CSC373

Week 7: Linear Programming

Illustration Courtesy:
Kevin Wayne \& Denis Pankratov

Recap

- Network flow
> Ford-Fulkerson algorithm
- Ways to make the running time polynomial
> Correctness using max-flow, min-cut
> Applications:
- Edge-disjoint paths
- Multiple sources/sinks
- Circulation
- Circulation with lower bounds
- Survey design
- Image segmentation
- Profit maximization

Brewery Example

- A brewery can invest its inventory of corn, hops and malt into producing some amount of ale and some amount of beer
> Per unit resource requirement and profit of the two items are as given below

Beverage	Corn (pounds)	Hops (ounces)	Malt (pounds)	Profit $(\$)$
Ale (barrel)	5	4	35	13
Beer (barrel)	15	4	20	23
constraint	480	160	1190	

Brewery Example

Beverage	Corn (pounds)	Hops (ounces)	Malt (pounds)	Profit (\$)
Ale (barrel)	5	4	35	13
Beer (barrel)	15	4	20	23
constraint	480	160	1190	objective function

- Suppose it produces A units of ale and B units of beer
- Then we want to solve this program:

Linear Function

- $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a linear function if $f(x)=a^{T} x$ for some $a \in \mathbb{R}^{n}$ - Example: $f\left(x_{1}, x_{2}\right)=3 x_{1}-5 x_{2}=\binom{3}{-5}^{T}\binom{x_{1}}{x_{2}}$
- Linear objective: f
- Linear constraints:
> $g(x)=c$, where $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a linear function and $c \in \mathbb{R}$
$>$ Line in the plane (or a hyperplane in \mathbb{R}^{n})
> Example: $5 x_{1}+7 x_{2}=10$

Linear Function

- Geometrically, a is the normal vector of the line(or hyperplane) represented by $a^{T} x=c$

Linear Inequality

- $a^{T} x \leq c$ represents a "half-space"

Linear Programming

- Maximize/minimize a linear function subject to linear equality/inequality constraints

Geometrically...

Back to Brewery Example

Back to Brewery Example

Optimal Solution At A Vertex

- Claim: Regardless of the objective function, there must be a vertex that is an optimal solution

Convexity

- Convex set: S is convex if

$$
x, y \in S, \lambda \in[0,1] \Rightarrow \lambda x+(1-\lambda) y \in S
$$

- Vertex: A point which cannot be written as a strict convex combination of any two points in the set
- Observation: Feasible region of an LP is a convex set
vertex

Optimal Solution At A Vertex

- Intuitive proof of the claim:
> Start at some point x in the feasible region
$>$ If x is not a vertex:
- Find a direction d such that points within a positive distance of ϵ from x in both d and $-d$ directions are within the feasible region
- Objective must not decrease in at least one of the two directions
- Follow that direction until you reach a new point x for which at least one more constraint is "tight"
> Repeat until we are at a vertex

LP, Standard Formulation

- Input: $c, a_{1}, a_{2}, \ldots, a_{m} \in \mathbb{R}^{n}, b \in \mathbb{R}^{m}$
> There are n variables and m constraints
- Goal:

LP, Standard Matrix Form

- Input: $c, a_{1}, a_{2}, \ldots, a_{m} \in \mathbb{R}^{n}, b \in \mathbb{R}^{m}$
> There are n variables and m constraints
- Goal:

Convert to Standard Form

- What if the LP is not in standard form?
> Constraints that use \geq
- $a^{T} x \geq b \Leftrightarrow-a^{T} x \leq-b$
> Constraints that use equality
○ $a^{T} x=b \Leftrightarrow a^{T} x \leq b, \quad a^{T} x \geq b$
> Objective function is a minimization
- Minimize $c^{T} x \Leftrightarrow$ Maximize $-c^{T} x$
> Variable is unconstrained
○ x with no constraint \Leftrightarrow Replace x by two variables x^{\prime} and $x^{\prime \prime}$, replace every occurrence of x with $x^{\prime}-x^{\prime \prime}$, and add constraints $x^{\prime} \geq 0, x^{\prime \prime} \geq 0$

