CSC373

Weeks 4,5:
Dynamic Programming

Nisarg Shah

Recap

* Greedy Algorithms

Interval scheduling
Interval partitioning

>
>

> Minimizing lateness
> Huffman encoding
>

373F23 - Nisarg Shah 2

5.4 Warning: Greed is Stupid

If we're very very very very lucky, we can bypass all the recurrences and tables and so forth, and solve the
problem using a greedy algorithm. The general greedy strategy is look for the best first step, take it, and
then continue. While this approach seems very natural, it almost never works; optimization problems
that can be solved correctly by a greedy algorithm are very rare. Nevertheless, for many problems that
should be solved by dynamic programming, many students’ first intuition is to apply a greedy strategy.

For example, a greedy algorithm for the edit distance problem might look for the longest common
substring of the two strings, match up those substrings (since those substitutions don’t cost anything),
and then recursively look for the edit distances between the left halves and right halves of the strings.
If there is no common substring—that is, if the two strings have no characters in common—the edit
distance is clearly the length of the larger string. If this sounds like a stupid hack to you, pat yourself on
the back. It isn’t even close to the correct solution.

Everyone should tattoo the following sentence on the back of their hands, right under all the rules
about logarithms and big-Oh notation:

Greedy algorithms never work!

Use dynamic programming instead!

What, never?

No, never!

What, never?

Well. . . hardly ever.® Jeff Erickson on greedy algorithms...

373F23 - Nisarg Shah

The 1950s were not good years for mathematical research.
We had a very interesting gentleman in Washington named
Wilson. He was secretary of Defense, and he actually had a
pathological fear and hatred of the word ‘research’. I’'m not
using the term lightly; I’'m using it precisely. His face would
suffuse, he would turn red, and he would get violent if
people used the term ‘research’ in his presence. You can
imagine how he felt, then, about the term ‘mathematical’.
The RAND Corporation was employed by the Air Force, and
the Air Force had Wilson as its boss, essentially. Hence, | felt
I had to do something to shield Wilson and the Air Force
from the fact that | was really doing mathematics inside the
RAND Corporation. What title, what name, could | choose?

— Richard Bellman, on the origin of his term ‘dynamic
programming’ (1984)

Richard Bellman’s quote from Jeff Erickson’s book

373F23 - Nisarg Shah

Dynamic Programming

e Qutline

> Breaking the problem down into simpler subproblems, solve each
subproblem just once, and store their solutions.

> The next time the same subproblem occurs, instead of recomputing
its solution, simply look up its previously computed solution.

> Hopefully, we save a lot of computation at the expense of modest
increase in storage space.

> Also called “memoization”

* How is this different from divide & conquer?

373F23 - Nisarg Shah 5

Weighted Interval Scheduling
(Problem \

> Job j starts at time s; and finishes at time f;

> Each job j has a weight w;
> Two jobs are compatible if they don’t overlap
> Goal: find a set S of mutually compatible jobs with highest total weight

\ ZjESWj J

* Recall: If all w; = 1, then this is simply the interval scheduling
problem from last week

> Greedy algorithm based on earliest finish time ordering was optimal for
this case

373F23 - Nisarg Shah 6

Recall: Interval Scheduling

 What if we simply try to use it again?
> Fails spectacularly!

weight = 999 ——> b
weight = 1
weight=1 —— a /
» time
0 1 2 3 4 5 6 7 8 9 10 11

373F23 - Nisarg Shah 7

Weighted Interval Scheduling

 What if we use other orderings?
> By weight: choose jobs with highest w; first
> Maximum weight per time: choose jobs with highest w; /(f; — s;) first

> ...

* None of them work!
> They’re arbitrarily worse than the optimal solution

> In fact, under a certain formalization, “no greedy algorithm” can
produce any “decent approximation” in the worst case (beyond this
course!)

