CSC373

Week 7: Linear Programming

Illustration Courtesy: Kevin Wayne & Denis Pankratov

Recap

Network flow

- Ford-Fulkerson algorithm
 - $\circ~$ Ways to make the running time polynomial
- > Correctness using max-flow, min-cut
- > Applications:
 - Edge-disjoint paths
 - Multiple sources/sinks
 - Circulation
 - Circulation with lower bounds
 - Survey design
 - Image segmentation
 - Profit maximization

Brewery Example

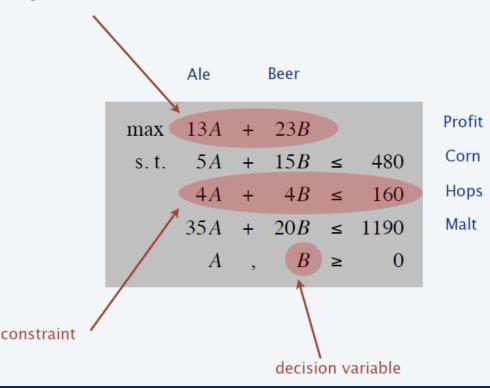
- A brewery can invest its inventory of corn, hops and malt into producing some amount of ale and some amount of beer
 - Per unit resource requirement and profit of the two items are as given below

Beverage	Corn (pounds)	Hops (ounces)	Malt (pounds)	Profit (\$)
Ale (barrel)	5	4	35	13
Beer (barrel)	15	4	20	23
constraint	480	160	1190	

Brewery Example

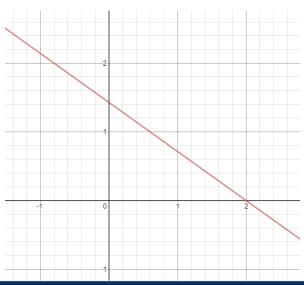
Beverage	Corn (pounds)	Hops (ounces)	Malt (pounds)	Profit (\$)	
Ale (barrel)	5	4	35	13	
Beer (barrel)	15	4	20	23	
constraint	480	160	1190	objecti	ve functio

- Suppose it produces A units of ale and B units of beer
- Then we want to solve this program:



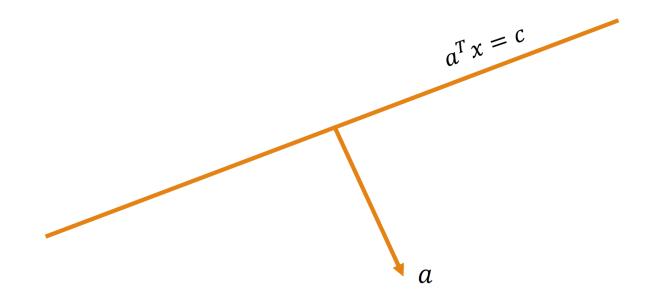
Linear Function

- $f: \mathbb{R}^n \to \mathbb{R}$ is a linear function if $f(x) = a^T x$ for some $a \in \mathbb{R}^n$ > Example: $f(x_1, x_2) = 3x_1 - 5x_2 = {3 \choose -5}^T {x_1 \choose x_2}$
- Linear objective: *f*
- Linear constraints:
 - > g(x) = c, where $g: \mathbb{R}^n \to \mathbb{R}$ is a linear function and $c \in \mathbb{R}$
 - > Line in the plane (or a hyperplane in \mathbb{R}^n)
 - > Example: $5x_1 + 7x_2 = 10$



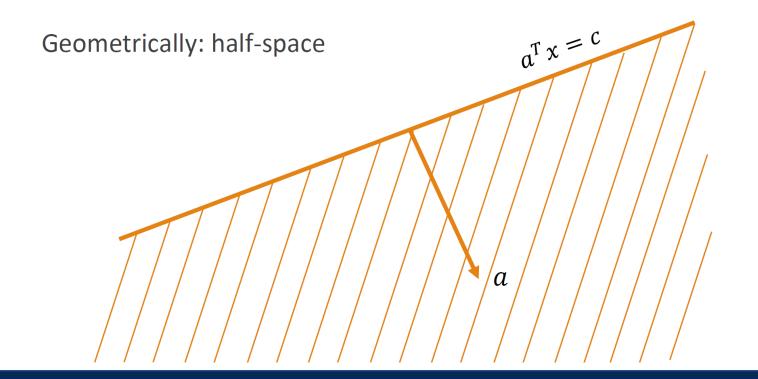
Linear Function

• Geometrically, a is the normal vector of the line(or hyperplane) represented by $a^T x = c$



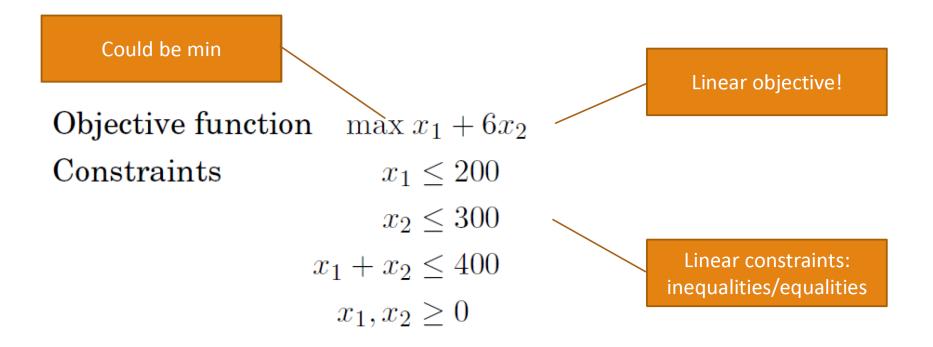
Linear Inequality

• $a^T x \leq c$ represents a "half-space"