LP Transformation Example

Optimal Solution

- Does an LP always have an optimal solution?
- No! The LP can "fail" for two reasons:

1. It is infeasible, i.e., $\{x \mid A x \leq b\}=\varnothing$

- E.g., the set of constraints is $\left\{x_{1} \leq 1,-x_{1} \leq-2\right\}$

2. It is unbounded, i.e., the objective function can be made arbitrarily large (for maximization) or small (for minimization)

- E.g., "maximize x_{1} subject to $x_{1} \geq 0$ "
- But if the LP has an optimal solution, we know that there must be a vertex which is optimal

Simplex Algorithm

```
let v be any vertex of the feasible region
while there is a neighbor v' of v with better objective value:
    set v= v
```

- Simple algorithm, easy to specify geometrically
- Worst-case running time is exponential
- Excellent performance in practice

Simplex: Geometric View

let v be any vertex of the feasible region while there is a neighbor v^{\prime} of v with better objective value: set $v=v^{\prime}$

$$
\begin{aligned}
\max x_{1} & +6 x_{2} \\
x_{1} & \leq 200 \\
x_{2} & \leq 300 \\
x_{1}+x_{2} & \leq 400 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

Algorithmic Implementation

How Do We Implement This?

- We'll work with the slack form of LP
> Convenient for implementing simplex operations
$>$ We want to maximize z in the slack form, but for now, forget about the maximization objective

Standard form:
Maximize $c^{T} x$
Subject to $A x \leq b$
$x \geq 0$

Slack form:

$$
\begin{aligned}
\mathrm{z} & =c^{T} x \\
s & =b-A x \\
s, x & \geq 0
\end{aligned}
$$

Slack Form

$\operatorname{maximize} 2 x_{1}-3 x_{2}+3 x_{3}$
subject to

$$
\begin{aligned}
x_{1}+x_{2}-x_{3} & \leq 7 \\
-x_{1}-x_{2}+x_{3} & \leq-7 \\
x_{1}-2 x_{2}+2 x_{3} & \leq 4 \\
x_{1}, x_{2}, x_{3} &
\end{aligned}
$$

Slack Form

Nonbasic Variables

Simplex: Step 1

- Start at a feasible vertex
> How do we find a feasible vertex?
> For now, assume $b \geq 0$ (that is, each $b_{i} \geq 0$)
○ In this case, $x=0$ is a feasible vertex.
- In the slack form, this means setting the nonbasic variables to 0
> We'll later see what to do in the general case

Standard form:
Maximize $c^{T} x$ Subject to $A x \leq b$
$x \geq 0$

Slack form:

$$
\begin{aligned}
\mathrm{z} & =c^{T} x \\
s & =b-A x \\
s, x & \geq 0
\end{aligned}
$$

Simple: Step 2

- What next? Let's look at an example

$$
\begin{aligned}
& z=3 x_{1}+x_{2}+2 x_{3} \\
& x_{4}=30-x_{1}-x_{2}-3 x_{3} \\
& x_{5}=24-2 x_{1}-2 x_{2}-5 x_{3} \\
& x_{6}=36-4 x_{1}-x_{2}-2 x_{3} \\
& x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6} \geq 0
\end{aligned}
$$

- To increase the value of z :
> Find a nonbasic variable with a positive coefficient
- This is called an entering variable
> See how much you can increase its value without violating any constraints

Simple: Step 2

> Try to increase!
> Obstacles!
> $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6} \geq 0$
> Tightest obstacle!
> This is because the current values of x_{2} and x_{3} are 0 , and we need $x_{4}, x_{5}, x_{6} \geq 0$