373F23 - Nisarg Shah 8

Weighted Interval Scheduling

* Convention
> Jobs are sorted by finish time: f; < o, <--- < f,
> plj] = largest i < j such thatjob iis compatible with job j (i.e., f; < s;)
o Jobs 1, ..., i are compatible with j, butjobsi + 1, ...,j — 1 aren’t
o p[j] can be computed via binary search

] i
i E.g.,
3

: p[8] =1,

® pl7] =3,
o pl2] =0,

7

8 > time

0 1 2 3 4 5 6 7 8 9 10 11

373F23 - Nisarg Shah 9

Weighted Interval Scheduling

 The DP approach
> Let OPT be an optimal solution
> Take cases based on the “last decision”
> Two options for job n:
o Option 1:Job nisin OPT
* OPT can’t use incompatible jobs {p[n] + 1, ...,n — 1}
* OPT must use an optimal subset of jobs from {1, ..., p[n]}
o Option 2:Job nis not in OPT
* OPT must use an optimal subset of jobs from {1, ...,n — 1}
> OPT must be the best of the two options
> Solve both subproblems, take the best

373F23 - Nisarg Shah

Weighted Interval Scheduling

* The DP approach
> OPT(j) = max total weight of compatible jobs from {1, ..., j}

> Base case: OPT(0) =0

> Two cases regarding job j:
o Job j is selected: optimal weight is w; + OPT (p|j])
o Job j is not selected: optimal weight is OPT(j — 1)

> Bellman equation:

o 0 ifj =0
OPTU) =1 max{ 0PT(j - 1), w; +OPT ([} ifj > 0

373F23 - Nisarg Shah

Brute Force Solution

BRUTE-FORCE (1, S1, -, Sns f15 «vvs fus W1, «ooy Wh)

IA
=

Sort jobs by finish time and renumber so that fi < f» < ...
Compute p[1], p[2], ..., p[n] via binary search.

RETURN COMPUTE-OPT(n).

COMPUTE-OPT()

IF (j=0)
RETURN O.
ELSE
RETURN max {COMPUTE-OPT(j—1), w;j + COMPUTE-OPT(p[j]) }.

373F23 - Nisarg Shah 12

Brute Force Solution

COMPUTE-OPT()

IF (j = 0)
RETURN O.
ELSE

RETURN max {COMPUTE-OPT(j—1), w; + COMPUTE-OPT(p[j]) }.

* Q: Worst-case running time of CoMPUTE-OPT(12)?
a 0On)
by O(nlogn)
o 0(1.618M)
o) 002"

373F23 - Nisarg Shah

Dynamic Programming

* Why is the runtime high?
> Only n possible inputs to the algorithm
» But some inputs are being solved again and again!

o E.g., if p|5] = 3, then Compute-OPT(5) calls Compute-OPT(4) and
Compute-OPT(3)

o But Compute-OPT(4) in turn calls Compute-OPT(3) again

* Memoization trick

> Simply remember what you’ve already computed, and re-use the
answer if needed in future

373F23 - Nisarg Shah

Dynamic Program: Top-Down

* Let’s store COMPUTE-OPT(j) in M|[j]

TOP-DOWN(n, S1, ...\ Sny f1y ooy fus Wi, ooy Wh)

Sort jobs by finish time and renumber so that fi < f» < ... < fa.
Compute p[1], p[2], ..., p[n] via binary search.

M[O] « (), «— global array

RETURN M-COMPUTE-OPT(n).

M-COMPUTE-OPT(j)

IF (M]j] 1s uninitialized)
M]j] < max { M-COMPUTE-OPT (j— 1), w; + M-COMPUTE-OPT(p[j]) }.

RETURN M| j].

373F23 - Nisarg Shah

Dynamic Program: Top-Down

* Claim: This memoized version takes O(nlogn) time
> Sorting by finish time: O(nlogn)
> Computing p[j]-s: O(nlogn)

> For each j, at most one of the calls to M-Compute-OPT(j) will make
two recursive calls to M-Compute-OPT

o At most O(n) total calls to M-Compute-OPT

o Every call to M-Compute-OPT takes O(1) time, not considering the
time spent within its recursive calls

o Hence, the initial call, M-Compute-OPT(n), finishes in O0(n) time

> Overall time is O(nlogn)

373F23 - Nisarg Shah

Dynamic Program: Bottom-Up

* Find an order in which to call the functions so that the sub-
solutions are ready when needed

BOTTOM-UP(1, S1, -\ Sns f1s «vvs frs Wiy oevy Wh)

Sort jobs by finish time and renumber so that fi < f2 < ... < f,.

