CSC373

Algorithm Design,
Analysis & Complexity

Nisarg Shah

Introduction

* Instructor: Nisarg Shah (me)

> Www.cs.toronto.edu/~nisarg, SF 3312 (only drop by after making an appointment)
» Email: csc373-2023-09@cs.toronto.edu
> LEC 0101 and 0201

* TAs: Too many to list

* Who will do what?
> I'll deliver the lectures and hold office hours
> TAs will deliver the tutorials and grade your work
> TAs and | will collectively address remark requests

373F23 - Nisarg Shah

mailto:csc373-2023-09@cs.toronto.edu

Course Information

* Course Page www.cs.toronto.edu/~nisarg/teaching/373f23/

e Discussion Board piazza.com/utoronto.ca/fal12023/csc373

* Grading: markus.teach.cs.toronto.edu
> LaTeX preferred, scans are OK!

e All times will be in the Eastern time zone

373F23 - Nisarg Shah 3

http://www.cs.toronto.edu/~nisarg/teaching/373f23/
http://piazza.com/utoronto.ca/fall2023/csc373
http://markus.teach.cs.toronto.edu/

Lectures, Tutorials, Office Hours

* See the course web page for times and locations of lectures and tutorials

e Office hours:
> Monday: 1:30-2:30pm
> Friday: 1-2pm
» Location:
o SF 3312 (my office)
o In weeks where | expect many students to show up, I'll book a bigger seminar room
o Occasionally, Friday’s office hour may need to shift to Zoom, but I’'ll announce in advance

373F23 - Nisarg Shah

Lecture Format

* Delivered by me

* Will start at 10 minutes past the hour
> 10-minute break after 50 minutes of lecture in the 2-hour slot

* Ask questions by raising your hand

373F23 - Nisarg Shah

Tutorial Format

Delivered by the TAs

Think of them as preparation for assignments/exams
> Some of the tutorial problems may be easier than assighment/exam questions

Problem sets & solutions

> Problem sets will be posted to the course webpage in advance of the tutorial
> Solutions will be posted to the course webpage after the tutorial

What to do

> Please attempt the problems before coming to the tutorials
> During the tutorials, the TAs will go over the solutions and explain key ideas

373F23 - Nisarg Shah

Tutorial Format

e Further details
> There are two tutorial subsections in each section of the course (A,B)
> You can find the room & time information on the course web page
> Feel free to attend any tutorial subsection of your choice

o Except on two days when the tutorial slots will be used to conduct a midterm
o See the next slide

373F23 - Nisarg Shah

Tests

e 2 midterms (20% each, 40% total), one final exam (25%)
> I'll post practice exams from prior years before each test

* Midterms (check the syllabus for dates):
» Two slots: Friday 11-13 & Friday 14-16
> LEC 0101 writes during 11-13, LEC 0201 writes during 14-16

> If you have a conflict with your own slot and want to write the midterm in the other slot (or

request an alternate time), you must reach out to me AT LEAST 1 WEEK prior to the midterm
and request it

373F23 - Nisarg Shah

Assignments

e 4 assignments, best 3 out of 4, 10% each (30% total)

e Group work
> In groups of up to three students
> Best way to learn is for each member to try each problem

e Questions will be more difficult

> May need to mull them over for several days; do not expect to start and finish the assignment
on the same day!

» May include bonus questions

e Submission (and later remark requests) on MarkUs
> May need to compress the PDF

373F23 - Nisarg Shah

Late Days

* 4 total late days across all 4 assignments
» Managed by MarkUs
> At most 2 late days can be applied to a single assignment
> Already covers legitimate reasons such as illness, university activities, etc.