Simple: Step 2

$$
\begin{aligned}
z & =3 x_{1} \\
x_{4} & =30-x_{2}+2 x_{3} \\
x_{5} & =24-x_{1}-x_{2}-3 x_{3} \\
x_{6} & =36-2 x_{1}-2 x_{2}-5 x_{3} \\
x_{1}, & x_{2}, x_{3}, x_{4}, x_{5}, x_{6}
\end{aligned} \quad \geq x_{2}-2 x_{3} \quad \text { Tightest obstacle }
$$

> Solve the tightest obstacle for the nonbasic variable

$$
x_{1}=9-\frac{x_{2}}{4}-\frac{x_{3}}{2}-\frac{x_{6}}{4}
$$

- Substitute the entering variable (called pivot) in other equations
- Now x_{1} becomes basic and x_{6} becomes non-basic
- x_{6} is called the leaving variable

Simplex: Step 2

$$
\begin{aligned}
& z=3 x_{1}+x_{2}+2 x_{3} \quad z=27+\frac{x_{2}}{4}+\frac{x_{3}}{2}-\frac{3 x_{6}}{4} \\
& \begin{array}{rlrl}
z & =3 x_{1}+x_{2}+2 x_{3} \\
x_{4} & =30-x_{1}-2 & x_{2}-3 x_{3}
\end{array} \quad x_{1}=9-\frac{x_{2}}{4}-\frac{x_{3}}{2}-\frac{x_{6}}{4} \\
& x_{5}=24-2 x_{1}-2 x_{2}-5 x_{3} \\
& x_{4}=21-\frac{3 x_{2}}{4}-\frac{5 x_{3}}{2}+\frac{x_{6}}{4} \\
& \begin{array}{l}
x_{6}=36-4 x_{1}-x_{2}-2 x_{3} \quad x_{5}=6-\frac{3 x_{2}}{2}-4 x_{3}+\frac{x_{6}}{2} \\
x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6} \geq 0
\end{array} \\
& x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6} \geq 0
\end{aligned}
$$

- After one iteration of this step:
> The basic feasible solution (i.e., substituting 0 for all nonbasic variables) improves from $z=0$ to $z=27$
- Repeat!

Simplex: Step 2

$$
\begin{aligned}
& \text { Entering variable } \\
& \text { Try to increase! } \\
& z=27+\frac{x_{2}}{4}+\frac{x_{3}}{2}-\frac{3 x_{6}}{4} \\
& x_{1}=9-\frac{x_{2}}{4}-\frac{x_{3}}{2}-\frac{x_{6}}{4} \\
& x_{4}=21-\frac{3 x_{2}}{4}-\frac{5 x_{3}}{2}+\frac{x_{6}}{4} \\
& x_{5}=6-\frac{3 x_{2}}{2}-4 x_{3}+\frac{x_{6}}{2} . \\
& x_{1}=\frac{311}{4}+\frac{x_{2}}{16}-\frac{x_{5}}{8}-\frac{11 x_{6}}{16} \\
& x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6} \\
& \text { Leaving variable } \\
& \text { Tightest obstacle! }
\end{aligned}
$$

Simplex: Step 2

Entering variable
Try to increase!

$$
\begin{aligned}
& z=\frac{111}{4}+\frac{x_{2}}{16}-\frac{x_{5}}{8}-\frac{11 x_{6}}{16} \quad z=28-\frac{x_{3}}{6}-\frac{x_{5}}{6}-\frac{2 x_{6}}{3} \\
& x_{1}=\frac{33}{4}-\frac{x_{2}}{16}+\frac{x_{5}}{8}-\frac{5 x_{6}}{16} \\
& x_{3}=\frac{3}{2}-\frac{3 x_{2}}{8}-\frac{x_{5}}{4}+\frac{x_{6}}{8} \\
& \frac{69}{4}+\frac{3 x_{2}}{16}+\frac{5 x_{5}}{8}-\frac{x_{6}}{16} \\
& x_{1}, x_{2}, x_{1}, x_{4}, x_{5}, x_{6} \geq 0 \\
& \text { Leaving variable } \\
& \text { Tightest obstacle! }
\end{aligned}
$$

