#### CSC373

# Week 7: Linear Programming

Illustration Courtesy: Kevin Wayne & Denis Pankratov

## Recap

#### Network flow

- Ford-Fulkerson algorithm
  - $\circ~$  Ways to make the running time polynomial
- > Correctness using max-flow, min-cut
- > Applications:
  - Edge-disjoint paths
  - Multiple sources/sinks
  - Circulation
  - Circulation with lower bounds
  - Survey design
  - Image segmentation
  - Profit maximization

## Brewery Example

- A brewery can invest its inventory of corn, hops and malt into producing some amount of ale and some amount of beer
  - Per unit resource requirement and profit of the two items are as given below

| Beverage      | Corn<br>(pounds) | Hops<br>(ounces) | Malt<br>(pounds) | Profit<br>(\$) |
|---------------|------------------|------------------|------------------|----------------|
| Ale (barrel)  | 5                | 4                | 35               | 13             |
| Beer (barrel) | 15               | 4                | 20               | 23             |
| constraint    | 480              | 160              | 1190             |                |

## Brewery Example

| Beverage      | Corn<br>(pounds) | Hops<br>(ounces) | Malt<br>(pounds) | Profit<br>(\$) |            |
|---------------|------------------|------------------|------------------|----------------|------------|
| Ale (barrel)  | 5                | 4                | 35               | 13             |            |
| Beer (barrel) | 15               | 4                | 20               | 23             |            |
| constraint    | 480              | 160              | 1190             | objecti        | ve functio |

- Suppose it produces A units of ale and B units of beer
- Then we want to solve this program:



#### Linear Function

- $f: \mathbb{R}^n \to \mathbb{R}$  is a linear function if  $f(x) = a^T x$  for some  $a \in \mathbb{R}^n$ > Example:  $f(x_1, x_2) = 3x_1 - 5x_2 = {3 \choose -5}^T {x_1 \choose x_2}$
- Linear objective: *f*
- Linear constraints:
  - > g(x) = c, where  $g: \mathbb{R}^n \to \mathbb{R}$  is a linear function and  $c \in \mathbb{R}$
  - > Line in the plane (or a hyperplane in  $\mathbb{R}^n$ )
  - > Example:  $5x_1 + 7x_2 = 10$



#### **Linear Function**

• Geometrically, a is the normal vector of the line(or hyperplane) represented by  $a^T x = c$ 



## Linear Inequality

•  $a^T x \leq c$  represents a "half-space"



## Linear Programming

Maximize/minimize a linear function subject to linear equality/inequality constraints



#### Geometrically...



#### Back to Brewery Example



#### Back to Brewery Example



## **Optimal Solution At A Vertex**

• Claim: Regardless of the objective function, there must be a vertex that is an optimal solution



## Convexity

- Convex set: *S* is convex if  $x, y \in S, \lambda \in [0,1] \Rightarrow \lambda x + (1 - \lambda)y \in S$
- Vertex: A point which cannot be written as a strict convex combination of any two points in the set
- Observation: Feasible region of an LP is a convex set



## **Optimal Solution At A Vertex**

#### • Intuitive proof of the claim:

- > Start at some point *x* in the feasible region
- If x is not a vertex:
  - Find a direction d such that points within a positive distance of  $\epsilon$  from x in both d and -d directions are within the feasible region
  - Objective must not decrease in at least one of the two directions
  - Follow that direction until you reach a new point x for which at least one more constraint is "tight"
- > Repeat until we are at a vertex



#### LP, Standard Formulation

- Input:  $c, a_1, a_2, \dots, a_m \in \mathbb{R}^n, b \in \mathbb{R}^m$ 
  - $\succ$  There are n variables and m constraints
- Goal:



#### LP, Standard Matrix Form

- Input:  $c, a_1, a_2, \dots, a_m \in \mathbb{R}^n, b \in \mathbb{R}^m$ 
  - $\succ$  There are n variables and m constraints
- Goal:



#### **Convert to Standard Form**

- What if the LP is not in standard form?
  - ➤ Constraints that use ≥
      $a^T x \ge b \iff -a^T x \le -b$
  - > Constraints that use equality  $a^T x = b \iff a^T x \le b, a^T x \ge b$
  - > Objective function is a minimization
     Minimize  $c^T x \iff$  Maximize  $-c^T x$
  - > Variable is unconstrained
    - x with no constraint  $\Leftrightarrow$  Replace x by two variables x'and x'', replace every occurrence of x with x' - x'', and add constraints  $x' \ge 0$ ,  $x'' \ge 0$

#### LP Transformation Example



## **Optimal Solution**

- Does an LP always have an optimal solution?
- No! The LP can "fail" for two reasons:
  - 1. It is *infeasible*, i.e.,  $\{x | Ax \le b\} = \emptyset$

○ E.g., the set of constraints is  $\{x_1 \le 1, -x_1 \le -2\}$ 

2. It is *unbounded*, i.e., the objective function can be made arbitrarily large (for maximization) or small (for minimization)

○ E.g., "maximize  $x_1$  subject to  $x_1 \ge 0$ "

• But if the LP has an optimal solution, we know that there must be a vertex which is optimal

## Simplex Algorithm

```
let v be any vertex of the feasible region while there is a neighbor v^\prime of v with better objective value: set v=v^\prime
```

- Simple algorithm, easy to specify geometrically
- Worst-case running time is exponential
- Excellent performance in practice

#### Simplex: Geometric View

let v be any vertex of the feasible region while there is a neighbor v' of v with better objective value: set v = v'





## **Algorithmic Implementation**



## How Do We Implement This?

- We'll work with the slack form of LP
  - Convenient for implementing simplex operations
  - We want to maximize z in the slack form, but for now, forget about the maximization objective

Standard form:Slack form:Maximize 
$$c^T x$$
 $z = c^T x$ Subject to  $Ax \le b$  $s = b - Ax$  $x \ge 0$  $s, x \ge 0$ 

#### Slack Form



#### Slack Form

$$z = 2x_1 - 3x_2 + 3x_3$$
  

$$x_4 = 7 - x_1 - x_2 + x_3$$
  

$$x_5 = -7 + x_1 + x_2 - x_3$$
  

$$x_6 = 4 - x_1 + 2x_2 - 2x_3$$
  

$$x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$$



#### Start at a feasible vertex

- How do we find a feasible vertex?
- > For now, assume  $b \ge 0$  (that is, each  $b_i \ge 0$ )
  - $\circ$  In this case, x = 0 is a feasible vertex.
  - $\,\circ\,$  In the slack form, this means setting the nonbasic variables to 0
- > We'll later see what to do in the general case



• What next? Let's look at an example

$$z = 3x_1 + x_2 + 2x_3$$
  

$$x_4 = 30 - x_1 - x_2 - 3x_3$$
  

$$x_5 = 24 - 2x_1 - 2x_2 - 5x_3$$
  

$$x_6 = 36 - 4x_1 - x_2 - 2x_3$$
  

$$x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$$

- To increase the value of z:
  - Find a nonbasic variable with a positive coefficient

• This is called an *entering variable* 

See how much you can increase its value without violating any constraints



$$z = 3x_1 + x_2 + 2x_3$$
  

$$x_4 = 30 - x_1 - x_2 - 3x_3$$
  

$$x_5 = 24 - 2x_1 - 2x_2 - 5x_3$$
  

$$x_6 = 36 - 4x_1 - x_2 - 2x_3$$
Tightest obstacle  

$$x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$$

Solve the tightest obstacle for the nonbasic variable

$$x_1 = 9 - \frac{x_2}{4} - \frac{x_3}{2} - \frac{x_6}{4}$$

Substitute the entering variable (called pivot) in other equations
 Now x<sub>1</sub> becomes basic and x<sub>6</sub> becomes non-basic
 x<sub>6</sub> is called the *leaving variable*



- After one iteration of this step:
  - > The basic feasible solution (i.e., substituting 0 for all nonbasic variables) improves from z = 0 to z = 27
- Repeat!



