CSC373

Weeks 2 & 3:
Greedy Algorithms

Nisarg Shah

Recap

* Divide & Conquer
» Master theorem
» Counting inversions in O(nlogn)
> Finding closest pair of points in R? in O(nlog? n)
o Can be improved to O(nlogn)

> Fast integer multiplication in O(nlogz 3)

> Fast matrix multiplication in O (n'°827)

kth

> Finding smallest element in O(n)

o Can be used for finding the median in O(n) time

373F23 - Nisarg Shah 2

Greedy Algorithms

* Greedy/myopic algorithm outline
> Goal: find a solution x maximizing/minimizing objective function f
> Challenge: space of possible solutions x is too large

> Insight: Computing x requires taking several decisions (e.g., decide to
either keep or discard each element of a set)

> Approach: Instead of taking all the decisions together, take them one
at a time

o Take the next decision “greedily” to maximize the immediate
“benefit” without knowing how you’ll take future decisions

o Most greedy algorithms trivially run in polynomial time, but
require a proof that they will always return an optimal solution

373F23 - Nisarg Shah 3

Interval Scheduling
@ Problem A

> Job j starts at time s; and finishes at time f;

> Two jobs i and j are compatible if [s;, f;) and [s;, f;) don’t overlap
o Note: we allow a job to start right when another finishes
\ > Goal: find maximum-size subset of mutually compatible jobs j

B

G

time
0 1 2 3 4 5 6 7 8 9 10 11

373F23 - Nisarg Shah 4

Interval Scheduling

* Greedy template
> Consider the jobs one-by-one in some “natura

|”

order

> For each job being considered, take it if it’s compatible with the ones
already taken

* Question: In what order should we consider the jobs?

373F23 - Nisarg Shah 5

Possible Orders

Earliest start time: ascending order of s;

Earliest finish time: ascending order of f;

Shortest interval: ascending order of f; — s;

Fewest conflicts: ascending order of ¢, where ¢; is the number of
remaining jobs that conflict with j

H
0 1 2 3 B 5 6 7 8 9 10 11

373F23 - Nisarg Shah 6

time

Interval Scheduling

* Counterexamples
earliest start time

shortest interval

e fewest conflicts

373F23 - Nisarg Shah

Interval Scheduling

* Implementing greedy with earliest finish time (EFT)
> Sort jobs by finish time,say f; < f, < - < f,
o O(nlogn)

» For each job j, we need to check if it’s compatible with all previously
chosen jobs

o Naively, this can take O(n) time per job j, so 0(n?) total time
o We only need to checkif s; = f;+, where i" is the last added job

* For any jobs i added before i¥, f; < f;*
* By keeping track of f;, we can check job j in O(1) time

> Total running time: O(nlogn)

373F23 - Nisarg Shah 8

Interval Scheduling

* Proof of optimality by contradiction
> Suppose for contradiction that greedy solution is not optimal

> Say greedy selects jobs i4, i5, ..., i sorted by finish time
» Consider an optimal solution j4, jo, ..., jm by finish time which

matches greedy for as many indices as possible
o Thatis, j; =iy, ..., Jr = i, for the greatest possible r

job i, finishes before j..,

l1 I2 le 'rvl

Greedy:

»
!

OPT: b i i S BN

373F23 - Nisarg Shah 9

Interval Scheduling

* Proof of optimality by contradiction
> Claimr<k<m
> Proof:
o If r = k, then OPT selects every job selected by GRD

o But since we assumed GRD is not optimal, OPT must select at

least one more job, which doesn’t conflict with any jobs selected
by GRD

o But then GRD would have selected this job too, a contradiction!

> Hence, both greedy and optimal select at least one job each after
their (common) rt" job i, = j,

o Bothi,;q and j,4q must be compatible with the previous
selection (i1 = j1, «e) Iy = J;)

373F23 - Nisarg Shah

Interval Scheduling

* Proof of optimality by contradiction
» Consider a new solution i1, iy, ..., Iy, lya1, Jr42) » Jm
o We have replaced j,;1 by i,11 in our optimal solution
o This is still feasible because f; , < f; .. <sj fort =r + 2
o This is still optimal because m jobs are selected

o But it matches the greedy solution in v 4+ 1 indices
e This is the desired contradiction

job i, finishes before j..,

l1 I2 le 'rvl

Greedy:

»
!