Simplex: Step 2

$$
\begin{aligned}
& z=28-\frac{x_{3}}{6}-\frac{x_{5}}{6}-\frac{2 x_{6}}{3} \\
& x_{1}=8+\frac{x_{3}}{6}+\frac{x_{5}}{6}-\frac{x_{6}}{3} \\
& x_{2}=4-\frac{8 x_{3}}{3}-\frac{2 x_{5}}{3}+\frac{x_{6}}{3} \\
& x_{4}=18-\frac{x_{3}}{2}+\frac{x_{5}}{2} . \\
& x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6} \geq 0
\end{aligned}
$$

- There is no entering variable (nonbasic variable with positive coefficient)
- What now? Nothing! We are done.
- Take the basic feasible solution ($x_{3}=x_{5}=x_{6}=0$).
- Gives the optimal value $z=28$
- In the optimal solution, $x_{1}=8, x_{2}=4, x_{3}=0$

Simplex Overview

Some Outstanding Issues

- What if the entering variable has no upper bound?
> If it doesn't appear in any constraints, or only appears in constraints where it can go to ∞
> Then z can also go to ∞, so declare that LP is unbounded
- What if pivoting doesn't change the constant in z ?
> Known as degeneracy, and can lead to infinite loops
> Can be prevented by "perturbing" b by a small random amount in each coordinate
> Or by carefully breaking ties among entering and leaving variables, e.g., by smallest index (known as Bland's rule)

Some Outstanding Issues

- We assumed $b \geq 0$, and then started with the vertex $x=0$
- What if this assumption does not hold?

Multiply every constraint with negative b_{i} by -1 so RHS is now positive

Some Outstanding Issues

- We assumed $b \geq 0$, and then started with the vertex $x=0$
- What if this assumption does not hold?

Some Outstanding Issues

- We assumed $b \geq 0$, and then started with the vertex $x=0$
- What if this assumption does not hold?
 positive

What now?

- Solve $L P_{4}$ using simplex with the initial basic solution being $x=s=0, z=|b|$
- If its optimum value is 0 , extract a basic feasible solution x^{*} from it, use it to solve $L P_{1}$ using simplex
- If optimum value for $L P_{4}$ is greater than 0 , then $L P_{1}$ is infeasible

Some Outstanding Issues

- Curious about pseudocode? Proof of correctness? Running time analysis?
- See textbook for details, but this is NOT in syllabus!

Running Time

- Notes
> \#vertices of a polytope can be exponential in the \#constraints
o There are examples where simplex takes exponential time if you choose your pivots arbitrarily
- No pivot rule known which guarantees polynomial running time
> Other algorithms known which run in polynomial time
- Ellipsoid method, interior point method, ...
- Ellipsoid uses $O\left(m n^{3} L\right)$ arithmetic operations
- L = length of input in binary
- But no known strongly polynomial time algorithm
- Number of arithmetic operations = poly(m,n)
- We know how to avoid dependence on length(b), but not for length(A)

Certificate of Optimality

- Suppose you design a state-of-the-art LP solver that can solve very large problem instances
- You want to convince someone that you have this new technology without showing them the code
> Idea: They can give you very large LPs and you can quickly return the optimal solutions
> Question: But how would they know that your solutions are optimal, if they don't have the technology to solve those LPs?