#### Entering variable Try to increase!



$$z = 28 - \frac{x_3}{6} - \frac{x_5}{6} - \frac{2x_6}{3}$$

$$x_1 = 8 + \frac{x_3}{6} + \frac{x_5}{6} - \frac{x_6}{3}$$

$$x_2 = 4 - \frac{8x_3}{3} - \frac{2x_5}{3} + \frac{x_6}{3}$$

$$x_4 = 18 - \frac{x_3}{2} + \frac{x_5}{2}$$

$$x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6} \ge 0$$

- There is no entering variable (nonbasic variable with positive coefficient)
- What now? Nothing! We are done.
- Take the basic feasible solution ( $x_3 = x_5 = x_6 = 0$ ).
- Gives the optimal value z = 28
- In the optimal solution,  $x_1 = 8$ ,  $x_2 = 4$ ,  $x_3 = 0$

## Simplex Overview



## Simplex Overview



## Simplex Overview



## Simplex Overview



## Simplex Overview



- What if the entering variable has no upper bound?
  - > If it doesn't appear in any constraints, or only appears in constraints where it can go to ∞
  - > Then z can also go to  $\infty$ , so declare that LP is unbounded
- What if pivoting doesn't change the constant in *z*?
  - > Known as *degeneracy*, and can lead to infinite loops
  - Can be prevented by "perturbing" b by a small random amount in each coordinate
  - Or by carefully breaking ties among entering and leaving variables, e.g., by smallest index (known as *Bland's rule*)

- We assumed  $b \ge 0$ , and then started with the vertex x = 0
- What if this assumption does not hold?



- We assumed  $b \ge 0$ , and then started with the vertex x = 0
- What if this assumption does not hold?



- We assumed  $b \ge 0$ , and then started with the vertex x = 0
- What if this assumption does not hold?



#### What now?

- Solve  $LP_4$  using simplex with the initial basic solution being x = s = 0, z = |b|
- If its optimum value is 0, extract a basic feasible solution x\* from it, use it to solve LP<sub>1</sub> using simplex
- If optimum value for  $LP_4$  is greater than 0, then  $LP_1$  is infeasible

- Curious about pseudocode? Proof of correctness? Running time analysis?
- See textbook for details, but this is <u>NOT</u> in syllabus!

# Running Time

### Notes

- #vertices of a polytope can be exponential in the #constraints
  - There are examples where simplex takes exponential time if you choose your pivots arbitrarily

• No pivot rule known which guarantees polynomial running time

- > Other algorithms known which run in polynomial time
  - Ellipsoid method, interior point method, ...
  - $\circ$  Ellipsoid uses  $O(mn^3L)$  arithmetic operations
    - *L* = length of input in binary
  - But no known *strongly polynomial time* algorithm
    - Number of arithmetic operations = poly(m,n)
    - We know how to avoid dependence on length(b), but not for length(A)

- Suppose you design a state-of-the-art LP solver that can solve very large problem instances
- You want to convince someone that you have this new technology without showing them the code
  - Idea: They can give you very large LPs and you can quickly return the optimal solutions
  - Question: But how would they know that your solutions are optimal, if they don't have the technology to solve those LPs?