IA
IA

Compute p[1], p[2], ..., pln].

M[O] < 0. previously computed values

FORj=1TOn / \

MIjl < max { M[j—11, w; + M[pljl] }.

373F23 - Nisarg Shah

Top-Down vs Bottom-Up

e Top-Down may be preferred...
> ...when not all sub-solutions need to be computed on some inputs

> ...because one does not need to think of the “right order” in which to
compute sub-solutions

* Bottom-Up may be preferred...
> ...when all sub-solutions will anyway need to be computed

> ...because it is faster as it prevents recursive call overheads and
unnecessary random memory accesses

> ...because sometimes we can free-up memory early
> ...makes the runtime analysis a bit easier to think about

373F23 - Nisarg Shah

Optimal Solution

* This approach gave us the optimal value

* What about the actual solution (subset of jobs)?
> Idea: Maintain the optimal value and an optimal solution
» S0, we compute two quantities:

. 0 ifj =0
OPT(j) = max{OPT(j — 1),w; + OPT(p[j])} ifj >0

(¢ ifj =0
s(H={ SG-1) ifj >0AOPT(j —1) =w; + OPT(pljD
LIUS®UD ifj >0A0PT(— 1) <w; + OPT(p[j])

373F23 - Nisarg Shah

Optimal Solution

0 ifj =0

OPT() = max{OPT(j — 1),w; + OPT(p[jD} ifj >0

(¢ ifj =0
s(H=4{ SG-1) ifj >0AOPT(j—1) =w; + OPT(pljD
LIUS®UD ifj >0A0PT(—1) <w; + OPT(p[j])

We can compute OPT and S
simultaneously, or compute
OPT first and then compute S.

This works with both top-down

and bottom-up implementations.

[Question: What is the overall running time and space complexity? J

373F23 - Nisarg Shah

Optimal Solution

0 ifj =0

OPT() = max{OPT(j — 1),w; + OPT(p[jD} ifj >0

(1 ifj =0
S()={N ifj>0A0PT({ —1)=w;+OPT(p[j]
Y ifj>0A0PT(G—1)<w;+ OPT (p[j])

\

* Save space by storing only one bit per j = which option was used

* To reconstruct the optimal solution, start withj = n
> IfS(j) = N,updatej «j—1
» IfS(j) =Y, add j to the solution and update j « p|[j]
> Ifj =0, stop

373F23 - Nisarg Shah

Optimal Substructure Property

* Dynamic programming applies well to problems that have
optimal substructure property

» Optimal solution to a problem can be computed easily given optimal
solution to subproblems

e Recall: divide-and-conquer also uses this property

> Divide-and-conquer is a special case in which the subproblems don’t
“overlap”

> So, there’s no need for memoization

> In dynamic programming, two of the subproblems may in turn
require access to solution to the same subproblem

373F23 - Nisarg Shah

Knapsack Problem
(Problem)

» n items: item i provides value v; > 0 and has weight w; > 0

> Knapsack has weight capacity W
» Assumption: W, v;-s, and w;-s are all integers
> Goal: pack the knapsack with a subset of items with highest total

\ value subject to their total weight being at most W /
[Vi Wi
- I $1 kg
Q— 2 $6 2 kg
<> : 3 $18 5kg
.) 4 $22 6 kg
5 $28 7 kg

mpﬂ
’
STyl

knapsack instance
(weight limit W = 11)

373F23 - Nisarg Shah

A First Attempt

* Let OPT(w) = maximum value we can pack with a knapsack of
capacity w
» Goal: Compute OPT (W)

» Claim: OPT (w) must use at least one job j with weight < w and then
optimally pack the remaining capacity of w — w;

> Let w” = min; w;
0 ifw<w®
> OPT(W) =1 max v; + OPT(w — Wj) ifw>w*

j:WjSW

* This is wrong!
> It might use an item more than once!