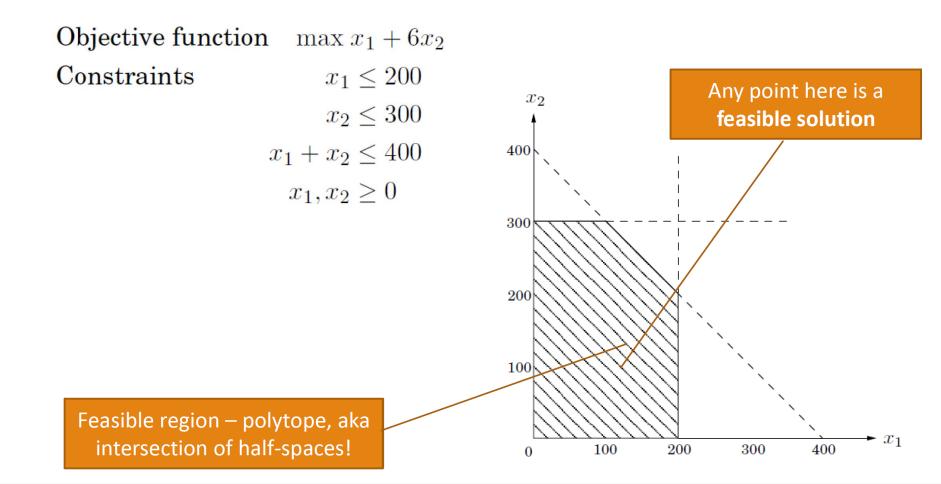


Linear Programming

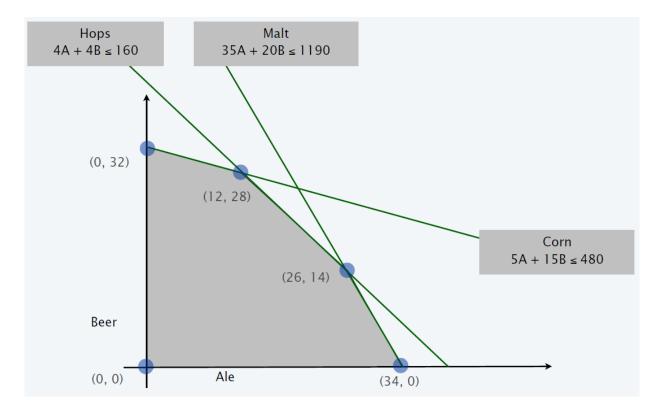
Maximize/minimize a linear function subject to linear equality/inequality constraints



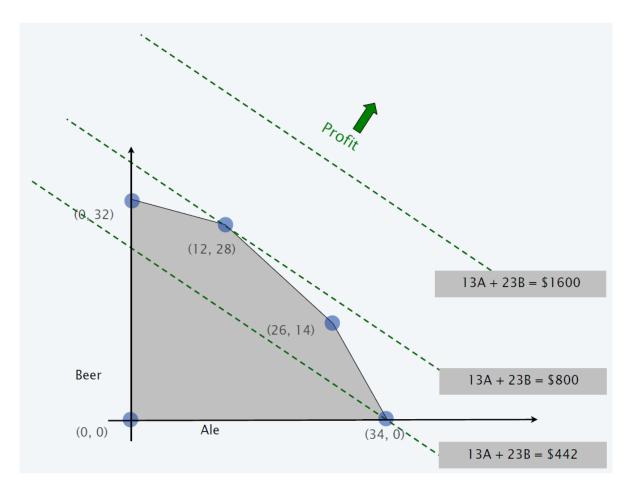
Geometrically...



Back to Brewery Example

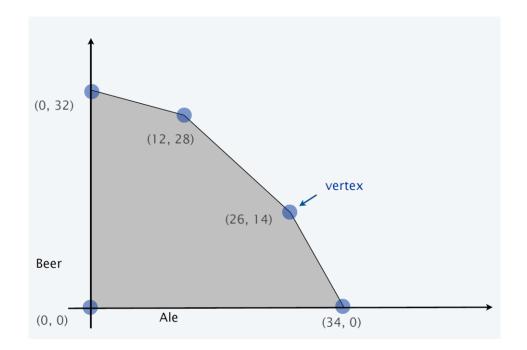


Back to Brewery Example



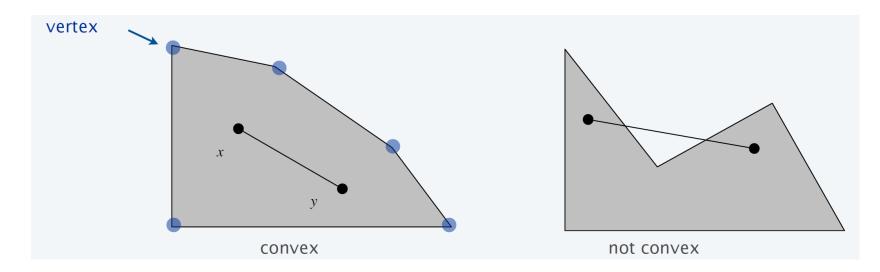
Optimal Solution At A Vertex

• Claim: Regardless of the objective function, there must be a vertex that is an optimal solution



Convexity

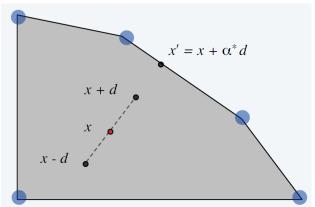
- Convex set: *S* is convex if $x, y \in S, \lambda \in [0,1] \Rightarrow \lambda x + (1 - \lambda)y \in S$
- Vertex: A point which cannot be written as a strict convex combination of any two points in the set
- Observation: Feasible region of an LP is a convex set



Optimal Solution At A Vertex

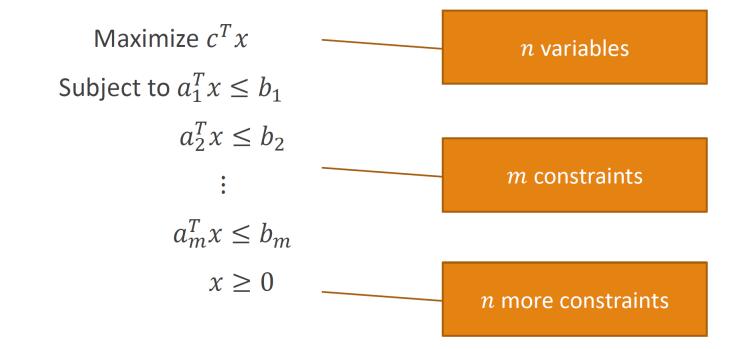
• Intuitive proof of the claim:

- > Start at some point *x* in the feasible region
- If x is not a vertex:
 - Find a direction d such that points within a positive distance of ϵ from x in both d and -d directions are within the feasible region
 - Objective must not decrease in at least one of the two directions
 - Follow that direction until you reach a new point x for which at least one more constraint is "tight"
- > Repeat until we are at a vertex



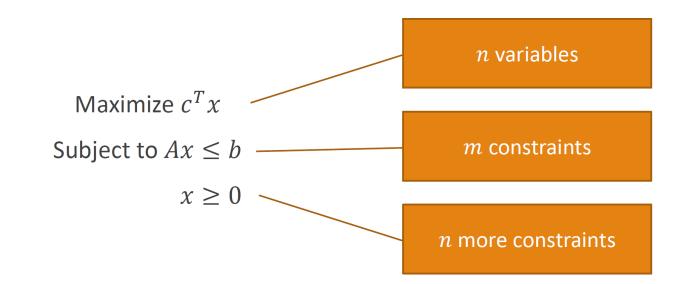
LP, Standard Formulation

- Input: $c, a_1, a_2, \dots, a_m \in \mathbb{R}^n, b \in \mathbb{R}^m$
 - \succ There are n variables and m constraints
- Goal:



LP, Standard Matrix Form

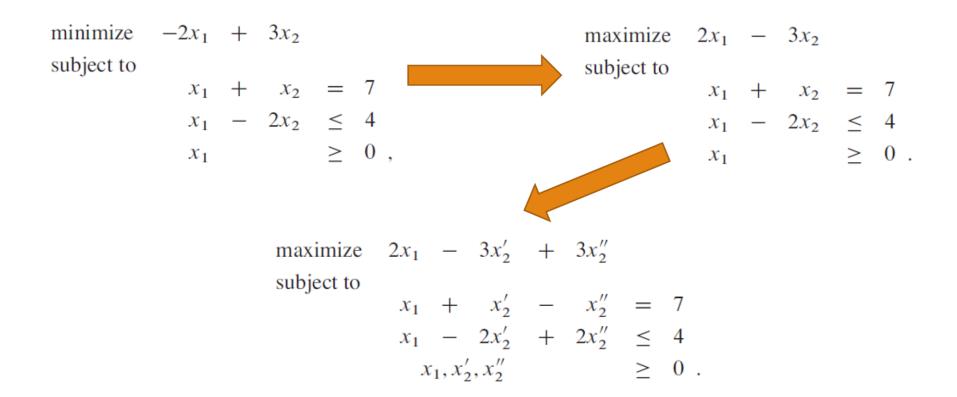
- Input: $c, a_1, a_2, \dots, a_m \in \mathbb{R}^n, b \in \mathbb{R}^m$
 - \succ There are n variables and m constraints
- Goal:



Convert to Standard Form

- What if the LP is not in standard form?
 - ➤ Constraints that use ≥
 $a^T x \ge b \iff -a^T x \le -b$
 - > Constraints that use equality $a^T x = b \iff a^T x \le b, a^T x \ge b$
 - > Objective function is a minimization
 Minimize $c^T x \iff$ Maximize $-c^T x$
 - > Variable is unconstrained
 - x with no constraint \Leftrightarrow Replace x by two variables x'and x'', replace every occurrence of x with x' - x'', and add constraints $x' \ge 0$, $x'' \ge 0$

LP Transformation Example



Optimal Solution

- Does an LP always have an optimal solution?
- No! The LP can "fail" for two reasons:
 - 1. It is *infeasible*, i.e., $\{x | Ax \le b\} = \emptyset$

○ E.g., the set of constraints is $\{x_1 \le 1, -x_1 \le -2\}$

2. It is *unbounded*, i.e., the objective function can be made arbitrarily large (for maximization) or small (for minimization)

○ E.g., "maximize x_1 subject to $x_1 \ge 0$ "

• But if the LP has an optimal solution, we know that there must be a vertex which is optimal

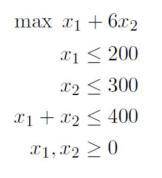
Simplex Algorithm

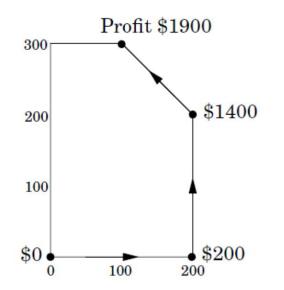
```
let v be any vertex of the feasible region while there is a neighbor v^\prime of v with better objective value: set v=v^\prime
```

- Simple algorithm, easy to specify geometrically
- Worst-case running time is exponential
- Excellent performance in practice

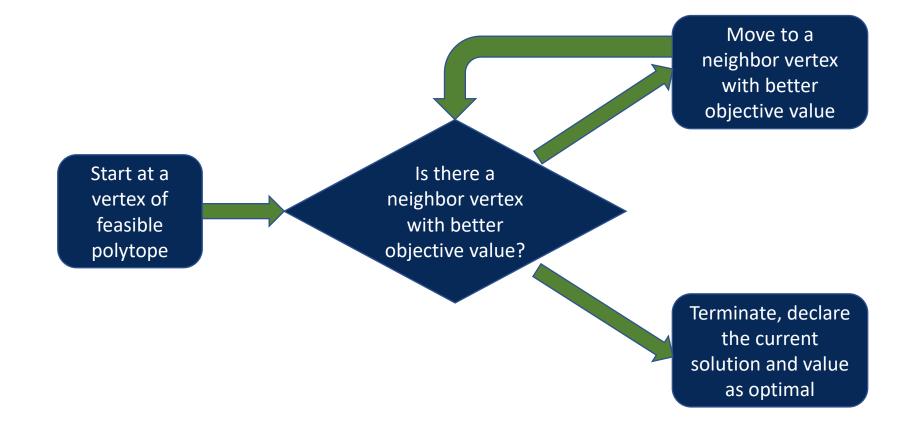
Simplex: Geometric View

let v be any vertex of the feasible region while there is a neighbor v' of v with better objective value: set v = v'





Algorithmic Implementation

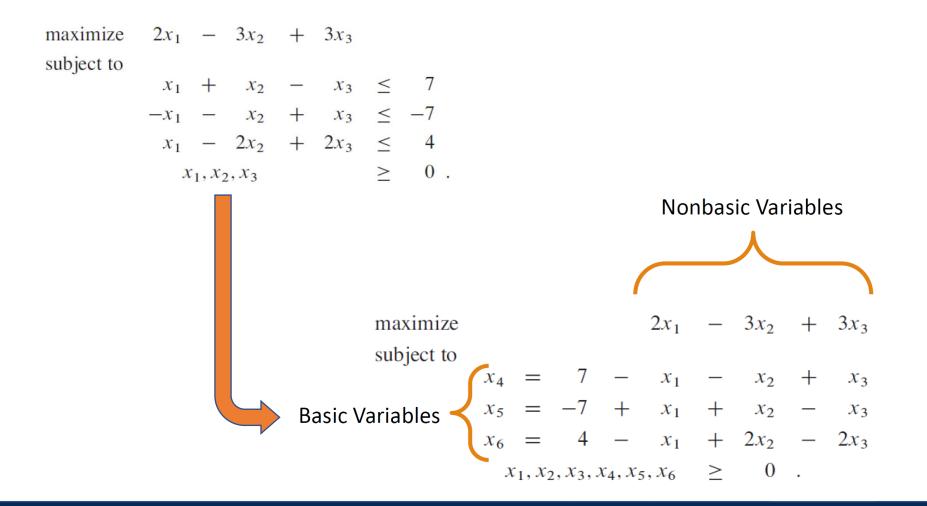


How Do We Implement This?