 $\max x_1 + 6x_2$  $x_1 \le 200$  $x_2 \le 300$  $x_1 + x_2 \le 400$  $x_1, x_2 \ge 0$ 

- Suppose I tell you that  $(x_1, x_2) = (100,300)$  is optimal with objective value 1900
- How can you check this?
  - Note: Can easily substitute (x<sub>1</sub>, x<sub>2</sub>), and verify that it is feasible, and its objective value is indeed 1900

- max  $x_1 + 6x_2$ 
  - $x_1 \le 200$
  - $x_2 \le 300$
- $x_1 + x_2 \le 400$ 
  - $x_1, x_2 \ge 0$

• Claim:  $(x_1, x_2) = (100,300)$  is optimal with objective value 1900

- Any solution that satisfies these inequalities also satisfies their positive combinations
  - E.g. 2\*first\_constraint + 5\*second\_constraint + 3\*third\_constraint
  - > Try to take combinations which give you  $x_1 + 6x_2$  on LHS

- $\max x_1 + 6x_2$ 
  - $x_1 \le 200$
  - $x_2 \le 300$
- $x_1 + x_2 \le 400$ 
  - $x_1, x_2 \ge 0$

• Claim:  $(x_1, x_2) = (100,300)$  is optimal with objective value 1900

- first\_constraint + 6\*second\_constraint
  - >  $x_1 + 6x_2 ≤ 200 + 6 * 300 = 2000$
  - > This shows that no feasible solution can beat 2000

- $\max x_1 + 6x_2$ 
  - $x_1 \le 200$
  - $x_2 \le 300$
- $x_1 + x_2 \le 400$ 
  - $x_1, x_2 \ge 0$

• Claim:  $(x_1, x_2) = (100,300)$  is optimal with objective value 1900

- 5\*second\_constraint + third\_constraint
  - >  $5x_2 + (x_1 + x_2) ≤ 5 * 300 + 400 = 1900$
  - > This shows that no feasible solution can beat 1900
    - $\,\circ\,$  No need to proceed further
    - We already know one solution that achieves 1900, so it must be optimal!

- Introduce variables  $y_1, y_2, y_3$  by which we will be multiplying the three constraints
  - Note: These need not be integers. They can be reals.

| Multiplier | Inequality |       |        |     |
|------------|------------|-------|--------|-----|
| $y_1$      | $x_1$      |       | $\leq$ | 200 |
| $y_2$      |            | $x_2$ | $\leq$ | 300 |
| $y_3$      | $x_1 +$    | $x_2$ | $\leq$ | 400 |

• After multiplying and adding constraints, we get:  $(y_1 + y_3)x_1 + (y_2 + y_3)x_2 \le 200y_1 + 300y_2 + 400y_3$ 

| Multiplier | Inequality |       |            |
|------------|------------|-------|------------|
| $y_1$      | $x_1$      |       | $\leq 200$ |
| $y_2$      |            | $x_2$ | $\leq 300$ |
| $y_3$      | $x_1 +$    | $x_2$ | $\leq 400$ |

> We have:

 $(y_1 + y_3)x_1 + (y_2 + y_3)x_2 \le 200y_1 + 300y_2 + 400y_3$ 

### > What do we want?

o y<sub>1</sub>, y<sub>2</sub>, y<sub>3</sub> ≥ 0 because otherwise direction of inequality flips o LHS to look like objective  $x_1 + 6x_2$ 

- In fact, it is sufficient for LHS to be an upper bound on objective
- So, we want  $y_1 + y_3 \ge 1$  and  $y_2 + y_3 \ge 6$

| Multiplier | Inequality |       |            |
|------------|------------|-------|------------|
| $y_1$      | $x_1$      |       | $\leq 200$ |
| $y_2$      |            | $x_2$ | $\leq 300$ |
| $y_3$      | $x_1 +$    | $x_2$ | $\leq 400$ |

> We have:

 $(y_1 + y_3)x_1 + (y_2 + y_3)x_2 \le 200y_1 + 300y_2 + 400y_3$ 

### > What do we want?

- $y_1, y_2, y_3 \ge 0$  $0 y_1 + y_3 \ge 1, \ y_2 + y_3 \ge 6$
- $\circ\,$  Subject to these, we want to minimize the upper bound  $200y_1 + 300y_2 + 400y_3$

| Multiplier | Inequality |       |            |
|------------|------------|-------|------------|
| $y_1$      | $x_1$      |       | $\leq 200$ |
| $y_2$      |            | $x_2$ | $\leq 300$ |
| $y_3$      | $x_1 +$    | $x_2$ | $\leq 400$ |