Certificate of Optimality

$$
\begin{aligned}
\max & x_{1} \\
x_{1} & \leq 200 \\
x_{2} & \leq 300 \\
x_{1}+x_{2} & \leq 400 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

- Suppose I tell you that $\left(x_{1}, x_{2}\right)=(100,300)$ is optimal with objective value 1900
- How can you check this?
> Note: Can easily substitute (x_{1}, x_{2}), and verify that it is feasible, and its objective value is indeed 1900

Certificate of Optimality

$$
\begin{aligned}
\max x_{1} & +6 x_{2} \\
x_{1} & \leq 200 \\
x_{2} & \leq 300 \\
x_{1}+x_{2} & \leq 400 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

- Claim: $\left(x_{1}, x_{2}\right)=(100,300)$ is optimal with objective value 1900
- Any solution that satisfies these inequalities also satisfies their positive combinations
> E.g. 2*first_constraint + 5*second_constraint + 3*third_constraint
> Try to take combinations which give you $x_{1}+6 x_{2}$ on LHS

Certificate of Optimality

$$
\begin{aligned}
\max x_{1} & +6 x_{2} \\
x_{1} & \leq 200 \\
x_{2} & \leq 300 \\
x_{1}+x_{2} & \leq 400 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

- Claim: $\left(x_{1}, x_{2}\right)=(100,300)$ is optimal with objective value 1900
- first_constraint + 6* second_constraint
$>x_{1}+6 x_{2} \leq 200+6 * 300=2000$
> This shows that no feasible solution can beat 2000

Certificate of Optimality

$\max x_{1}+6 x_{2}$
$x_{1} \leq 200$
$x_{2} \leq 300$
$x_{1}+x_{2} \leq 400$
$x_{1}, x_{2} \geq 0$

- Claim: $\left(x_{1}, x_{2}\right)=(100,300)$ is optimal with objective value 1900
- 5*second_constraint + third_constraint
$>5 x_{2}+\left(x_{1}+x_{2}\right) \leq 5 * 300+400=1900$
> This shows that no feasible solution can beat 1900
- No need to proceed further
- We already know one solution that achieves 1900, so it must be optimal!

Is There a General Algorithm?

- Introduce variables y_{1}, y_{2}, y_{3} by which we will be multiplying the three constraints
> Note: These need not be integers. They can be reals.

Multiplier	Inequality	
y_{1}	x_{1}	≤ 200
y_{2}		$x_{2} \leq 300$
y_{3}	$x_{1}+x_{2} \leq 400$	

- After multiplying and adding constraints, we get:

$$
\left(y_{1}+y_{3}\right) x_{1}+\left(y_{2}+y_{3}\right) x_{2} \leq 200 y_{1}+300 y_{2}+400 y_{3}
$$

Is There a General Algorithm?

Multiplier	Inequality	
y_{1}	x_{1}	≤ 200
y_{2}		x_{2}
≤ 300		
y_{3}	$x_{1}+x_{2} \leq 400$	

> We have:

$$
\left(y_{1}+y_{3}\right) x_{1}+\left(y_{2}+y_{3}\right) x_{2} \leq 200 y_{1}+300 y_{2}+400 y_{3}
$$

> What do we want?

- $y_{1}, y_{2}, y_{3} \geq 0$ because otherwise direction of inequality flips
- LHS to look like objective $x_{1}+6 x_{2}$
- In fact, it is sufficient for LHS to be an upper bound on objective
- So, we want $y_{1}+y_{3} \geq 1$ and $y_{2}+y_{3} \geq 6$

Is There a General Algorithm?

Multiplier	Inequality	
y_{1}	x_{1}	≤ 200
y_{2}		x_{2}
≤ 300		
y_{3}	$x_{1}+x_{2} \leq 400$	

> We have:

$$
\left(y_{1}+y_{3}\right) x_{1}+\left(y_{2}+y_{3}\right) x_{2} \leq 200 y_{1}+300 y_{2}+400 y_{3}
$$

> What do we want?

- $y_{1}, y_{2}, y_{3} \geq 0$
o $y_{1}+y_{3} \geq 1, y_{2}+y_{3} \geq 6$
- Subject to these, we want to minimize the upper bound $200 y_{1}+$ $300 y_{2}+400 y_{3}$

Is There a General Algorithm?