373F23 - Nisarg Shah

A Refined Attempt

* OPT(i,w) = maximum value we can pack using only items
1, ...,1in a knapsack of capacity w
» Goal: Compute OPT (n, W)

* Consider item i
> If w; > w, then we can’t choose i. Use OPT (i — 1, w)
> If w; < w, there are two cases:
o If we choose i, the bestis v; + OPT(i — 1,w — w;)
o If we don’t choose i, the bestis OPT (i — 1, w)

2

0 if i =0

OPT(i,w) = ¢ OPT(i—1,w) if w; > w

| max{ OPT(i — 1,w), v; + OPT(i — 1,w —w;) } otherwise

373F23 - Nisarg Shah

Running Time

* Consider possible evaluations OPT (i, w)
> i €{1,..,n}
> w € {1, ..., W} (recall weights and capacity are integers)
> There are O(n - W) possible evaluations of OPT
> Each is evaluated at most once (memoization / bottom-up)
> Each takes O(1) time to evaluate
> The total running time is O(n - W)

* Q: Is this polynomial in the input size?
> A: No! But it’s pseudo-polynomial.
» Recall the inputs: W, v, ..., v, Wy, ..., Wy,
> Time should be polynomial inlogW + Y-, (log v; + logw;)

373F23 - Nisarg Shah

What if...?

* If we were told that W = poly(n) ...

> That is, the value of W, and not its number of bits, is polynomially
bounded in the input length

> Then, this algorithm would run in polynomial time

* Q: What if, instead of the weights being small integers, we
are told that the values are small integers?

> Then we can use a different dynamic programming approach!

373F23 - Nisarg Shah

A Different DP

* OPT(i,v) = minimum capacity needed to pack a total value
of at least v using items 1, ..., i
> Goal: Compute max{v : OPT(n,v) < W}

* Consider item i
> If we choose i, we need capacity w; + OPT(i — 1,v — v;)
> If we don’t choose i, we need capacity OPT(i — 1, v)

(0 ifv<0
| . ifv>0,i=0
OPT(l,U)=<] Wi+0PT(i—1,U—vi)r if 0 i 0
\m‘“{ OPT(i — 1,v) } TRt

373F23 - Nisarg Shah

A Different DP

* OPT(i,v) = minimum capacity needed to pack a total value
of at least v using items 1, ..., i
> Goal: Compute max{v : OPT(n,v) < W}
> This approach has running time O(n - V), whereV =v; + -+ v,
> So,wecanget O(n-W)orO(n-V), whichever is smaller

e Can we remove the dependence on both V and W?
> Not likely.
> Knapsack problem is NP-complete (we’ll see later).

373F23 - Nisarg Shah

FPTAS

* While we cannot hope to solve the problem exactly in time
0(poly(n,logW ,logV)) ...

> Forany € > 0, we can get a value that is within 1 + € multiplicative
factor of the optimal value in time O (poly (n, logW, logV,%))

» Such algorithms are known as fully polynomial-time approximation
scheme (FPTAS)

> Core idea behind FPTAS for knapsack:
o Approximate all weights and values up to the desired precision
o Solve knapsack on approximate input using DP

373F23 - Nisarg Shah

Single-Source Shortest Paths

 Problem

> Input: A directed graph G = (V, E) with edge lengths #,,,, on each
edge (v, w), and a source vertex s

> Goal: Compute length of the shortest path from s to every vertex t

_

~

J

* When ?,,, = 0 for each (v,w)...
> Dijkstra’s algorithm can be used for this purpose
> But it fails when some edge lengths can be negative
> What do we do in this case?

373F23 - Nisarg Shah

Single-Source Shortest Paths

e Cycle length = sum of lengths of edges in the cycle

* If there is a negative length cycle, shortest paths are not
even well defined...