> We have:

 $(y_1 + y_3)x_1 + (y_2 + y_3)x_2 \le 200y_1 + 300y_2 + 400y_3$ 

### What do we want?

- This is just another LP!
- Called the dual
- Original LP is called the primal

 $\min \ 200y_1 + 300y_2 + 400y_3$  $y_1 + y_3 \ge 1$  $y_2 + y_3 \ge 6$  $y_1, y_2, y_3 \ge 0$ 

#### PRIMAL

DUAL

| $\max x_1 + 6x_2$   |  |
|---------------------|--|
| $x_1 \le 200$       |  |
| $x_2 \le 300$       |  |
| $x_1 + x_2 \le 400$ |  |
| $x_1, x_2 \ge 0$    |  |

min  $200y_1 + 300y_2 + 400y_3$   $y_1 + y_3 \ge 1$   $y_2 + y_3 \ge 6$  $y_1, y_2, y_3 \ge 0$ 

### > The problem of verifying optimality is another LP

- $\circ$  For any  $(y_1, y_2, y_3)$  that you can find, the objective value of the dual is an upper bound on the objective value of the primal
- If you found a specific  $(y_1, y_2, y_3)$  for which this dual objective becomes equal to the primal objective for the  $(x_1, x_2)$  given to you, then you would know that the given  $(x_1, x_2)$  is optimal for primal (and your  $(y_1, y_2, y_3)$  is optimal for dual)

#### PRIMAL

#### DUAL

 $\begin{array}{ll} \max \ x_1 + 6x_2 \\ x_1 \le 200 \\ x_2 \le 300 \\ x_1 + x_2 \le 400 \\ x_1, x_2 \ge 0 \end{array} \begin{array}{ll} \min \ 200y_1 + 300y_2 + 400y_3 \\ y_1 + y_3 \ge 1 \\ y_2 + y_3 \ge 6 \\ y_1, y_2, y_3 \ge 0 \end{array}$ 

### > The problem of verifying optimality is another LP

- Issue 1: But...but...if I can't solve large LPs, how will I solve the dual to verify if optimality of  $(x_1, x_2)$  given to me?
  - You don't. Ask the other party to give you both  $(x_1, x_2)$  and the corresponding  $(y_1, y_2, y_3)$  for proof of optimality
- Issue 2: What if there are no  $(y_1, y_2, y_3)$  for which dual objective matches primal objective under optimal solution  $(x_1, x_2)$ ?
  - As we will see, this can't happen!

| Primal LP                              | Dual LP                                     |
|----------------------------------------|---------------------------------------------|
| $\max \mathbf{c}^T \mathbf{x}$         | min $\mathbf{y}^T \mathbf{b}$               |
| $\mathbf{A}\mathbf{x} \leq \mathbf{b}$ | $\mathbf{y}^T \mathbf{A} \geq \mathbf{c}^T$ |
| $\mathbf{x} \ge 0$                     | $\mathbf{y} \ge 0$                          |

### > General version, in our standard form for LPs

| Primal LP                              | Dual LP                                    |
|----------------------------------------|--------------------------------------------|
| $\max \mathbf{c}^T \mathbf{x}$         | min $\mathbf{y}^T \mathbf{b}$              |
| $\mathbf{A}\mathbf{x} \leq \mathbf{b}$ | $\mathbf{y}^T \mathbf{A} \ge \mathbf{c}^T$ |
| $\mathbf{x} \ge 0$                     | $\mathbf{y} \ge 0$                         |

 $\circ c^T x$  for any feasible  $x \leq y^T b$  for any feasible y

 $\circ \max_{\text{primal feasible } x} c^T x \leq \min_{\text{dual feasible } y} y^T b$ 

• If there is  $(x^*, y^*)$  with  $c^T x^* = (y^*)^T b$ , then both must be optimal

 $\circ$  In fact, for optimal ( $x^*$ ,  $y^*$ ), we claim that this must happen!