- We'll work with the slack form of LP
 - Convenient for implementing simplex operations
 - We want to maximize z in the slack form, but for now, forget about the maximization objective

Standard form:Slack form:Maximize
$$c^T x$$
 $z = c^T x$ Subject to $Ax \le b$ $s = b - Ax$ $x \ge 0$ $s, x \ge 0$

Slack Form



Slack Form

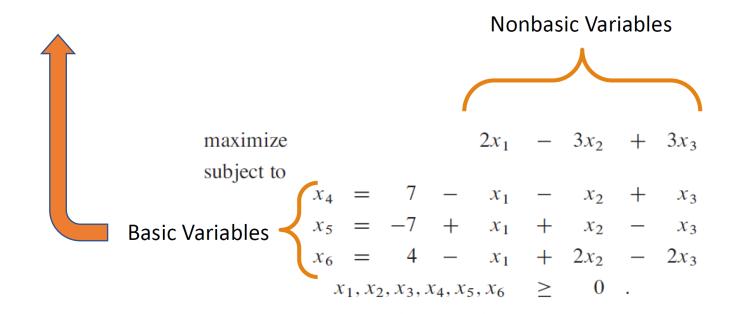
$$z = 2x_1 - 3x_2 + 3x_3$$

$$x_4 = 7 - x_1 - x_2 + x_3$$

$$x_5 = -7 + x_1 + x_2 - x_3$$

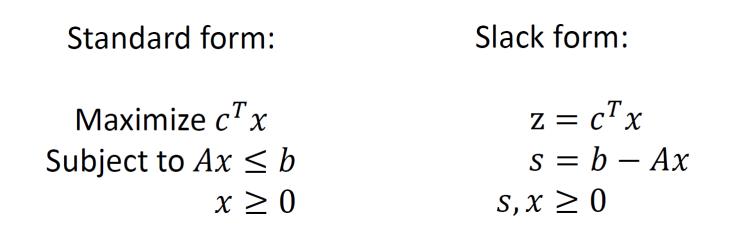
$$x_6 = 4 - x_1 + 2x_2 - 2x_3$$

$$x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$$



Start at a feasible vertex

- How do we find a feasible vertex?
- > For now, assume $b \ge 0$ (that is, each $b_i \ge 0$)
 - \circ In this case, x = 0 is a feasible vertex.
 - $\,\circ\,$ In the slack form, this means setting the nonbasic variables to 0
- > We'll later see what to do in the general case



• What next? Let's look at an example

$$z = 3x_1 + x_2 + 2x_3$$

$$x_4 = 30 - x_1 - x_2 - 3x_3$$

$$x_5 = 24 - 2x_1 - 2x_2 - 5x_3$$

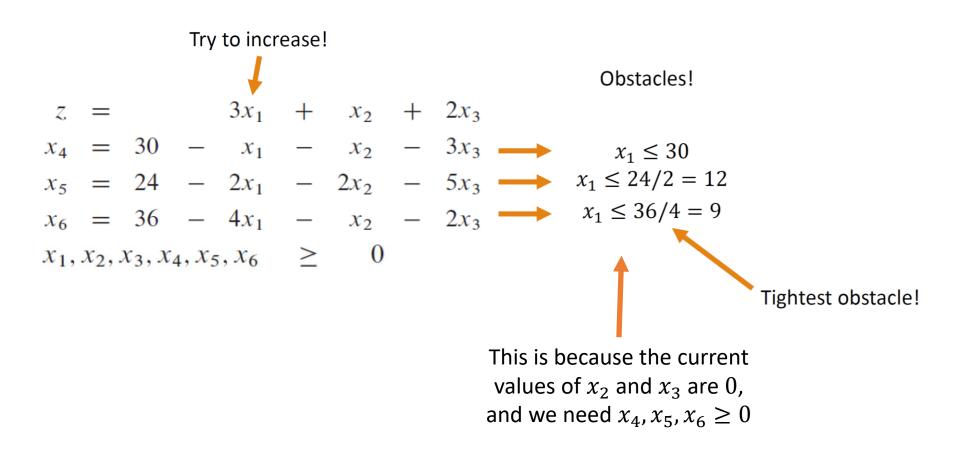
$$x_6 = 36 - 4x_1 - x_2 - 2x_3$$

$$x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$$

- To increase the value of z:
 - Find a nonbasic variable with a positive coefficient

• This is called an *entering variable*

See how much you can increase its value without violating any constraints



$$z = 3x_1 + x_2 + 2x_3$$

$$x_4 = 30 - x_1 - x_2 - 3x_3$$

$$x_5 = 24 - 2x_1 - 2x_2 - 5x_3$$

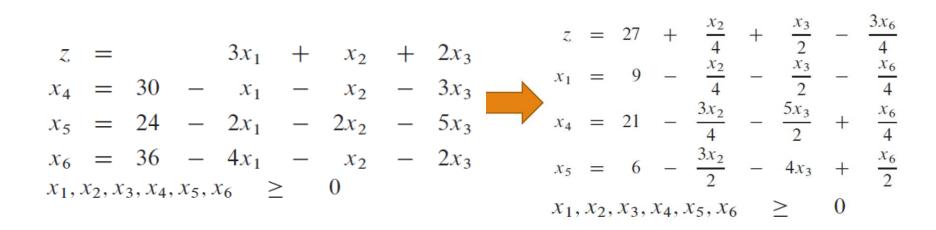
$$x_6 = 36 - 4x_1 - x_2 - 2x_3$$
Tightest obstacle

$$x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$$

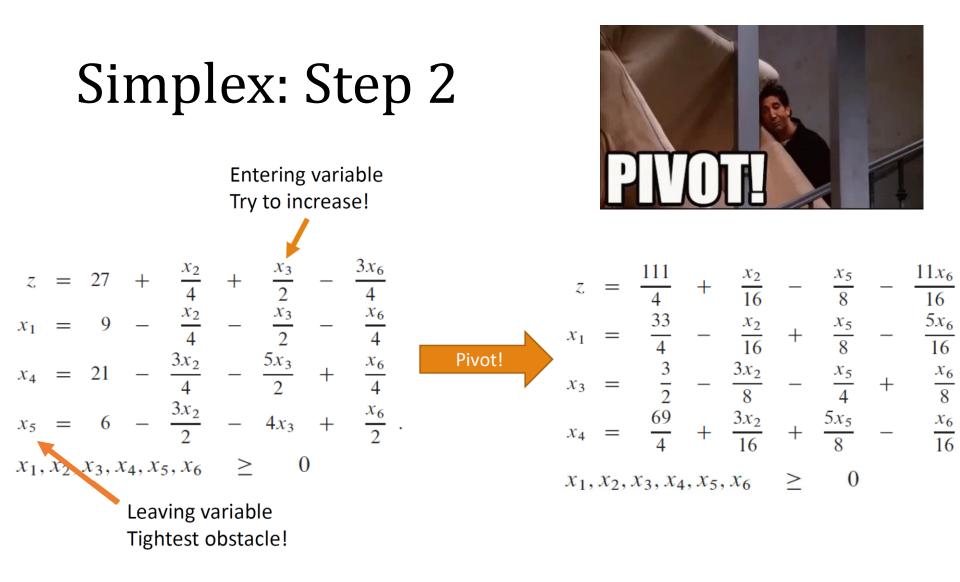
Solve the tightest obstacle for the nonbasic variable

$$x_1 = 9 - \frac{x_2}{4} - \frac{x_3}{2} - \frac{x_6}{4}$$

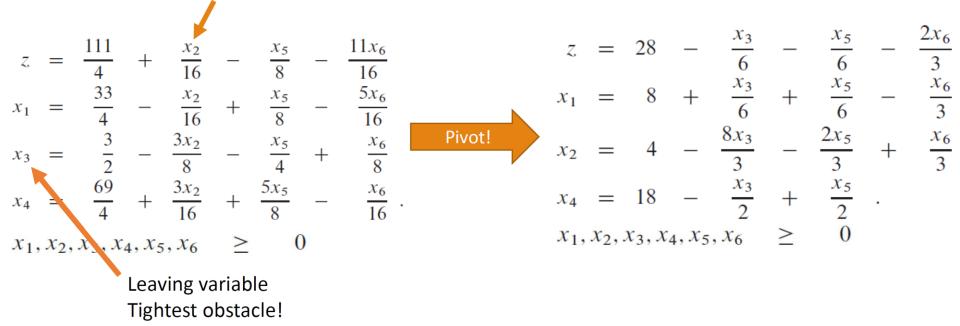
Substitute the entering variable (called pivot) in other equations
 Now x₁ becomes basic and x₆ becomes non-basic
 x₆ is called the *leaving variable*



- After one iteration of this step:
 - > The basic feasible solution (i.e., substituting 0 for all nonbasic variables) improves from z = 0 to z = 27
- Repeat!



