTOR in P?
o Basis of several cryptographic procedures

> Challenge: Factor the following number.

74037563479561712828046796097429573142593188889231289
08493623263897276503402826627689199641962511784399589
43305021275853701189680982867331732731089309005525051
16877063299072396380786710086096962537934650563796359

RSA-704
(A $30,000 prize was claimed in 2012 for this)
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NP N co-NP

* Factoring (“Does n have a factor < k?”)

> [Shor 1994]: We can factor an n-bit integer in O(n®) steps on a
quantum computer.

> *Scalable* quantum computers can help
o 2001: Factored 15=3 x5
o 2012: Factored 21 =3x7
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Types of Reductions OUT OF SYLLABUS

+ A<, B
» Karp reductions

o Take an arbitrary instance of 4, and in polynomial time, construct
a single instance of B with the same answer

o Very restricted type of reduction
o The reduction we just constructed was a Karp reduction

> Turing/Cook reductions

o Take an arbitrary instance of A, and solve it by making
polynomially many calls to an oracle for solving B and some
polynomial-time extra computation

o Very general reduction (B doesn’t even have to be a decision
problem)

o In this course, we’ll use Karp reductions only

373F21 - Nisarg Shah




Complexity Classes OUT OF SYLLABUS

Based on the exact time complexity
> DTIME(n), NTIME(n?), ...
o Deterministic / nondeterministic time complexity

Based on space complexity
> DSPACE(n), NSPACE(logn)

Using randomization

> ZPP (expected polynomial time, no errors)
o Is P =ZPP?

Allowing probabilistic errors
> RP (polynomial time, one-sided error)
> BPP (polynomial time, two-sided erros)
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