> You can traverse the cycle arbitrarily many times to get arbitrarily
“short” paths

W

(W) = 0

373F23 - Nisarg Shah

Single-Source Shortest Paths

* But if there are no negative cycles...

> Shortest paths are well-defined even when some of the edge lengths
may be negative

* Claim: With no negative cycles, there is always a shortest
path from any vertex to any other vertex that is simple
» Consider the shortest s w t path with the fewest edges among all
shortest s w t paths

> If it has a cycle, removing the cycle creates a path with fewer edges
that is no longer than the original path

373F23 - Nisarg Shah

Optimal Substructure Property

* Consider a simple shortest s w» t path P

> It could be just a single edge

> But if P has more than one edges, consider u which immediately
precedes t in the path

> If s w» t is shortest, s «w u must be shortest as well and it must use
one fewer edge than the s w» t path

P
CINAVAVAVAVAVAVAVAVAVAVAVAVAVAVAV. .

373F23 - Nisarg Shah

Optimal Substructure Property

* OPT(t,1) = length of the shortest path from s to t using at most
[edges

* Then:
> Either this path uses at most i — 1 edges = OPT(t,i — 1)
> Oritusesiedges = min OPT(u,i — 1) + £
u

P
CINAVAVAVAVAVAVAVAVAVAVAVAVAVAVAV. .

373F23 - Nisarg Shah

Optimal Substructure Property

* OPT(t,i) = shortest path from s to t using at most i edges

* Then:
> Either this path uses at most i — 1 edges = OPT(t,i — 1)
> Or it uses exactly i edges = min OPT (u,i — 1) + €;
u

(0 i=0Vt=s
OPT(t,i) = < 0 i=0At+s
kmin {OPT(t,i — 1), min OPT (u,i — 1) + fut} otherwise
u

> Running time: 0(n?) calls, each takes 0(n) time = 0(n3)
> Q: What do you need to store to also get the actual paths?

373F23 - Nisarg Shah

Side Notes

* Bellman-Ford-Moore
algorithm
> Improvement over this DP

> Running time O (mn) for
n vertices and m edges

> Space complexity reduces
toO(m+n)

373F23 - Nisarg Shah

1955 on*) Shimbel

1956 O(m n* W) Ford

1958 O(m n) Bellman, Moore

1983 O™ m log W) Gabow

1989 O(m n'? log(nW)) Gabow-Tarjan

1993 O(m n*? log W) Goldberg

2005 On*3 W) Sankowsi, Yuster-Zwick
2016 om'’ log W) Cohen-Madry-Sankowski-Vladu
20xx ?5)’

single-source shortest paths with weights between -W and W

Maximum Length Paths?

* Can we use a similar DP to compute maximum length paths
from s to all other vertices?

* This is well defined when there are no positive cycles, in
which case, yes.

* What if there are positive cycles, but we want maximum
length simple paths?

373F23 - Nisarg Shah

Maximum Length Paths?

 What goes wrong?

> Our DP doesn’t work because its path from s to t might use a path
from s tou and edge fromu tot

> But path from s to u might in turn go through t
> The path may no longer remain simple

* |In fact, maximum length simple path is NP-hard

> Hamiltonian path problem (i.e., “is there a path of lengthn — 1 ina
given undirected graph?”) is a special case

373F23 - Nisarg Shah

All-Pairs Shortest Paths
A N

Problem
> Input: A directed graph G = (V, E) with edge lengths #,,,, on each
edge (v, w) and no negative cycles

> Goal: Compute the length of the shortest path from all vertices s to
\ all other vertices t)

e Simple idea:
> Run single-source shortest paths from each source s
> Running time is 0(n*)
> Actually, we can do this in 0(n3) as well

373F23 - Nisarg Shah

All-Pairs Shortest Paths
/° Problem A

> Input: A directed graph G = (V, E) with edge lengths #,,,, on each
edge (v, w) and no negative cycles

> Goal: Compute the length of the shortest path from all vertices s to
_ all other vertices t

J

> OPT(u, v, k) = length of shortest simple path from u to v in which
intermediate nodes are from {1, ..., k}

> Exercise: Write down the Bellman equation for OPT such that given
all subsolutions, it requires 0(1) time to compute

> Running time: 0(n3) calls, 0(1) per call = 0(n3)

373F23 - Nisarg Shah

Chain Matrix Product

é)
* Problem
> Input: Matrices My, ..., M,, where the dimension of M; is d;_1Xd;
> Goal: Compute M; - M, - ...- M
N i " y

e But matrix multiplication is associative
»>A-(B-C)=(A-B)-C

> So, isn’t the optimal solution going to call the algorithm for
multiplying two matrices exactly n — 1 times?