Entering variable Try to increase!



$$z = 28 - \frac{x_3}{6} - \frac{x_5}{6} - \frac{2x_6}{3}$$

$$x_1 = 8 + \frac{x_3}{6} + \frac{x_5}{6} - \frac{x_6}{3}$$

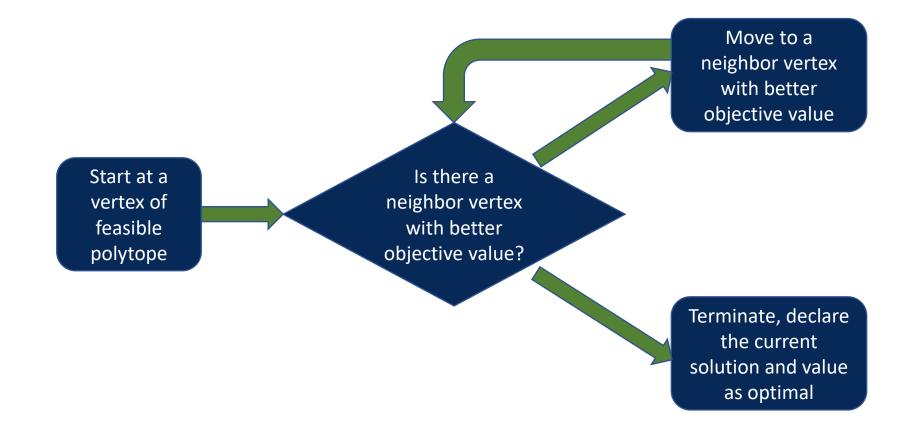
$$x_2 = 4 - \frac{8x_3}{3} - \frac{2x_5}{3} + \frac{x_6}{3}$$

$$x_4 = 18 - \frac{x_3}{2} + \frac{x_5}{2}$$

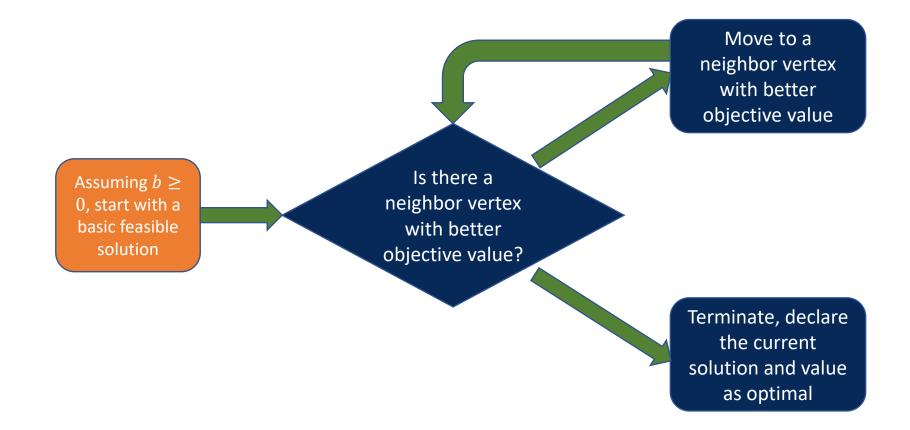
$$x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6} \ge 0$$

- There is no entering variable (nonbasic variable with positive coefficient)
- What now? Nothing! We are done.
- Take the basic feasible solution ($x_3 = x_5 = x_6 = 0$).
- Gives the optimal value z = 28
- In the optimal solution, $x_1 = 8$, $x_2 = 4$, $x_3 = 0$