> Petitions will only be granted for circumstances which cannot be covered by this

* |f you are registered with Accessibility Services, send me your letter early

> If a midterm is on a Friday following Sunday night’s assignment deadline, you may only be
granted until EOD on Tuesday (without any late days charged) as I'll need to release solutions
on Wednesday morning

373F23 - Nisarg Shah

Embedded EthiCS Module

e Goal

> Help you learn how to reason about ethical issues, practice conveying your thoughts on such
issues

> In the context of a topic from the course

e During the 2-hour lecture slot on Dec 6 (final lecture)
> A lightweight survey before and after the module (0.5% each)

> A lightweight assignhment before and after the module (2% each)
> Discussion-based group activities during the module

373F23 - Nisarg Shah

Grading Policy

* Best 3/4 homeworks * 10% = 30%
* 2 midterms * 20% = 40%
* EthiCS Module * 5% = 5%
* Final exam * 25% = 25%

NOTE: If you score less than 40% on the final exam, your overall course marks

may be reduced below 50

373F23 - Nisarg Shah

Approximate Due Dates

» Assignment 1: Oct 8
» Assignment 2: Oct 29
» Assignment 3: Nov 19
» Assignment 4: Dec 7

> Midterm 1: Nov 3

> Midterm 2: Nov 24

373F23 - Nisarg Shah

Textbook

* Primary reference: lecture slides

* Primary textbook
> [CLRS] Cormen, Leiserson, Rivest, Stein: Introduction to Algorithms.

» Supplementary textbooks (optional)
> [DPV] Dasgupta, Papadimitriou, Vazirani: Algorithms.
> [KT] Kleinberg; Tardos: Algorithm Design.
> [RG] Roughgarden: Algorithms Illuminated.
> Check the info page of the course website ©

373F23 - Nisarg Shah

Other Policies

e Collaboration
> Free to discuss with classmates or read online material
> Must write solutions in your own words
o Easier if you do not take any pictures/notes from discussions

* Citation

> For each question, must cite the peer (write the name) or the online sources (provide links), if
you obtained a significant insight directly pertinent to the question

> Failing to do this is plagiarism!

373F23 - Nisarg Shah

Other Policies

* “No Garbage” Policy

> Borrowed from: Prof. Allan Borodin (citation!)

> Applies to all (sub)questions in assignments and tests, except for any bonus (sub)guestions

1. Partial marks for viable approaches
2. Zero marks if the answer makes no sense

3. 20% marks if you admit to not knowing how to approach the question (“l do not know how

to approach this question”)

e 20% >0% !

373F23 - Nisarg Shah

Questions?

Enough with the
boring stuff.

What will we study?

Why will we study it?

Sy o
B

'3
x
.,{
5

-
L]

Muhammad ibn Musa al-Khwarizmi
c. 780 ——c. 850

373F23 - Nisarg Shah

What is this course about?

* Algorithms
> Ubiquitous in the real world
o From your smartphone to self-driving cars
o From graph problems to graphics problems

O ...
> Important to be able to design and analyze algorithms

> For some problems, good algorithms are hard to find
o For some of these problems, we can formally establish complexity results
o WEe’'ll often find that one problem is easy, but its minor variants are suddenly hard

373F23 - Nisarg Shah

What is this course about?

* Algorithms

» Algorithms in specialized environments or using advanced techniques
o Distributed, parallel, streaming, sublinear time, spectral, genetic...

» Other concerns with algorithms
o Fairness, ethics, ...

> ...mostly beyond the scope of this course

373F23 - Nisarg Shah

What is this course about?

* Designing fast algorithms
> Divide and Conquer
> Greedy

» Dynamic programming

> Network flow

» Linear programming

* Proving that no fast algorithms are likely possible
> Reductions & NP-completeness

 What to do if no fast algorithms are likely possible

> Approximation algorithms (if time permits)
> Randomized algorithms (if time permits)

373F23 - Nisarg Shah

What is this course about?

* How do we know which paradigm is right for a given problem?
> A very interesting question!
> Subject of much ongoing research...
o Sometimes, you just know it when you see it...