Multiplier	Inequality	
y_{1}	x_{1}	≤ 200
y_{2}		x_{2}
≤ 300		
y_{3}	$x_{1}+x_{2} \leq 400$	

> We have:

$$
\left(y_{1}+y_{3}\right) x_{1}+\left(y_{2}+y_{3}\right) x_{2} \leq 200 y_{1}+300 y_{2}+400 y_{3}
$$

> What do we want?

- This is just another LP!
- Called the dual
- Original LP is called the primal

$$
\begin{aligned}
& \min 200 y_{1}+300 y_{2}+400 y_{3} \\
& y_{1}+y_{3} \geq 1 \\
& y_{2}+y_{3} \geq 6 \\
& y_{1}, y_{2}, y_{3} \geq 0
\end{aligned}
$$

Is There a General Algorithm?

PRIMAL

$$
\begin{aligned}
\max x_{1} & +6 x_{2} \\
x_{1} & \leq 200 \\
x_{2} & \leq 300 \\
x_{1}+x_{2} & \leq 400 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

DUAL

$$
\begin{aligned}
& \min 200 y_{1}+300 y_{2}+400 y_{3} \\
& y_{1}+y_{3} \geq 1 \\
& y_{2}+y_{3} \geq 6 \\
& y_{1}, y_{2}, y_{3} \geq 0
\end{aligned}
$$

> The problem of verifying optimality is another LP
o For any $\left(y_{1}, y_{2}, y_{3}\right)$ that you can find, the objective value of the dual is an upper bound on the objective value of the primal

- If you found a specific $\left(y_{1}, y_{2}, y_{3}\right)$ for which this dual objective becomes equal to the primal objective for the $\left(x_{1}, x_{2}\right)$ given to you, then you would know that the given $\left(x_{1}, x_{2}\right)$ is optimal for primal (and your $\left(y_{1}, y_{2}, y_{3}\right)$ is optimal for dual)

Is There a General Algorithm?

PRIMAL

$$
\begin{aligned}
\max x_{1} & +6 x_{2} \\
x_{1} & \leq 200 \\
x_{2} & \leq 300 \\
x_{1}+x_{2} & \leq 400 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

DUAL

$$
\begin{aligned}
& \min 200 y_{1}+300 y_{2}+400 y_{3} \\
& y_{1}+y_{3} \geq 1 \\
& y_{2}+y_{3} \geq 6 \\
& y_{1}, y_{2}, y_{3} \geq 0
\end{aligned}
$$

> The problem of verifying optimality is another LP

- Issue 1: But...but...if I can't solve large LPs, how will I solve the dual to verify if optimality of $\left(x_{1}, x_{2}\right)$ given to me?
- You don't. Ask the other party to give you both (x_{1}, x_{2}) and the corresponding $\left(y_{1}, y_{2}, y_{3}\right)$ for proof of optimality
- Issue 2: What if there are no $\left(y_{1}, y_{2}, y_{3}\right)$ for which dual objective matches primal objective under optimal solution $\left(x_{1}, x_{2}\right)$?
- As we will see, this can't happen!

Is There a General Algorithm?

Primal LP
$\max \mathbf{c}^{T} \mathbf{x}$
$\mathrm{Ax} \leq \mathrm{b}$
$x \geq 0$

Dual LP

$$
\begin{gathered}
\min \mathbf{y}^{T} \mathbf{b} \\
\mathbf{y}^{T} \mathbf{A} \geq \mathbf{c}^{T} \\
\mathbf{y} \geq 0
\end{gathered}
$$

> General version, in our standard form for LPs

Is There a General Algorithm?