> Insight: the time it takes to multiply two matrices depends on their
dimensions

373F23 - Nisarg Shah

Chain Matrix Product

* Assume
> We use the brute force approach for matrix multiplication
> So, multiplying pXq and g Xr matrices requires p - q - r operations

* Example: compute M - M, - M5
> My is5X 10
> My is 10 X 100
> M is 100 X 50
> (My-M,)-M;—->5-10-100+5-100-50 = 30000 ops
> My - (M, -M3) - 10-100-50+45-10-50 = 52500 ops

373F23 - Nisarg Shah

Chain Matrix Product

* Note

» Our input is simply the dimensions d, d4, ..., d,, (such that each M; is
d;_1Xd;) and not the actual matrices

 Why is DP right for this problem?

> Optimal substructure property
> Think of the final product computed, say A - B

> A is the product of some prefix, B is the product of the remaining
suffix

> For the overall optimal computation, each of A and B should be
computed optimally

373F23 - Nisarg Shah

Chain Matrix Product

* OPT(i,j) = min ops required to compute M; - ...+ M;
> Here,1<i<j<n
> Q: Why do we not just care about prefixes and suffices?
e (M1 - (M5 - M5 - M4)) - M = need to know optimal solution for

M2 y M3 ° M4
' Il 0 i =j
OPT(i,j) = min OPT(i,k) + OPT(k + 1,j) + d;_qd;d; ifi<j
1=K<]

> Running time: 0(n?) calls, O(n) time per call = 0(n3)

373F23 - Nisarg Shah

Chain Matrix Product BEEEEArEE

e Can we do better?

> Surprisingly, yes. But not by a DP algorithm (that | know of)

> Hu & Shing (1981) developed O(nlogn) time algorithm by reducing
chain matrix product to the problem of “optimally” triangulating a
regular polygon

Source: Wikipedia

Example

e Ais10x30, Bis 30x5, C is 5x60

* The cost of each triangle is the product
of its vertices

Polygon Polygon Want to minimize total cost of all
representation of representation of triangles
(AB)C A(BC)

373F23 - Nisarg Shah

Edit Distance

 Edit distance (aka sequence alignment) problem
» How similar are strings X = x4, ..., xpand Y = yq, ..., y,?

e Suppose we can delete or replace symbols
> We can do these operations on any symbol in either string

»> How many deletions & replacements does it take to match the two
strings?

373F23 - Nisarg Shah

Edit Distance

° Example: ocurrance vs occurrence

0 c u r r a n C e -

6 replacements, 1 deletion

1 replacement, 1 deletion

373F23 - Nisarg Shah

Edit Distance
midit distance problem \

> Input

o Strings X = x4, ..., xppandY = yq, ..., v,
o Cost d(a) of deleting symbol a
o Cost r(a, b) of replacing symbol a with b
* Assumer(a,b) =r(b,a)andr(a,a) =0, foralla,b
> Goal
o Compute the minimum total cost for matching the two strings /

e Optimal substructure?
> Want to delete/replace at one end and recurse

373F23 - Nisarg Shah

Edit Distance

* Optimal substructure
» Goal: match x4, ..., x;;; and yq, ..., ¥
» Consider the last symbols x,,, and y,
> Three options:
o Delete x,,,, and optimally match x4, ..., x;—1 and y4, ..., ¥n
o Delete y,,, and optimally match x4, ..., x;;; and y4, ..., Vn_1
o Match x,, and y,,, and optimally match x4, ..., X;,—1 and y4, ..., Vn_1
* We incur cost (X, Vi)
* Recall: v(a,a) = 0, so no cost if x,,, and y,, already match