* How do we analyze an algorithm?
> Proof of correctness
> Proof of running time
o We'll try to prove the algorithm is efficient in the worst case
o In practice, average case matters just as much (or even more)

373F23 - Nisarg Shah

What is this course about?

* What does it mean for an algorithm to be efficient in the worst case?
» Polynomial time

> It should use at most poly(n) steps on any n-bit input
on,n? nt% 100n® + 237n% + 432, ...

> If the input to an algorithm is a number x, the number of bits of input is log x
o This is because it takes log x bits to represent the input x in binary

o So, the running time should be polynomial in log x, not in x

> How much is too much?

373F23 - Nisarg Shah

What is this course about?

Picture-Hanging Puzzles*

Erik D. Demaine’ Martin L. Demaine’ Yair N. Minsky* Joseph S. B. Mitchell®

Ronald L. Rivest! Mihai Patrascu®

Theorem 7 For anyn > k > 1, there is a picture hanging on n nails, of length n® for a constant ¢,
that falls upon the removal of any k of the nails.

n%-100leg; ¢ Using the ¢ < 1,078 upper bound, we obtain an upper bound of ¢ < 6,575,800. Using

So, while this construction is polynomial, it is a rather large polynomial. For small values of n,
we can use known small sorting networks to obtain somewhat reasonable constructions.

373F23 - Nisarg Shah

What is this course about?

Better Balance by Being Biased:
A 0.8776-Approximation for Max Bisection

o e * » . , :
Per Austrin , Siavosh Benabbas , and Konstantinos Georgiou'

has a lot of flexibility, indicating that further improvements may be possible. We remark that,
while polynomial, the running time of the algorithm is somewhat abysmal; loose estimates places

. 100 E = 2 iy e
it somewhere around O (nm): the running time of the algorithm of [RT12] is similar.

373F23 - Nisarg Shah

What is this course about?

 What if we can’t find an efficient algorithm for a problem?
> Try to prove that the problem is hard
> Formally establish complexity results
> NP-completeness, NP-hardness, ...

* We'll often find that one problem may be easy, but its simple variants may
suddenly become hard
> Minimum spanning tree (MST) vs bounded degree MST
> 2-colorability vs 3-colorability

373F23 - Nisarg Shah

['m not convinced.

Will I really ever need to
know how to design
abstract algorithms?

At the very least...

This will help you prepare for your
technical job interview!

Real Microsoft interview question:

* Given an array a, find indices (i, j) with
the largest j — i such that a|j] > a[i]
* Greedy? Divide & conquer?

373F23 - Nisarg Shah

Disclaimer

* The course is theoretical in nature

> You’ll be working with abstract notations, proving correctness of algorithms, analyzing the
running time of algorithms, designing new algorithms, and proving complexity results.

* Something for everyone...
> If you’re somewhat scared going into the course
> If you’re already comfortable with the proofs, and want challenging problems

373F23 - Nisarg Shah

Related /Follow-up Courses

* Direct follow-up
» CSCA473: Advanced Algorithms
> CSC438: Computability and Logic
> CSC463: Computational Complexity and Computability

e Algorithms in other contexts
> CSC304: Algorithmic Game Theory and Mechanism Design (self promotion!)
> CSC384: Introduction to Artificial Intelligence
> CSC436: Numerical Algorithms
> CSC418: Computer Graphics

373F23 - Nisarg Shah

Divide & Conquer

History?

* Maybe you saw a subset of these algorithms?
> Mergesort - O(nlogn)
> Karatsuba algorithm for fast multiplication - O(nIOg2 3) rather than 0(n?)
> Largest subsequence sum in O(n)
> ..

* Have you seen some divide & conquer algorithms before?
> Maybe in CSC236/CSC240 and/or CSC263/CSC265

373F23 - Nisarg Shah

Divide & Conquer

* General framework

> Break (a large chunk of) a problem into two smaller subproblems of the same type
> Solve each subproblem recursively and independently

> At the end, quickly combine solutions from the two subproblems and/or solve any remaining
part of the original problem

* Hard to formally define when a given algorithm is divide-and-conquer...
* Let’s see some examples!