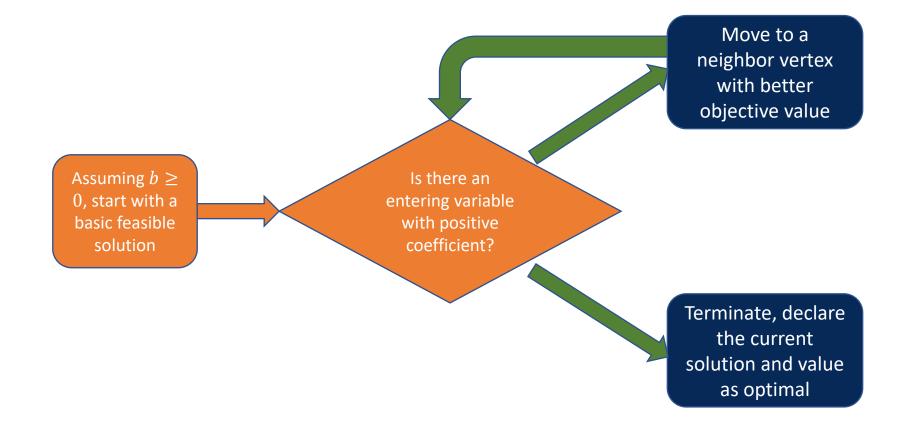
Simplex Overview



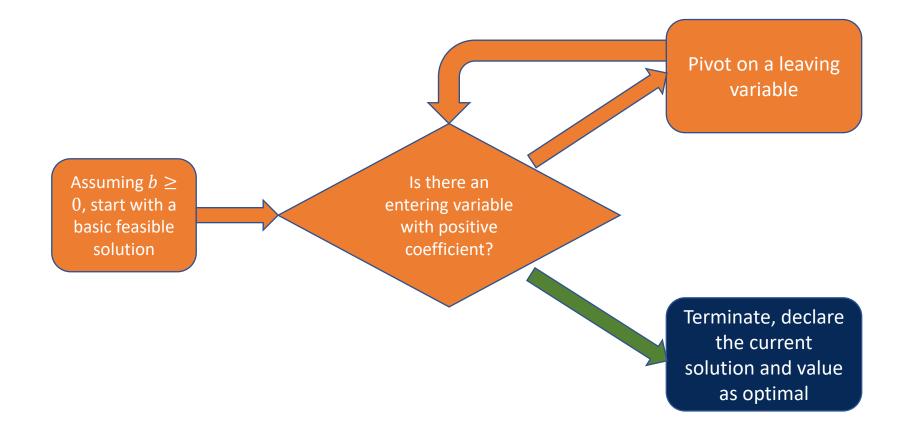
Simplex Overview



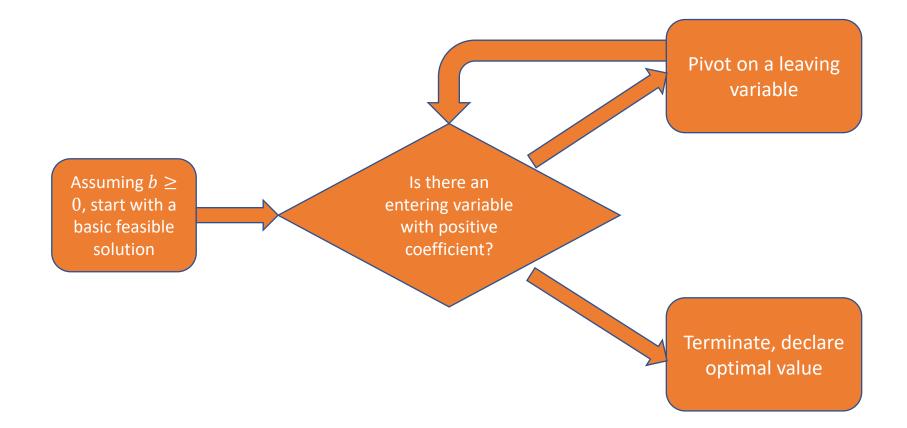
Simplex Overview



Simplex Overview

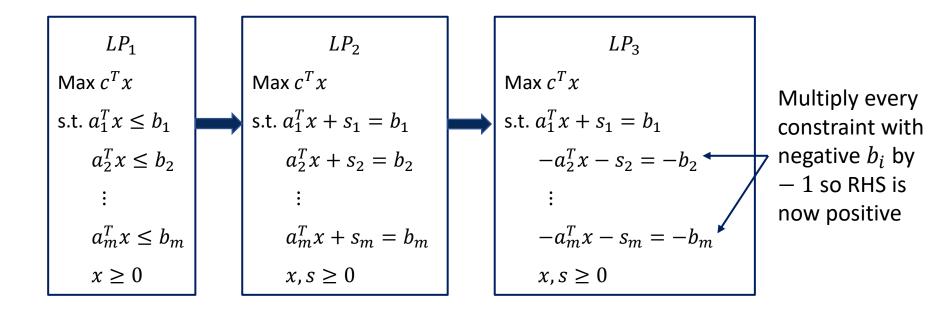


Simplex Overview

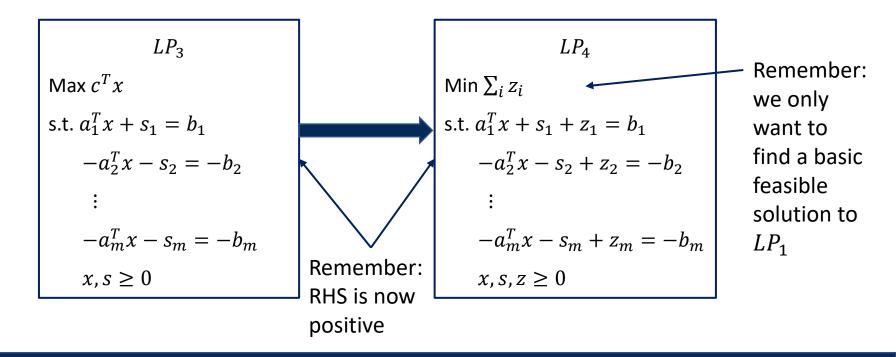


- What if the entering variable has no upper bound?
 - > If it doesn't appear in any constraints, or only appears in constraints where it can go to ∞
 - > Then z can also go to ∞ , so declare that LP is unbounded
- What if pivoting doesn't change the constant in *z*?
 - > Known as *degeneracy*, and can lead to infinite loops
 - Can be prevented by "perturbing" b by a small random amount in each coordinate
 - Or by carefully breaking ties among entering and leaving variables, e.g., by smallest index (known as *Bland's rule*)

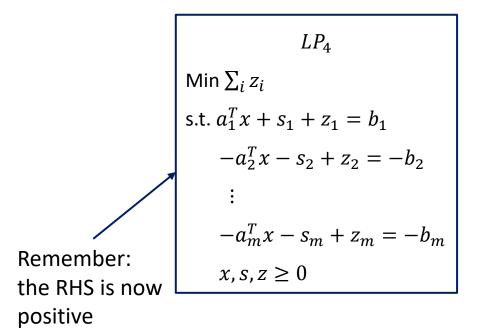
- We assumed $b \ge 0$, and then started with the vertex x = 0
- What if this assumption does not hold?



- We assumed $b \ge 0$, and then started with the vertex x = 0
- What if this assumption does not hold?



- We assumed $b \ge 0$, and then started with the vertex x = 0
- What if this assumption does not hold?



What now?

- Solve LP_4 using simplex with the initial basic solution being x = s = 0, z = |b|
- If its optimum value is 0, extract a basic feasible solution x* from it, use it to solve LP₁ using simplex
- If optimum value for LP_4 is greater than 0, then LP_1 is infeasible

- Curious about pseudocode? Proof of correctness? Running time analysis?
- See textbook for details, but this is <u>NOT</u> in syllabus!

Running Time

Notes

- #vertices of a polytope can be exponential in the #constraints
 - There are examples where simplex takes exponential time if you choose your pivots arbitrarily

• No pivot rule known which guarantees polynomial running time

- > Other algorithms known which run in polynomial time
 - Ellipsoid method, interior point method, ...
 - \circ Ellipsoid uses $O(mn^3L)$ arithmetic operations
 - *L* = length of input in binary
 - But no known *strongly polynomial time* algorithm
 - Number of arithmetic operations = poly(m,n)
 - We know how to avoid dependence on length(b), but not for length(A)

- Suppose you design a state-of-the-art LP solver that can solve very large problem instances
- You want to convince someone that you have this new technology without showing them the code
 - Idea: They can give you very large LPs and you can quickly return the optimal solutions
 - Question: But how would they know that your solutions are optimal, if they don't have the technology to solve those LPs?

 $\max x_1 + 6x_2$ $x_1 \le 200$ $x_2 \le 300$ $x_1 + x_2 \le 400$ $x_1, x_2 \ge 0$

- Suppose I tell you that $(x_1, x_2) = (100,300)$ is optimal with objective value 1900
- How can you check this?
 - Note: Can easily substitute (x₁, x₂), and verify that it is feasible, and its objective value is indeed 1900

- max $x_1 + 6x_2$
 - $x_1 \le 200$
 - $x_2 \le 300$
- $x_1 + x_2 \le 400$
 - $x_1, x_2 \ge 0$

• Claim: $(x_1, x_2) = (100,300)$ is optimal with objective value 1900

- Any solution that satisfies these inequalities also satisfies their positive combinations
 - E.g. 2*first_constraint + 5*second_constraint + 3*third_constraint
 - > Try to take combinations which give you $x_1 + 6x_2$ on LHS

- $\max x_1 + 6x_2$
 - $x_1 \le 200$
 - $x_2 \le 300$
- $x_1 + x_2 \le 400$
 - $x_1, x_2 \ge 0$

• Claim: $(x_1, x_2) = (100,300)$ is optimal with objective value 1900

- first_constraint + 6*second_constraint
 - > $x_1 + 6x_2 ≤ 200 + 6 * 300 = 2000$
 - > This shows that no feasible solution can beat 2000

- $\max x_1 + 6x_2$
 - $x_1 \le 200$
 - $x_2 \le 300$
- $x_1 + x_2 \le 400$
 - $x_1, x_2 \ge 0$

• Claim: $(x_1, x_2) = (100,300)$ is optimal with objective value 1900

- 5*second_constraint + third_constraint
 - > $5x_2 + (x_1 + x_2) ≤ 5 * 300 + 400 = 1900$
 - > This shows that no feasible solution can beat 1900
 - $\,\circ\,$ No need to proceed further
 - We already know one solution that achieves 1900, so it must be optimal!