• Does this remind you of something? Max-flow, min-cut...

### Weak Duality

Primal LPDual LP $\max \mathbf{c}^T \mathbf{x}$  $\min \mathbf{y}^T \mathbf{b}$  $\mathbf{A}\mathbf{x} \leq \mathbf{b}$  $\mathbf{y}^T \mathbf{A} \geq \mathbf{c}^T$  $\mathbf{x} \geq 0$  $\mathbf{y} \geq 0$ 

- From here on, assume primal LP is feasible and bounded
- Weak duality theorem:

> For any primal feasible x and dual feasible y,  $c^T x \le y^T b$ 

• Proof:

$$c^T x \le (y^T A)x = y^T (Ax) \le y^T b$$

### **Strong Duality**

Primal LPDual LP $\max \mathbf{c}^T \mathbf{x}$  $\min \mathbf{y}^T \mathbf{b}$  $\mathbf{A}\mathbf{x} \leq \mathbf{b}$  $\mathbf{y}^T \mathbf{A} \geq \mathbf{c}^T$  $\mathbf{x} \geq 0$  $\mathbf{y} \geq 0$ 

• Strong duality theorem:

> For any primal optimal  $x^*$  and dual optimal  $y^*$ ,  $c^T x^* = (y^*)^T b$ 



# **Strong Duality Proof**

This slide is not in the scope of the course

- Farkas' lemma (one of many, many versions):
  - Exactly one of the following holds:
  - 1) There exists x such that  $Ax \leq b$
  - 2) There exists y such that  $y^T A = 0$ ,  $y \ge 0$ ,  $y^T b < 0$

### • Geometric intuition:

- > Define image of A = set of all possible values of Ax
- It is known that this is a "linear subspace" (e.g., a line in a plane, a line or plane in 3D, etc)

# **Strong Duality Proof**

This slide is not in the scope of the course

- Farkas' lemma: Exactly one of the following holds:
  - 1) There exists x such that  $Ax \leq b$
  - 2) There exists y such that  $y^T A = 0$ ,  $y \ge 0$ ,  $y^T b < 0$

1) Image of A contains a point "below" b

2) The region "below" b doesn't intersect image of A this is witnessed by normal vector to the image of A



## **Strong Duality**

Primal LPDual LP $\max \mathbf{c}^T \mathbf{x}$  $\min \mathbf{y}^T \mathbf{b}$  $\mathbf{A}\mathbf{x} \leq \mathbf{b}$  $\mathbf{y}^T \mathbf{A} \geq \mathbf{c}^T$  $\mathbf{x} \geq 0$  $\mathbf{y} \geq 0$ 

- Strong duality theorem:
  - > For any primal optimal  $x^*$  and dual optimal  $y^*$ ,  $c^T x^* = (y^*)^T b$
  - > Proof (by contradiction):
    - Let  $z^* = c^T x^*$  be the optimal primal value.
    - $\,\circ\,$  Suppose optimal dual objective value  $> z^*$
    - So, there is no y such that  $y^T A \ge c^T$  and  $y^T b \le z^*$ , i.e.,

$$\binom{-A^T}{b^T} y \le \binom{c}{z^*}$$

## **Strong Duality**

This slide is not in the scope of the course

> There is no y such that 
$$\begin{pmatrix} -A^T \\ b^T \end{pmatrix} y \leq \begin{pmatrix} c \\ z^* \end{pmatrix}$$

 $\succ$  By Farkas' lemma, there is x and  $\lambda$  such that

$$(x^T \quad \lambda) \begin{pmatrix} -A^T \\ b^T \end{pmatrix} = 0, x \ge 0, \lambda \ge 0, -x^T c + \lambda z^* < 0$$

> Case 1:  $\lambda > 0$ 

• Note:  $c^T x > \lambda z^*$  and  $Ax = 0 = \lambda b$ .