Primal LP

$$
\max \mathbf{c}^{T} \mathbf{x}
$$

$$
\mathbf{A x} \leq \mathbf{b}
$$

$$
x \geq 0
$$

Dual LP

$$
\begin{gathered}
\min \mathbf{y}^{T} \mathbf{b} \\
\mathbf{y}^{T} \mathbf{A} \geq \mathbf{c}^{T} \\
\mathbf{y} \geq 0
\end{gathered}
$$

- $c^{T} x$ for any feasible $x \leq y^{T} b$ for any feasible y
$\circ \max _{\text {primal feasible } x} c^{T} x \leq \min _{\text {dual feasible } y} y^{T} b$
- If there is $\left(x^{*}, y^{*}\right)$ with $c^{T} x^{*}=\left(y^{*}\right)^{T} b$, then both must be optimal
- In fact, for optimal $\left(x^{*}, y^{*}\right)$, we claim that this must happen!
- Does this remind you of something? Max-flow, min-cut...

Weak Duality

Primal LP

$$
\begin{gathered}
\max \mathbf{c}^{T} \mathbf{x} \\
\mathbf{A x} \leq \mathbf{b} \\
\mathbf{x} \geq 0
\end{gathered}
$$

Dual LP

$$
\begin{gathered}
\min \mathbf{y}^{T} \mathbf{b} \\
\mathbf{y}^{T} \mathbf{A} \geq \mathbf{c}^{T} \\
\mathbf{y} \geq 0
\end{gathered}
$$

- From here on, assume primal LP is feasible and bounded
- Weak duality theorem:
> For any primal feasible x and dual feasible $y, c^{T} x \leq y^{T} b$
- Proof:

$$
c^{T} x \leq\left(y^{T} A\right) x=y^{T}(A x) \leq y^{T} b
$$

Strong Duality

Primal LP

$$
\begin{gathered}
\max \mathbf{c}^{T} \mathbf{x} \\
\mathbf{A x} \leq \mathbf{b} \\
\mathbf{x} \geq 0
\end{gathered}
$$

Dual LP

$$
\begin{gathered}
\min \mathbf{y}^{T} \mathbf{b} \\
\mathbf{y}^{T} \mathbf{A} \geq \mathbf{c}^{T} \\
\mathbf{y} \geq 0
\end{gathered}
$$

- Strong duality theorem:
> For any primal optimal x^{*} and dual optimal $y^{*}, c^{T} x^{*}=\left(y^{*}\right)^{T} b$

This duality gap is zero

Strong Duality Proof

- Farkas' lemma (one of many, many versions):
> Exactly one of the following holds:

1) There exists x such that $A x \leq b$
2) There exists y such that $y^{T} A=0, y \geq 0, y^{T} b<0$

- Geometric intuition:
> Define image of $A=$ set of all possible values of $A x$
> It is known that this is a "linear subspace" (e.g., a line in a plane, a line or plane in 3D, etc)

Strong Duality Proof

- Farkas' lemma: Exactly one of the following holds:

1) There exists x such that $A x \leq b$
2) There exists y such that $y^{T} A=0, y \geq 0, y^{T} b<0$
3) Image of A contains a point "below" b
4) The region "below" b doesn't intersect image of A this is witnessed by normal vector to the image of A

Strong Duality

Primal LP

$$
\begin{gathered}
\max \mathbf{c}^{T} \mathbf{x} \\
\mathbf{A x} \leq \mathbf{b} \\
\mathbf{x} \geq 0
\end{gathered}
$$

Dual LP

$$
\begin{gathered}
\min \mathbf{y}^{T} \mathbf{b} \\
\mathbf{y}^{T} \mathbf{A} \geq \mathbf{c}^{T} \\
\mathbf{y} \geq 0
\end{gathered}
$$

- Strong duality theorem:
> For any primal optimal x^{*} and dual optimal $y^{*}, c^{T} x^{*}=\left(y^{*}\right)^{T} b$
> Proof (by contradiction):
- Let $z^{*}=c^{T} x^{*}$ be the optimal primal value.
- Suppose optimal dual objective value $>z^{*}$
- So, there is no y such that $y^{T} A \geq c^{T}$ and $y^{T} b \leq z^{*}$, i.e.,

$$
\binom{-A^{T}}{b^{T}} y \leq\binom{ c}{z^{*}}
$$

Strong Duality

> There is no y such that $\quad\binom{-A^{T}}{b^{T}} y \leq\binom{ c}{z^{*}}$
$>$ By Farkas' lemma, there is x and λ such that

$$
\left(\begin{array}{ll}
x^{T} & \lambda
\end{array}\right)\binom{-A^{T}}{b^{T}}=0, x \geq 0, \lambda \geq 0,-x^{T} c+\lambda z^{*}<0
$$