OPT: b i i S BN

373F23 - Nisarg Shah

Interval Scheduling

* Proof of optimality by induction

> Let G; be the subset of jobs picked by greedy after considering the
first j jobs by increasing finish time

> If greedy solution is G, then G; = G N {1, ..., j}

> NotethatGp = Qand G,, =G

> We call Gj promising if some optimal solution O; “extends it”
odT < {j +1,..,n}suchthat O; = G; U T is optimal

» Inductive claim: For all t € {0,1, ..., n}, G is promising

> If we prove this, then we are done since G = G,, is promising, which
is the same as G = G,, being optimal (Why?)

373F23 - Nisarg Shah

Interval Scheduling

* Proof of optimality by induction
» Inductive claim: For all t € {0,1, ..., n}, G is promising
» Base case: Fort = 0, Gg = @ is trivially promising (Why?)

> Induction hypothesis: Suppose that fort = j — 1, G;_1 is promising
and optimal solution O;_; extends G;_4

> Induction step: At t = j, we have two possibilities:

1) Greedy did not select job j, so G; = Gj_;
* Job j must have had a conflict with some job in Gj_4
* Since Gj_1 € 0;_1, 0j_4 also cannot include job j
* Hence, O; = 0;_4 also extends G; = Gj_4

373F23 - Nisarg Shah

Interval Scheduling

* Proof of optimality by induction

> Induction step: At t = j, we have two possibilities:
2) Greedy did select job j,so G; = Gj_; U {j }
* Consider the earliest job rin 0;_1 \ Gj_1
* Note that f; < f, < spforanyjob £ € 0j_4 \ (Gj—1 U {r})
* S00; = 0;_1 U {j}\ {r}is optimal and extends G =

Greedy selects job j

}
Greedy: [Gj—1]] &
oPT: | Gj—1] [i 0j-1\ Gj—1 1
y y

Earliest job in 0j_4 \ Gj_4

373F23 - Nisarg Shah

Contradiction vs Induction

* Both methods make the same claim
> “VJ, the greedy solution after j iterations can be extended to some
optimal solution”
> Proof by induction explicitly proves this inductively

> Proof by contradiction...
o Supposes that this is not true

o Considers the smallest r 4+ 1 such that the greedy solution after
r + 1 iterations cannot be extended to an optimal solution

e Same as finding an optimal solution that matches greedy for
the maximum possible number of iterations r

o Derives a contradiction by showing that greedy after r + 1 can still
be extended to some optimal solution

* Equivalent to the induction step

373F23 - Nisarg Shah

Contradiction vs Induction

* Choose the method that feels natural to you

* It may be the case that...
> For some problems, a proof by contradiction feels more natural

> But for other problems, a proof by induction feels more natural
> No need to stick to one method

* As we saw for interval partitioning, sometimes you may
require an entirely different kind of proof

373F23 - Nisarg Shah

Interval Partitioning
a8

Problem
> Job j starts at time s; and finishes at time f;

> Two jobs are compatible if they don’t overlap

> Goal: group jobs into fewest partitions such that jobs in the same
\ partition are compatible /

* Oneidea

> Find the maximum compatible set using the previous greedy EFT
algorithm, call it one partition, recurse on the remaining jobs.

> Doesn’t work (check by yourselves)

373F23 - Nisarg Shah

Interval Partitioning

* Think of scheduling lectures for various courses into as few
classrooms as possible

* This schedule uses 4 classrooms for scheduling 10 lectures

9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30 3 3:30 4 4:30 time

373F23 - Nisarg Shah

Interval Partitioning

* Think of scheduling lectures for various courses into as few
classrooms as possible

* This schedule uses 3 classrooms for scheduling 10 lectures

9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30 3 3:30 4 4:30 time

373F23 - Nisarg Shah

Interval Partitioning

* Let’s go back to the greedy template!
> Go through lectures in some “natural” order

> Assign each lecture to a used classroom that is compatible (what if
there are several?), and use a new classroom if the lecture conflicts

with every used classroom

e Order of lectures?
> Earliest start time: ascending order of s;
> Earliest finish time: ascending order of f;
> Shortest interval: ascending order of f; — s;

> Fewest conflicts: ascending order of ¢;, where ¢; is the number of
remaining jobs that conflict with j

373F23 - Nisarg Shah

Interval Partitioning

counterexample for earliest finish time e At least when you assign

3 each lecture to an arbitrary

2 compatible classroom, three

1 of these heuristics do not
work.

counterexample for shortest interval

- The fourth one works! (next

5 slide)

counterexample for fewest conflicts

373F23 - Nisarg Shah

Interval Partitioning

EARLIESTSTARTTIMEFIRST(n, $1, $2, ..., Sn, f1, f2, ..., [n)

SORT lectures by start time so thats; < s2 < ... < s

d «<— O <= number of allocated classrooms
FOR j=1TO n
[F lecture j 1s compatible with some classroom
Schedule lecture j 1in any such classroom £.
ELSE
Allocate a new classroom d + 1.
Schedule lecture j 1n classroom d + 1.
d—d +1

RETURN schedule.