- Introduce variables y_1, y_2, y_3 by which we will be multiplying the three constraints
 - Note: These need not be integers. They can be reals.

Multiplier	Inequality			
y_1	x_1		\leq	200
y_2		x_2	\leq	300
y_3	$x_1 +$	x_2	\leq	400

• After multiplying and adding constraints, we get: $(y_1 + y_3)x_1 + (y_2 + y_3)x_2 \le 200y_1 + 300y_2 + 400y_3$

Multiplier	Inequality		
y_1	x_1		≤ 200
y_2		x_2	≤ 300
y_3	$x_1 +$	x_2	≤ 400

> We have:

 $(y_1 + y_3)x_1 + (y_2 + y_3)x_2 \le 200y_1 + 300y_2 + 400y_3$

> What do we want?

o y₁, y₂, y₃ ≥ 0 because otherwise direction of inequality flips o LHS to look like objective $x_1 + 6x_2$

- In fact, it is sufficient for LHS to be an upper bound on objective
- So, we want $y_1 + y_3 \ge 1$ and $y_2 + y_3 \ge 6$

Multiplier	Inequality		
y_1	x_1		≤ 200
y_2		x_2	≤ 300
y_3	$x_1 +$	x_2	≤ 400

> We have:

 $(y_1 + y_3)x_1 + (y_2 + y_3)x_2 \le 200y_1 + 300y_2 + 400y_3$

> What do we want?

- $y_1, y_2, y_3 \ge 0$ $0 y_1 + y_3 \ge 1, \ y_2 + y_3 \ge 6$
- $\circ\,$ Subject to these, we want to minimize the upper bound $200y_1 + 300y_2 + 400y_3$

Multiplier	Inequality		
y_1	x_1		≤ 200
y_2		x_2	≤ 300
y_3	$x_1 +$	x_2	≤ 400

> We have:

 $(y_1 + y_3)x_1 + (y_2 + y_3)x_2 \le 200y_1 + 300y_2 + 400y_3$

What do we want?

- This is just another LP!
- Called the dual
- Original LP is called the primal

 $\min \ 200y_1 + 300y_2 + 400y_3$ $y_1 + y_3 \ge 1$ $y_2 + y_3 \ge 6$ $y_1, y_2, y_3 \ge 0$

PRIMAL

DUAL

$\max x_1 + 6x_2$	
$x_1 \le 200$	
$x_2 \le 300$	
$x_1 + x_2 \le 400$	
$x_1, x_2 \ge 0$	

min $200y_1 + 300y_2 + 400y_3$ $y_1 + y_3 \ge 1$ $y_2 + y_3 \ge 6$ $y_1, y_2, y_3 \ge 0$

> The problem of verifying optimality is another LP

- \circ For any (y_1, y_2, y_3) that you can find, the objective value of the dual is an upper bound on the objective value of the primal
- If you found a specific (y_1, y_2, y_3) for which this dual objective becomes equal to the primal objective for the (x_1, x_2) given to you, then you would know that the given (x_1, x_2) is optimal for primal (and your (y_1, y_2, y_3) is optimal for dual)

PRIMAL

DUAL

 $\begin{array}{ll} \max \ x_1 + 6x_2 \\ x_1 \le 200 \\ x_2 \le 300 \\ x_1 + x_2 \le 400 \\ x_1, x_2 \ge 0 \end{array} \begin{array}{ll} \min \ 200y_1 + 300y_2 + 400y_3 \\ y_1 + y_3 \ge 1 \\ y_2 + y_3 \ge 6 \\ y_1, y_2, y_3 \ge 0 \end{array}$

> The problem of verifying optimality is another LP

- Issue 1: But...but...if I can't solve large LPs, how will I solve the dual to verify if optimality of (x_1, x_2) given to me?
 - You don't. Ask the other party to give you both (x_1, x_2) and the corresponding (y_1, y_2, y_3) for proof of optimality
- Issue 2: What if there are no (y_1, y_2, y_3) for which dual objective matches primal objective under optimal solution (x_1, x_2) ?
 - As we will see, this can't happen!

Primal LP	Dual LP
$\max \mathbf{c}^T \mathbf{x}$	min $\mathbf{y}^T \mathbf{b}$
$\mathbf{A}\mathbf{x} \leq \mathbf{b}$	$\mathbf{y}^T \mathbf{A} \geq \mathbf{c}^T$
$\mathbf{x} \ge 0$	$\mathbf{y} \ge 0$

> General version, in our standard form for LPs

Primal LP	Dual LP
$\max \mathbf{c}^T \mathbf{x}$	min $\mathbf{y}^T \mathbf{b}$
$\mathbf{A}\mathbf{x} \leq \mathbf{b}$	$\mathbf{y}^T \mathbf{A} \ge \mathbf{c}^T$
$\mathbf{x} \ge 0$	$\mathbf{y} \ge 0$

 $\circ c^T x$ for any feasible $x \leq y^T b$ for any feasible y

 $\circ \max_{\text{primal feasible } x} c^T x \leq \min_{\text{dual feasible } y} y^T b$

• If there is (x^*, y^*) with $c^T x^* = (y^*)^T b$, then both must be optimal

 \circ In fact, for optimal (x^* , y^*), we claim that this must happen!

• Does this remind you of something? Max-flow, min-cut...