373F23 - Nisarg Shah

Counting Inversions

* Problem
> Given an array a of length n, count the number of pairs (i, j) such that i < j but ali] > alj]

e Applications
» Voting theory
» Collaborative filtering
> Measuring the “sortedness” of an array
» Sensitivity analysis of Google's ranking function
> Rank aggregation for meta-searching on the Web
> Nonparametric statistics (e.g., Kendall's tau distance)

373F23 - Nisarg Shah

Counting Inversions

* Problem
> Count (i,j) such thati < j but ali] > alj]

e Brute force
> Check all ©(n?) pairs

* Divide & conquer
> Divide: break array into two equal halves x and y
» Conquer: count inversions in each half recursively
» Combine:

o Solve (we’ll see how): count inversions with one entry in x and one in y
o Merge: add all three counts

373F23 - Nisarg Shah

Counting Inversions

373F23 - Nisarg Shah

Input

| 5 -+ 8 10 2 & 2] 3 7

count inversions in left half A count inversions in night half B
1 3 4 8 10 2 b 9 3 7
5-4 6-3 8-3 9-7

count inversions (a, by with a=sAand b = B

| 1 4 8 10 2 6 9 3 7
4-2 4-3 5-2 5-3 B-2 8-3 B-b 8-7 10-2 10-3 10-6 10-7 10-9

output 1 + 3 + 13 = 17

Courtesy: Kevin Wayne

38

Counting Inversions

Q. How to count inversions (a, b)) withac 4 and b € B?
A. Easy if 4 and B are sorted!

Count inversions (a, b) with a €4 and b B, assuming 4 and E are sorted.
* Scan 4 and B from left to right.
* Compare a; and &;.

If a; < by, then a; is not inverted with any element left in B.
If a; = by, then & is inverted with every element left in 4.
Append smaller element to sorted list C.

count inversions (a, b) witha « Aand b e B

ai 18 b 17 23

t L |

merge to form sorted list C

' Courtesy: Kevin Wayne

373F23 - Nisarg Shah

Counting Inversions

373F23 - Nisarg Shah

SORT-AND-COUNT (L)

IF list L has one element
RETURN (0, L).

DIVIDE the list into two halves 4 and B.

(r4 . A) < SORT-AND-COUNT(A).
(r , B) < SORT-AND-COUNT(B).
(r43 . L") < MERGE-AND-COUNT(4. B).

RETURN (r4+re+ras, L)

Courtesy: Kevin Wayne

40

Counting Inversions

 How do we formally prove correctness?
> (Strong) Induction on n is usually very helpful
o Assume that the algorithm correctly solves problems of size strictly smaller than n

o Thus, the algorithm, when applied recursively on the two halves, correctly sorts them &
counts inversions within them

o Just need to prove correctness of the “Combine” step (and argue the base case)

* Running time analysis
> Suppose T (n) is the worst-case running time for inputs of size n
> Our algorithm satisfies T(n) < 2T(/,) + 0(n)
> Master theorem says thisis T(n) = O(nlogn)
o Pictorial proof!

373F23 - Nisarg Shah

Master Theorem

* Here’s the master theorem
> Useful for analyzing divide-and-conquer running time
> If you haven’t already seen it, please spend some time understanding it

» Theorem: Leta = 1 and b > 1 be constants, f(n) be a function, and T (n) be defined on non-

negative integers by the recurrence T(n) < a-T (g) + f(n), where n/b can be [ﬂ
Let d = logy a. Then:

o If f(n) = 0(n~¢) for some constant € > 0, then T(n) = 0(n%).
o If f(n) = 0(n%log" n) for some k = 0, then T(n) = 0(n%log"*1n).
olf f(n) = 0(nd+€) for some constant € > 0, then T(n) = O(f(n)).