373F23 - Nisarg Shah

Interval Partitioning

* Running time

> Key step: check if the next lecture can be scheduled at some
classroom

> Store classrooms in a priority queue / min heap
o key = latest finish time of any lecture in the classroom

> |Is lecture j compatible with some classroom?

o If s; = smallest key (say of classroom k), add lecture j to
classroom k & update its key to f;

o Otherwise, create a new classroom, add lecture j, set key to f]

> O(nlogn) for sorting, O(nlog d) for priority queue operations (if
greedy ends up using d classrooms)

> Since d < n, total time is O (nlogn)

373F23 - Nisarg Shah

Interval Partitioning

* Proof of optimality (lower bound)
> Easy claim: # classrooms needed in any schedule = “depth”
o depth = maximum number of lectures running at any time
o Recall, as before, that job i runsin [s;, f;)
> Difficult claim: # classrooms needed by greedy < depth

depth = 3

v

9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30 3 3:30 4 4:30 time

373F23 - Nisarg Shah

Interval Partitioning

* Proof of optimality (upper bound)
> Let d = # classrooms used by greedy

> Classroom d was opened because each classroom k € {1, ...,d — 1}
had a lecture ¢, that was in conflict with lecture j

> Consider the set of d lectures {#4, ..., £4-1,j}

> Since we sorted by start time, each lecture in this set starts at/before
sj and ends after s; (since it conflicts with lecture j)

> So, at time s;, there are at least d mutually conflicting lectures

> Hence, depth > d = #classrooms used by greedy =

373F23 - Nisarg Shah

NOT IN SYLLABUS

* Interval scheduling and interval partitioning can be seen as
graph problems

Interval Graphs

* Input
> Graph G = (V,E)
> Vertices V = jobs/lectures
> Edge (i,j) € E if jobs i and j are incompatible

* Interval scheduling = maximum independent set (MIS)

* Interval partitioning = graph coloring

373F23 - Nisarg Shah

NOT IN SYLLABUS

* MIS and graph coloring are NP-hard for general graphs

Interval Graphs

* But they’re efficiently solvable for “interval graphs”
> Graphs which can be obtained from incompatibility of intervals

> In fact, this holds even when we are not given an interval
representation of the graph

e Can we extend this result further?
> Yes! Chordal graphs \
o Every cycle with 4 or more vertices has a chord /

373F23 - Nisarg Shah

Minimizing Lateness

(Problem

> We have a single machine

> Each job j requires t; units of time and is due by time d;
> If it’s scheduled to start at s, it will finish at f; = s5; + ¢;
> Lateness: ¢ = maX{O,fj — dj}

\> Goal: minimize the maximum lateness, L = max ¢;
J

* Contrast with interval scheduling

> We can decide the start time
»> There are soft deadlines

373F23 - Nisarg Shah

Minimizing Lateness

 Example

Input

1 |2|3]4]5]6
R
n 6 8 9 9 14 15

An example schedule

lateness = 2 lateness =0 max lateness =6
d;=9 d,=8 dg=15 d =6 do =14 dye=9
>
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

373F23 - Nisarg Shah

Minimizing Lateness

* Let’s go back to greedy template
> Consider jobs one-by-one in some “natura

III

order

> Schedule jobs in this order (nothing special to do here, since we have
to schedule all jobs and there is only one machine available)

* Natural orders?
> Shortest processing time first: ascending order of processing time t;
> Earliest deadline first: ascending order of due time d;
> Smallest slack first: ascending order of d; — t;

373F23 - Nisarg Shah

Minimizing Lateness

e Counterexamples

> Shortest processing time first
o Ascending order of processing time t;

> Smallest slack first
o Ascending order of d; — t;

373F23 - Nisarg Shah

Minimizing Lateness

* By now, you EARLIESTDEADLINEFIRST(n, t1, t2, ..., tw, dh1, d>, ..., dn)
should know

what’s coming...

SORT n jobs so thatd) < d> < ... < da.

* We’'ll prove that t<—0
earliest deadline

first works! FOR j=1T0 n

Assign job j to interval [7. 1 +1].
sp 1l fj— 1+
t— 1+

RETURN intervals [s1, fi], [s2, 2], ..., [sn fu].