> Case 1: $\lambda>0$

- Note: $c^{T} x>\lambda z^{*}$ and $A x=0=\lambda b$.
- Divide both by λ to get $A\left(\frac{x}{\lambda}\right)=b$ and $c^{T}\left(\frac{x}{\lambda}\right)>z^{*}$
- Contradicts optimality of z^{*}
> Case 2: $\lambda=0$
- We have $A x=0$ and $c^{T} x>0$
- Adding x to optimal x^{*} of primal improves objective value beyond $z^{*} \Rightarrow$ contradiction

Exercise: Formulating LPs

- A canning company operates two canning plants (A and B).
- S1: 200 tonnes at $\$ 11$ /tonne
- S2: 310 tonnes at $\$ 10$ /tonne
- S3: 420 tonnes at $\$ 9$ /tonne
- Three suppliers of fresh fruits: .--'
- Shipping costs in \$/tonne: ---------

		To:	Plant A
From: Plant B			
S1	3	3.5	
S2	2	2.5	
S3	6	4	

- Plant capacities and labour costs:

Plant A
460 tonnes $\$ 26 /$ tonne

- Selling price: $\$ 50 /$ tonne, no limit
- Objective: Find which plant should get how much supply from each grower to maximize profit

Exercise: Formulating LPs

- Similarly to the brewery example from earlier:
> A brewery can invest its inventory of corn, hops and malt into producing three types of beer
> Per unit resource requirement and profit are as given below
> The brewery cannot produce positive amounts of both A and B
> Goal: maximize profit

Beverage	Corn (kg)	Hops (kg)	Malt (kg)	Profit (\$)
A	5	4	35	13
B	15	4	20	23
C	10	7	25	15
Limit	500	300	1000	

Exercise: Formulating LPs

- Similarly to the brewery example from the beginning:
> A brewery can invest its inventory of corn, hops and malt into producing three types of beer
> Per unit resource requirement and profit are as given below
> The brewery can only produce C in integral quantities up to 100
> Goal: maximize profit

Beverage	Corn (kg)	Hops (kg)	Malt (kg)	Profit (\$)
A	5	4	35	13
B	15	4	20	23
C	10	7	25	15
Limit	500	300	1000	

Exercise: Formulating LPs

- Similarly to the brewery example from the beginning:
> A brewery can invest its inventory of corn, hops and malt into producing three types of beer
> Per unit resource requirement and profit are as given below
> Goal: maximize profit, but if there are multiple profit-maximizing solutions, then...
- Break ties to choose those with the largest quantity of A
- Break any further ties to choose those with the largest quantity of B

Beverage	Corn (kg)	Hops (kg)	Malt (kg)	Profit (\$)
A	5	4	35	13
B	15	4	20	23
C	10	7	25	15
Limit	500	300	1000	

More Tricks

- Constraint: $|x| \leq 3$
> Replace with constraints $x \leq 3$ and $-x \leq 3$
$>$ What if the constraint is $|x| \geq 3$?
- Objective: minimize $3|x|+y$
> Add a variable t
> Add the constraints $t \geq x$ and $t \geq-x($ so $t \geq|x|)$
> Change the objective to minimize $3 t+y$
> What if the objective is to maximize $3|x|+y$?
- Objective: minimize max $(3 x+y, x+2 y)$
> Hint: minimizing $3|x|+y$ in the earlier bullet was equivalent to minimizing $\max (3 x+y,-3 x+y)$
- ...

सowlurow

net