373F23 - Nisarg Shah

Master Theorem

Intuition: Compare f(n) with n°9,9. The larger determines the recurrence solution.

||r[|'|'= i|l--l|l--ul---l--|I---Ildl---I---II--ul---I---I-i-ll---||l--l--lul---l-..lh.EIli- If[” :|

L TR il r[“l.'lllr:l]

log, n .
fln/b?) f(n/B*yfin/B*)y f(n/b?) f(n/b*)f(n/b?) fin/b?) f(n/b*y-fin/b*) mwim. a* f(n/b?)

TR S " (1 [} My | [II| |l| |I -II
| JII .
| L | | i

e W

Y e a) a) () a) a(l) o) a() &) ey ... (1) (1) (1) mim S(n"E)

n bogy a
gy A—1

Total: B(n*Ee) 4 }L; a’ fin/b')

j=0

373F23 - Nisarg Shah

Closest Pair in R“

* Problem:
» Given n points of the form (x;, y;) in the plane, find the closest pair of points.

* Applications:
» Basic primitive in graphics and computer vision

> Geographic information systems, molecular modeling, air traffic control
> Special case of nearest neighbor

* Brute force: (n?)

373F23 - Nisarg Shah

Intuition from 1D?

* In 1D, the problem would be easily O(nlogn)
» Sort and check!

* Sorting attempt in 2D
> Find closest points by x coordinate
> Find closest points by y coordinate
> Doesn’t work! (Exercise: come up with a counterexample)

* Non-degeneracy assumption
> No two points have the same x or y coordinate

373F23 - Nisarg Shah

Closest Pair in R“

e Let’s try divide-and-conquer!

> Divide: points in equal halves by drawing a vertical line L _ .
_ Seems like Q(n) ®
» Conquer: solve each half recursively

» Combine: find closest pair with one point on each side of L
> Return the best of 3 solutions

373F23 - Nisarg Shah

Closest Pair in R“

e Combine

> We can restrict our attention to points within 6 of L on each side, where 6 = best of the
solutions within the two halves

373F23 - Nisarg Shah

Closest Pair in R“

 Combine (let 6 = best of solutions in two halves)
> Only need to look at points within 6 of L on each side,
» Sort points on the strip by y coordinate
> Only need to check each point with next 11 points in sorted list!

373F23 - Nisarg Shah

Why 117

e Claim: :
> If two points are at least 12 positions apart in the sorted list, ©
their distance is at least 0 &
* Proof: Nt hakh 1-=--
| | 1%
> No two points lie in the same S e R]
5/2 %X 6/2 box @ D 159
» Two points that are more than two rows apart are at distance M RS et I .
at least § '—>@®
20
25
5 5

373F23 - Nisarg Shah

Running Time Analysis

* Running time for the combine operation
> Finding points on the strip: 0(n)

> Sorting points on the strip by their y-coordinate: O(nlogn)
> Testing each point against 11 points: O(n)

 Total running time: T(n) < 2T (g) + O(nlogn)

e By the Master theorem, this yields T(n) = 0(nlog?n)
> Can be improved to O(nlogn) by doing a single global sort by y-coordinate at the beginning

373F23 - Nisarg Shah

Recap: Karatsuba's Algorithm

* Fast way to multiply two n digit integers x and y

e Brute force: 0(n?) operations

1 1. 01 0O 1 0 1
) . x 0 1 1 1 1 1 0 1
e Karatsuba’s observation: "1 01 01 01
> Divide each integer into two parts | ? E ? 2 ? 2 ? 0
ox=x1*10n/2+x2,y=y1*10n/2+y2 1101 01 0 1
n
o xy = (x1y1) * 10™ + (x1y2 + x21) * 1072 + (x27) i e
> Four ™/,-digit multiplications can be replaced by three L I N) A
O 000 0 0O O0DO0
0 X1Y2 + X2y1 = (X1 + x2) (Y1 + ¥2) — x1Y1 — X2 01 101000O00O00O00O0O0O0O0 I

» Running time
oT(n) <3T(M/,)+0n)>Thn) = O(nlogz 3)

373F23 - Nisarg Shah

Strassen’s Algorithm

* Generalizes Karatsuba’s insight to design a fast algorithm for multiplying two
nXn matrices
> Call n the “size” of the problem

C11 C12]=[A11 A12]*[B11 B12]
Cr1 Cyp Ay Ayl |Ba1 By

> Naively, this requires 8 multiplications of size n/2
0 A1 * B11,A12 * B31, 411 * B12, 412 * By, ...