373F23 - Nisarg Shah

Minimizing Lateness

e Observation 1
> There is an optimal schedule with no idle time

0] 2 3 4 5 6 7 8 9 10 11 -
0 1 2 3 4 5 6 7 8 9 10 11 -

e Observation 2
> EDF has no idle time

* To prove:

> EDF is at least as good as any schedule (even that optimal schedule)
with no idle time

373F23 - Nisarg Shah

Minimizing Lateness

* Consider any schedule with no idle time
> It can be represented as a permutation (q4, 93, ..., qy) of (1,2, ...,n)

* Define an inversion:
> Any pair of jobs (i,) such that i < j but i is scheduled after j

e Observation 3
> EDF has zero inversions
> Every other schedule with no idle time has at least one inversion

373F23 - Nisarg Shah

Minimizing Lateness

e Observation 4

> If a no-idle-time-schedule (g4, g>, ...,) has at least one inversion,
then it has at least one inversion in an adjacent pair of jobs (q;, g;+1)

* Proof:

> If not, then each of the pairs (g1, 9>), (92, q3), ..., (@n—1,q) is NoOt an
inversion

> Then, q1 < q2, 42 < q3, -, Gn-1 < Qn
» Then,q1 < q, << qn
> The only such schedule is (1,2, ...,), which has zero inversions

373F23 - Nisarg Shah

Minimizing Lateness

* Observation 5

» Swapping adjacently scheduled inverted jobs doesn’t increase lateness
but reduces #inversions by one

e Proof

» Check that swapping an adjacent inverted pair reduces the total
#inversions by one

inversion

J;

I

373F23 - Nisarg Shah

Minimizing Lateness

* Observation 5

> Swapping adjacently scheduled inverted jobs doesn’t increase
lateness but reduces #inversions by one

e Proof

> Let £} and ¢}, denote the lateness of job k before & after swap
> Let L = ml?xfk and L' = ml?xf;c

> 1) € =€) forallk # i, (no change in their finish time)

> 2) L < ¢ i is moved earl
l l
inversion 7
| }

I

373F23 - Nisarg Shah

Minimizing Lateness

* Observation 5

» Swapping adjacently scheduled inverted jobs doesn’t increase lateness
but reduces #inversions by one

e Proof
S>3 =fl—di=fi-d<fi-di=¢ (vi<j>d;<d))

> Hence, L' = max f’-,f max £}, | < max{¥;,¥;, maxfk <L
! k=+i,j k

> Alternatively:
oty =~ <Lforallk #1i,j
O f: < fi < L
O fjl < fi < L
o Hence, L' = max {f{,f , max fk} L

k=+i,j

373F23 - Nisarg Shah

Minimizing Lateness

f N O x
Observations 1 & 2: Observation 3:

Greedy EDF and some optimal EDF permutation has O inversions,
schedule OPT have no idle time every other permutation has at
(thus, they’re permutations of jobs) least 1 inversion.)

()

Observations 4 & 5:
If OPT has r = 1 inversions, there is
another optimal permutation that Proof by contradiction/induction that

has r — 1 inversions. there is an optimal permutation with
& J O inversions
> Must be the EDF permutation

373F23 - Nisarg Shah

Minimizing Lateness

* Proof of optimality by contradiction
> Suppose for contradiction that the greedy EDF permutation is not optimal

> Among all optimal permutations with no idle time (these exist by
Observation 1), consider OPT* which has the fewest inversions

> Because EDF permutation is the only one with zero inversions
(Observation 3) and it is not optimal, OPT* has r = 1 inversions

> By Observation 4, it has an adjacent inversion (i, j)

> By Observation 5, swapping the adjacent pair produces a new
permutation (no idle time) that is optimal and has r — 1 inversions

» Contradiction! m

373F23 - Nisarg Shah

Minimizing Lateness

* Proof of optimality by (reverse) induction

> Claim: Foreachr € {0,1, . (g)}, there is an optimal permutation (no idle
time) with at most r inversions

> Base case of r = (g) Use any optimal permutation (Observation 1)
> Induction hypothesis: Suppose the claim holds forr =t + 1
> Induction step:
o Let OPT* be an optimal permutation with at most t + 1 inversions
o If it has at most t inversions, we’re done!

o Ifit has exactly t + 1 = 1 inversions, find and swap an adjacent

inverted pair to get a new optimal permutation with t inversions
(Observations 4 & 5)

> QED!
> Claim for r = 0 shows optimality of the EDF permutation (Observation 3)

373F23 - Nisarg Shah

Lossless Compression

* Problem A
> We have a document that is written using n distinct labels
> Naive encoding: represent each label using log nn bits
< > If the document has length m, this uses mlogn bits Y

> English document with no punctuations etc.
> n = 26, so we can use 5 bits

o a = 00000
o b =00001
oc = 00010
od=00011
O ..