> Hence in the DP, we need to compute the optimal solutions for matching
X1, -, X; With ¥y, ..., y; for all (i, j)

373F23 - Nisarg Shah

Edit Distance

* E[i,]] = edit distance between xy, ..., x; and y, ..., y;

* Bellman equation

Eli,j] =«

(0 ifi=j=0
B ifi=0Aj>0
A ifi>0Aj=0

where

kmin{A, B,C} otherwise

A=d(x)+E[i—1,j1,B=d(y;) +E[i,j — 1]
C = r(xl-,yj) + E[i—1,j — 1]

* O(n-m)time, O

373F23 - Nisarg Shah

(n - m) space

Edit Distance

(0 ifi =j=0
d(y;)+E[i,j—1] ifi=0Aj>0
d(x;)) +E[i—1,j] ifi>0Aj=0
| min{4, B, (} otherwise

Eli,j] =«

where
A=d(x;)+E[i—1,j1,B=d(y;)+E[i,j— 1]
C = r(xl-,yj) + E[i—1,j — 1]

* Space complexity can be reduced in bottom-up approach
> While computing E[, j], we only need to store E[-,j] and E[-,j — 1],
> So, the additional space required is O(m)
> By storing two rows at a time instead, we can make it O(n)
> Usually, we include the storage of inputs, so both are O(n +m)
> But this is not enough if we want to compute the actual solution

373F23 - Nisarg Shah

Hirschberg's Algorithm [EEIETXE

* The optimal solution can be computed in O(n - m) time and
O(n + m) space too!

Programming G. Manacher
Techniques Editor

A Linear Space
Algorithm for
Computing Maximal
Common Subsequences

D.S. Hirschberg
Princeton University

The problem of finding a longest common subse-
quence of two strings has been solved in quadratic time
and space. An algorithm is presented which will solve
this problem in quadratic time and in linear space.

Key Words and Phrases: subsequence, longest
common subsequence, string correction, editing

CR Categories: 3.63, 3.73, 3.79, 4.22, 5.25

373F23 - Nisarg Shah

Hirschberg’s Algorithm

* Key idea nicely combines divide & conquer with DP

 Edit distance graph

Xy

373F23 - Nisarg Shah

Hirschberg’s Algorithm

e Observation (can be proved by induction)
> E|i,j] = length of shortest path from (0,0) to (i,)

Xy

373F23 - Nisarg Shah

Hirschberg’s Algorithm

* lemma

> Shortest path from (0,0) to (m, n) passes through (q,"/,) where g
minimizes length of shortest path from (0,0) to (g, ™/,) + length of
shortest path from (g, ™/,) to (m,n)

nl/2

373F23 - Nisarg Shah

Hirschberg’s Algorithm

* |dea
> Find g using divide-and-conquer

> Find shortest paths from (0,0) to (q,™/,) and (q,™/,) to (i, n) using
DP

nl/2

373F23 - Nisarg Shah

ing

in Match

: Prote

10N

1cat

Appl

N D €
=3 =1

R
=3

1
-4
-5
-6
2
-4
-4
-6

-4
-4
-4
-6
-5
3
-5
-6

=
-5
=7
-8
o
-4
-6
-6

0
2
0
2
=2
=1
=2
-3

2

=1
=3
-4
=3
-6
=3
-2
-5

-4
-5
-6
-6
-4
-5
-6
-6

2
3
-4
-6
3
1
-4
-5
-4
2
3

=]

3

3
-4
-6
-7
3

-3
=5

3

-2 §O

=2

-3

7

2
1
=]

4 0

=]
=3
-6

~1
-1

2

0
2
-6
2

=D
=7,
13

=7
=2

7
T

=1

-3 2 NS
-6 T =

=3

D

2
=1
-1
-1

=1

)