> Strassen’s insight: replace 8 multiplications by 7
o Runningtime: T(n) < 7T("/,) + 0(n?) = T(n) = O(nlogz 7)

373F23 - Nisarg Shah

Strassen’s Algorithm

C11 C12] _ [A11 A12] § [B11 312]

C21 C22 A21 A22 BZl BZZ
STRASSEN (n, 4, B)
P
/n:(ré) RETURN A4 x B.
; ;zu\ﬂ? Efisz Partition 4 and B into 2-by-2 block matrices.
P1 < STRASSEN(n /2, An, (B12 — B22)). \
P, «— STRASSEN(n/2, (Au + A12), B22). keep track of indices of submatrices

(don't copy matrix entries)

P53 « STRASSEN(n/ 2, (A21 + A22), Bn).

P4y« STRASSEN(n /2, A2, (B21—Bn)).

Ps < STRASSEN (n/ 2, (An1 + A22) x (B11 + B22)).
Pg < STRASSEN(n/ 2, (A12 — A22) x (B21 + B22)).
P7 < STRASSEN(n /2, (A1 — A421) x (Bu1 + B12)).
Cu = Ps+Py— P+ Pes.

Ci2 = Pi1+ P

Can = P3+ Py

Cxn = Pr+Ps—P3—Py.
RETURN C.

373F23 - Nisarg Shah

Median & Selection

e Selection:
> Given array A of n comparable elements, find kth smallest
> k=1ismin, k =nismax, k =|(n+ 1)/2] is median
> 0(n) is easy for min/max

 What about k-selection?
» 0(nk) by modifying bubble sort
> O(nlogn) by sorting
> 0(n + klogn) using min-heap
> O(k + nlogk) using max-heap

* Q: What about just O0(n)?
* A: Yes! Selection is easier than sorting.

373F23 - Nisarg Shah

QuickSelect

* Find a pivot p

* Divide A into two sub-arrays

> Ajegs = elements < p, Ay ore = €lements > p
> If |Ajess| = k, return k-th smallest in Ajpg

> Otherwise, return the (k — |Ajo55])-th smallest element in A,

* Problem?
> The algorithm is correct regardless of the choice of the pivot
> But the pivot choice crucially affects the running time

o If pivot is close to min or max, thenwe get T(n) < T(n— 1) + 0(n) = T(n) = 0(n?)
o We want to reduce n — 1 to a fraction of n (e.g., n/2, 5n/6, etc)

373F23 - Nisarg Shah

Finding a Good Pivot

* Divide n elements into "/ groups of 5 each

®HE®OE

OO
HEOE®®
RORONORO),
OROXORORC)
®OO®O®!
O®E®®
HO®O®
B®OOO
®O®O®
HO®®O®

Finding a Good Pivot

* Divide n elements into "/ groups of 5 each

* Find the median of each group

o @//é

373F23 - Nisarg Shah

Finding a Good Pivot

* Divide n elements into "/ groups of 5 each
* Find the median of each group

* Find the median of n/5 medians

medians @ 0 @

\ 3

373F23 - Nisarg Shah

Finding a Good Pivot

Divide n elements into /< groups of 5 each

Find the median of each group

Find the median of n/5 medians

Use this median of medians (call it p™) as the pivot in quickselect

Q: Why does this work?