Weak Duality

Primal LPDual LP $\max \mathbf{c}^T \mathbf{x}$ $\min \mathbf{y}^T \mathbf{b}$ $\mathbf{A}\mathbf{x} \leq \mathbf{b}$ $\mathbf{y}^T \mathbf{A} \geq \mathbf{c}^T$ $\mathbf{x} \geq 0$ $\mathbf{y} \geq 0$

- From here on, assume primal LP is feasible and bounded
- Weak duality theorem:

> For any primal feasible x and dual feasible y, $c^T x \le y^T b$

• Proof:

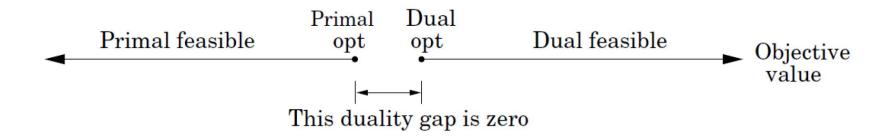
$$c^T x \le (y^T A)x = y^T (Ax) \le y^T b$$

Strong Duality

Primal LPDual LP $\max \mathbf{c}^T \mathbf{x}$ $\min \mathbf{y}^T \mathbf{b}$ $\mathbf{A}\mathbf{x} \leq \mathbf{b}$ $\mathbf{y}^T \mathbf{A} \geq \mathbf{c}^T$ $\mathbf{x} \geq 0$ $\mathbf{y} \geq 0$

• Strong duality theorem:

> For any primal optimal x^* and dual optimal y^* , $c^T x^* = (y^*)^T b$



Strong Duality Proof

This slide is not in the scope of the course

- Farkas' lemma (one of many, many versions):
 - Exactly one of the following holds:
 - 1) There exists x such that $Ax \leq b$
 - 2) There exists y such that $y^T A = 0$, $y \ge 0$, $y^T b < 0$

• Geometric intuition:

- > Define image of A = set of all possible values of Ax
- It is known that this is a "linear subspace" (e.g., a line in a plane, a line or plane in 3D, etc)

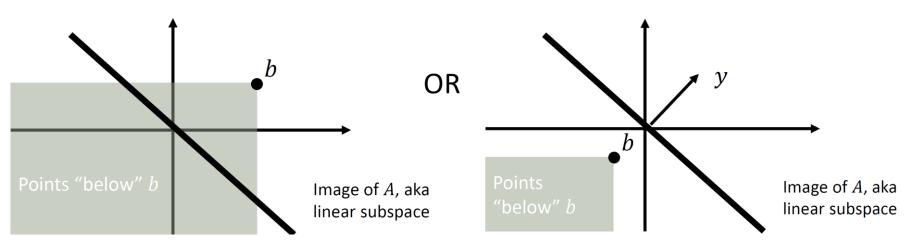
Strong Duality Proof

This slide is not in the scope of the course

- Farkas' lemma: Exactly one of the following holds:
 - 1) There exists x such that $Ax \leq b$
 - 2) There exists y such that $y^T A = 0$, $y \ge 0$, $y^T b < 0$

1) Image of A contains a point "below" b

2) The region "below" b doesn't intersect image of A this is witnessed by normal vector to the image of A



Strong Duality

Primal LPDual LP $\max \mathbf{c}^T \mathbf{x}$ $\min \mathbf{y}^T \mathbf{b}$ $\mathbf{A}\mathbf{x} \leq \mathbf{b}$ $\mathbf{y}^T \mathbf{A} \geq \mathbf{c}^T$ $\mathbf{x} \geq 0$ $\mathbf{y} \geq 0$

- Strong duality theorem:
 - > For any primal optimal x^* and dual optimal y^* , $c^T x^* = (y^*)^T b$
 - > Proof (by contradiction):
 - Let $z^* = c^T x^*$ be the optimal primal value.
 - $\,\circ\,$ Suppose optimal dual objective value $> z^*$
 - So, there is no y such that $y^T A \ge c^T$ and $y^T b \le z^*$, i.e.,

$$\binom{-A^T}{b^T} y \le \binom{c}{z^*}$$

Strong Duality

This slide is not in the scope of the course

> There is no y such that
$$\begin{pmatrix} -A^T \\ b^T \end{pmatrix} y \leq \begin{pmatrix} c \\ z^* \end{pmatrix}$$

 \succ By Farkas' lemma, there is x and λ such that

$$(x^T \quad \lambda) \begin{pmatrix} -A^T \\ b^T \end{pmatrix} = 0, x \ge 0, \lambda \ge 0, -x^T c + \lambda z^* < 0$$

> Case 1: $\lambda > 0$

• Note: $c^T x > \lambda z^*$ and $Ax = 0 = \lambda b$.

- Divide both by λ to get $A\left(\frac{x}{\lambda}\right) = b$ and $c^T\left(\frac{x}{\lambda}\right) > z^*$
 - Contradicts optimality of z^*

> Case 2: $\lambda = 0$

- We have Ax = 0 and $c^T x > 0$
- Adding x to optimal x^* of primal improves objective value beyond $z^* \Rightarrow$ contradiction

- A canning company operates two canning plants (A and B).
- Three suppliers of fresh fruits: ---
- Shipping costs in \$/tonne: _____
- Plant capacities and labour costs:
 Capacity Labour costs
- Selling price: \$50/tonne, no limit
- Objective: Find which plant should get how much supply from each grower to maximize profit

- \$1: 200 tonnes at \$11/tonne
- S2: 310 tonnes at \$10/tonne
- S3: 420 tonnes at \$9/tonne
- To: Plant A Plant B From: S1 3 3.5 S2 2 2.5 S3 6 4
 - Plant A Plant B 460 tonnes 560 tonnes \$26/tonne \$21/tonne

- Similarly to the brewery example from earlier:
 - > A brewery can invest its inventory of corn, hops and malt into producing three types of beer
 - > Per unit resource requirement and profit are as given below
 - The brewery cannot produce positive amounts of both A and B
 - Goal: maximize profit

Beverage	Corn (kg)	Hops (kg)	Malt (kg)	Profit (\$)
А	5	4	35	13
В	15	4	20	23
С	10	7	25	15
Limit	500	300	1000	

- Similarly to the brewery example from the beginning:
 - > A brewery can invest its inventory of corn, hops and malt into producing three types of beer
 - > Per unit resource requirement and profit are as given below
 - > The brewery can only produce *C* in integral quantities up to 100
 - Goal: maximize profit

Beverage	Corn (kg)	Hops (kg)	Malt (kg)	Profit (\$)
А	5	4	35	13
В	15	4	20	23
С	10	7	25	15
Limit	500	300	1000	

- Similarly to the brewery example from the beginning:
 - > A brewery can invest its inventory of corn, hops and malt into producing three types of beer
 - > Per unit resource requirement and profit are as given below
 - Goal: maximize profit, <u>but if there are multiple profit-maximizing</u> solutions, then...
 - Break ties to choose those with the largest quantity of A
 - Break any further ties to choose those with the largest quantity of *B*

Beverage	Corn (kg)	Hops (kg)	Malt (kg)	Profit (\$)
А	5	4	35	13
В	15	4	20	23
С	10	7	25	15
Limit	500	300	1000	

More Tricks

- Constraint: $|x| \leq 3$
 - > Replace with constraints $x \le 3$ and $-x \le 3$
 - > What if the constraint is $|x| \ge 3$?
- Objective: minimize 3|x| + y
 - > Add a variable t
 - > Add the constraints $t \ge x$ and $t \ge -x$ (so $t \ge |x|$)
 - > Change the objective to minimize 3t + y
 - > What if the objective is to maximize 3|x| + y?
- Objective: minimize max(3x + y, x + 2y)
 - > Hint: minimizing 3|x| + y in the earlier bullet was equivalent to minimizing max(3x + y, -3x + y)