1
=3
=1

-6
'/
=

-6
=7
-6
7
2

4 0

8

3

4 -1 3 -6 4 -4 9 -4
1 0 -4 i@

0

G

3
2
-4

-5
-4
-6

-2
=3
-1

-4
-4

=1

=y
=)
-2

-6
-5
-1
-4
2
-4
2
3
-4
3

s 6FFH 2 56
4 607 3 -4 607

=3
=3

0

-4

-4 8

L

-4

)

3

o)
2

6 3 -1 -4 -5
-6
-5

-6
=3

3 -4
-6
-4

-2

-4
3
2

-4
2
7
2

10 -6

0
-4
3

-1

)
2
=1
=1

-1

-6
=2

xe)
=3

-4
-6

o
-3

-4

=1

-6
-3

=L
-6

6 12

-5
-4
3
-4
2

-5
-4
2

-3

-2
=3
-7
-6

-4
-4
0
4

o8 -2 808 -2 -2 -3
-8 -6
-6 -6

T

w

SHEE 3 5

-6
o3

=3
-3

-6
-4

-5
-3

-6
=

5 7 5 -4
4 -4 5 3

-5
-4

Y

<
©
<
7))
oo
S
©
R
2
1
o0
o
[
o0
N
()

Traveling Salesman

C Input R

> Complete directed graph G = (V,E)
> d; j = distance from node i to node j

* Output

> Minimum distance which needs to be traveled to start from some
node v, visit every other node exactly once, and come back to v

o That is, the minimum cost of a Hamiltonian cycle

373F21 - Nisarg Shah

Traveling Salesman

* Approach
» Let'sstartatnodev; =1
o It’s a cycle, so the starting point does not matter
» Want to visit the other nodes in some order, say v,, ..., v,
> Total distance is dq 4, + dy, p, + -+ d +dy 1
o Want to minimize this distance

Un-1,Vn

* Naive solution
> Check all possible orderings

>n—1)!=06 (\/ﬁ (g)n) (Stirling’s approximation)

373F21 - Nisarg Shah

Traveling Salesman

* DP Approach
» Consider v, (the last node before returning to v; = 1)
olfv, =c
* Find the optimal order of visiting nodes {2, ..., n} that ends at ¢

* Need to keep track of the subset of nodes to be visited and the
end node

> OPTIS, c] = minimum total travel distance when starting at 1, visiting
each node in § exactly once, and endingatc € S

> Answer to the original problem:
o min OPTIS, c] + d. 1, where S = {2, ...,n}

CES

373F21 - Nisarg Shah

Traveling Salesman

* DP Approach

> To compute OPT|[S, c], we can condition over the vertex visited right
before c in the optimal trip

* Bellman equation

OPT[S,c] = min (OPT [S\ {c},m] + dpn.)

mES c

Final solution = Ce?zunn} OPTI[{2, ...,n},c] + dcl)

* Time: O(n - 2™) calls, O(n) time per call = 0(n? - 2™)
> Much better than the naive solution which has (/¢)"

373F21 - Nisarg Shah

Traveling Salesman

* Bellman equation

OPT[S,c] = min (OPT[S\ {c},m] + dp¢)

meS\{c}

Final solution = min OPT[{2,...,n},c] +d.
c€{2,..,n}

* Space complexity: O(n - 2™)
> But computing the optimal solution with |S| = k only requires
storing the optimal solutions with |S| =k — 1
* Question:

» Using this observation, how much can we reduce the space
complexity?

373F21 - Nisarg Shah

DP Concluding Remarks

* High-level steps in designing a DP algorithm
> Focus on a single decision in optimal solution
o Typically, the first/last decision
> For each possible way of making that decision...

o [Optimal substructure] Write the optimal solution of the problem
in terms of the optimal solutions to subproblems

> Generalize the problem...
o ...by looking at the type of subproblems needed

o E.g., in the edit distance problem, we realize that we need to solve
the problem for prefixes (x4, ..., x;) and (y3, ..., ¥;) forall (i, j)

> Write the Bellman equation, cover your base cases
> Think about optimizing the running time/space using tricks
o Often easier in the bottom-up implementation

373F21 - Nisarg Shah