373F23 - Nisarg Shah

Analysis

Let’s find an upper bound on |A,,,,e|, Which contains elements > p*

How many elements can be > p*?

n/10 out of the n/5 medians are > p*
» Even if all 5 elements in their groups are more than p*, that’s only 51n/10 in total

373F23 - Nisarg Shah

What about the other groups whose medians are < p*?

Analysis

e M/, o 0f the /c medians are < p*

median of
medians p

\

373F23 - Nisarg Shah

Analysis

e M/, o 0f the /c medians are < p*
> For each such group, there are at least 3 elements < p*, so only 2 elements can be > p*
> So, from such groups, there can be at most 2"/, elements > p*

median of

medians p o

373F23 - Nisarg Shah

Analysis

* Thus, |Aorel < 5”/10 + 210 = /10
> Similarly, [Ajess| < 7n/10

> These are rough calculations, but can be made exact by using ceiling/floor and accounting for
the last group with possibly less than 5 elements, but that makes no difference asymptotically

 How does this factor into overall algorithm analysis?

373F23 - Nisarg Shah

Analysis

* Divide n elements into /s groups of 5 each o

* Find the median of each group |

* Find p* = median of /¢ medians T(n/5)

* Create A;pss and A,y e according to p™ 0(n)

. T(7n/10)

Run selection on one of Ajpgs OFr Apore

T(n) <T(/s5) +T("/10) + 0(n)

Note: /s + "™/10 = "™/10
> Only a fraction of n, so using a similar analysis to the one in the Master theorem, T(n) = 0(n)

373F23 - Nisarg Shah

Residual Notes

* Lower bounds on the worst-case running time

> Note that we only derived upper bounds on the worst-case running time of the form T'(n) =
0n?) orT(n) = 0(n)

> If we want to claim that our algorithm does not run faster than what is claimed in this upper
bound, we have to produce a matching lower bound, e.g., T(n) = Q(n?)

o This is typically done by producing a family of examples, one for each value of n, such that
the algorithm’s running time on these examples grows like n? as the value of n grows

> If we want to claim that no algorithm can solve the problem faster than, say, 0(n?), that’s
usually much, much harder (but has been done for several problems)!

373F23 - Nisarg Shah

Residual Notes

* Best algorithm for a problem?
> We still don’t know best algorithms for multiplying two n-digit integers or two nXn matrices
o Integer multiplication
» 1960 (Karatsuba): 0(n'°823) ~ 0(n1-585)
1971: O(nlognloglogn)
2007: O(n logn 2€log’ ") for some constant C
2014: O(nlogn 23108"1)
2019: O(nlogn) --- breakthrough, conjectured to be asymptotically optimal
o Matrix multiplication
1969 (Strassen): 0(n?897)
1990: 0(n?379)
2013: 0(n?3729)
2014: 0 (n?3728639)

373F23 - Nisarg Shah

Residual Notes

* Best algorithm for a problem?
> Usually, we design an algorithm and then analyze its running time
> Sometimes we can do the reverse:
o E.g., if you know you want an O(n? logn) algorithm

o Master theorem suggests that you can get it by
T(n) =4T("/,) +0(n?

o So maybe you want to break your problem into 4 problems of size n/2 each, and then do
0(n?) computation to combine

373F23 - Nisarg Shah

Residual Notes

* Access to input
> For much of this analysis, we are assuming random access to elements of input
> So, we're ignoring underlying data structures (e.g., doubly linked list, binary tree, etc.)

* Machine operations
> We're only counting the number of comparisons or arithmetic operations
> So, we're ignoring issues like how real numbers are stored in the closest pair problem
> When we get to P vs NP, representation will matter

373F23 - Nisarg Shah

Residual Notes

 Size of the problem
> Can be any reasonable parameter of the problem

» E.g., for matrix multiplication, we used n as the size
> But an input consists of two matrices with n? entries

> It doesn’t matter whether we call n or n? the size of the problem

> The actual running time of the algorithm won’t change

373F23 - Nisarg Shah