- Divide both by  $\lambda$  to get  $A\left(\frac{x}{\lambda}\right) = b$  and  $c^T\left(\frac{x}{\lambda}\right) > z^*$ 
  - Contradicts optimality of  $z^*$

### > Case 2: $\lambda = 0$

- We have Ax = 0 and  $c^T x > 0$
- Adding x to optimal  $x^*$  of primal improves objective value beyond  $z^* \Rightarrow$  contradiction

- A canning company operates two canning plants (A and B).
- Three suppliers of fresh fruits: ---
- Shipping costs in \$/tonne: \_\_\_\_\_
- Plant capacities and labour costs:
   Capacity Labour costs
- Selling price: \$50/tonne, no limit
- Objective: Find which plant should get how much supply from each grower to maximize profit

- \$1: 200 tonnes at \$11/tonne
- S2: 310 tonnes at \$10/tonne
- S3: 420 tonnes at \$9/tonne
- To: Plant A Plant B From: S1 3 3.5 S2 2 2.5 S3 6 4
  - Plant A Plant B 460 tonnes 560 tonnes \$26/tonne \$21/tonne

- Similarly to the brewery example from earlier:
  - > A brewery can invest its inventory of corn, hops and malt into producing three types of beer
  - > Per unit resource requirement and profit are as given below
  - The brewery cannot produce positive amounts of both A and B
  - Goal: maximize profit

| Beverage | Corn (kg) | Hops (kg) | Malt (kg) | Profit (\$) |
|----------|-----------|-----------|-----------|-------------|
| А        | 5         | 4         | 35        | 13          |
| В        | 15        | 4         | 20        | 23          |
| С        | 10        | 7         | 25        | 15          |
| Limit    | 500       | 300       | 1000      |             |

- Similarly to the brewery example from the beginning:
  - > A brewery can invest its inventory of corn, hops and malt into producing three types of beer
  - > Per unit resource requirement and profit are as given below
  - > The brewery can only produce *C* in integral quantities up to 100
  - Goal: maximize profit

| Beverage | Corn (kg) | Hops (kg) | Malt (kg) | Profit (\$) |
|----------|-----------|-----------|-----------|-------------|
| А        | 5         | 4         | 35        | 13          |
| В        | 15        | 4         | 20        | 23          |
| С        | 10        | 7         | 25        | 15          |
| Limit    | 500       | 300       | 1000      |             |

- Similarly to the brewery example from the beginning:
  - > A brewery can invest its inventory of corn, hops and malt into producing three types of beer
  - > Per unit resource requirement and profit are as given below
  - Goal: maximize profit, <u>but if there are multiple profit-maximizing</u> solutions, then...
    - Break ties to choose those with the largest quantity of A
    - Break any further ties to choose those with the largest quantity of *B*

| Beverage | Corn (kg) | Hops (kg) | Malt (kg) | Profit (\$) |
|----------|-----------|-----------|-----------|-------------|
| А        | 5         | 4         | 35        | 13          |
| В        | 15        | 4         | 20        | 23          |
| С        | 10        | 7         | 25        | 15          |
| Limit    | 500       | 300       | 1000      |             |

### More Tricks

- Constraint:  $|x| \leq 3$ 
  - > Replace with constraints  $x \le 3$  and  $-x \le 3$
  - > What if the constraint is  $|x| \ge 3$ ?
- Objective: minimize 3|x| + y
  - > Add a variable t
  - > Add the constraints  $t \ge x$  and  $t \ge -x$  (so  $t \ge |x|$ )
  - > Change the objective to minimize 3t + y
  - > What if the objective is to maximize 3|x| + y?
- Objective: minimize max(3x + y, x + 2y)
  - > Hint: minimizing 3|x| + y in the earlier bullet was equivalent to minimizing max(3x + y, -3x + y)