373F23 - Nisarg Shah

Lossless Compression

* |s this optimal?
> What if a, e, r, s are much more frequent in the document than
X,q,z?
> Can we assign shorter codes to more frequent letters?

* Say we assign...
>a=0,b=1,c=01,..
> See a problem?
o What if we observe the encoding ‘01’7
o Isit‘ab’? Orisit ‘c’?

373F23 - Nisarg Shah

Lossless Compression

* To avoid conflicts, we need a prefix-free encoding

> Map each label x to a bit-string c(x) such that for all distinct labels x
and y, c(x) is not a prefix of c(y)

> Then it’s impossible to have a scenario like this

c(y)

> Now, we can read left to right

o Whenever the part to the left becomes a valid encoding, greedily
decode it, and continue with the rest

373F23 - Nisarg Shah

Lossless Compression

4

Formal problem

encoding with lengths (£, ..., £y) assigned to the symbols which
minimizes }.1—, w; - ¥;
o Note that)i ; w; - £; is the length of the compressed document

_

~

> Given n symbols and their frequencies (wy, ..., w;,), find a prefix-free

J

 Example
> (Wg, Wy, We, Wy, W, Wf) = (42,20,5,10,11,12)
»> No need to remember the numbers ©

373F23 - Nisarg Shah

Lossless Compression

* Observation: prefix-free encoding = tree

a—0,e— 100,
f —101,c - 1100,
d—> 1101, b - 111

373F23 - Nisarg Shah

Lossless Compression

e Huffman Coding
> Build a priority queue by adding (x, w,.) for each symbol x
> While |queue|> 2
o Take the two symbols with the lowest weight (x, w,) and (y, wy,)
o Merge them into one symbol with weight w, + w,,

* Let’s see this on the previous example

373F23 - Nisarg Shah

Lossless Compression

o5 Jasto o ez fom e

Mﬁm

Lossless Compression

e m e
Sy Pty

Lossless Compression

i b o

373F23 - Nisarg Shah

Lossless Compression

373F23 - Nisarg Shah

Lossless Compression

373F23 - Nisarg Shah

Lossless Compression

 Final Outcome

a—0,e— 100,
f —101,c - 1100,
d—> 1101, b - 111

373F23 - Nisarg Shah

Lossless Compression

* Running time
> O(nlogn)
> Can be made O (n) if the labels are given to you sorted by their
frequencies
o Exercise! Think of using two queues...

* Proof of optimality
> Induction on the number of symbols n

> Base case: For n = 2, both encodings which assign 1 bit to each
symbol are optimal

> Hypothesis: Assume it returns an optimal encoding withn — 1
symbols and consider the case of n symbols.

373F23 - Nisarg Shah

Lossless Compression

* Lemma 1: Ifw, < wy but £, = ¥, then swapping the
encodings of a and b does not make the objective any

WOorse.

* Proof:

> We simply need to check that the given inequalities imply
Wa"gb-l_Wb"gaSWa“ga-I—Wb"gb

» QED!

373F23 - Nisarg Shah

Lossless Compression

* Let x, y be the first two symbols in Huffman priority queue
> Wy is the lowest, w,, is the second lowest

> They become siblings in the Huffman tree from the first iteration

* Lemma 2: 3 optimal tree T in which x and y are siblings.

* Proof:

1.

2.

Take any optimal tree

If £, isn’t the longest encoding, swapping x with a symbol that has
the longest encoding keeps the tree optimal (Lemma 1)

In this optimal tree, x must have a sibling (check!)
If it’s not y, swapping it with y keeps the tree optimal (Lemma 1)
Now we have an optimal tree where x and y are siblings. =

373F23 - Nisarg Shah

Lossless Compression

* Proof of optimality
> Let H be the Huffman tree
> Let T be an optimal tree in which x and y are siblings (Lemma 2)

> Let H and T' be obtained from H and T by treating ‘xy’ as one
symbol with frequency wy + w,,

> Note that

o Length(H) = Length(H') + (Wx + Wy) -1

o Length(T) = Length(T') + (Wx + Wy) -1
> But due to the induction hypothesis, Length(H") < Length(T")
> Hence, Length(H) < Length(T) m

373F23 - Nisarg Shah

Other Greedy Algorithms

* If you aren’t familiar with the following algorithms, spend
some time checking them out!
> Dijkstra’s shortest path algorithm
> Kruskal and Prim’s minimum spanning tree algorithms

373F23 - Nisarg Shah

