CSC373

Week 7:
Linear Programming

Illustration Courtesy:
Kevin Wayne & Denis Pankratov
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Recap

e Network flow

> Ford-Fulkerson algorithm
o Ways to make the running time polynomial
» Correctness using max-flow, min-cut

> Applications:
o Edge-disjoint paths
o Multiple sources/sinks
o Circulation
Circulation with lower bounds
Survey design
Image segmentation

Profit maximization
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Brewery Example

* A brewery can invest its inventory of corn, hops and malt
into producing some amount of ale and some amount of
beer

> Per unit resource requirement and profit of the two items are as
given below

Ale (barrel)
Beer (barrel) 15 4 20 23
constraint 480 160 1190

Example Courtesy: Kevin Wayne
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Brewery Example

Corn Hops Malt Profit
{poundS) (poundsj
5 4 35 13

Ale (barrel)
Beer (barrel) 15 4 20 23
constraint 480 160 1190

objective function

e Suppose it produces A

. . Ale Beer
units of ale and B units
of beer max 134 + 23B Profit
t. 54 158 480  Corn
e Then we want to solve > T =
: 4A + 4B = 160 Hops
this program:
35A + 20B = 1190 Malt
A, B = 0

constraint

decision variable
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Linear Function

« f:R™ - Risa linear function if f(x) = a’ x for some a € R"
> Example: f(xq,x,) = 3x; — 5x, = (_35)T (;;)
* Linear objective: f

* Linear constraints:
> g(x) = c, where g: R"™ — Ris a linear functionand c € R
> Line in the plane (or a hyperplane in R™)
» Example: 5x; + 7x, = 10
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Linear Function

* Geometrically, a is the normal vector of the line(or
hyperplane) represented by a’x = ¢
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Linear Inequality

« alx < c represents a “half-space”

7.

Geometrically: half-space
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Linear Programming

* Maximize/minimize a linear function subject to linear
equality/inequality constraints

Could be min
Objective function max x{ + 69

Constraints r1 < 200
ro < 300
T + 16 < 400 Linear constraints:
- inequalities/equalities
r1, 19 > 0
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Geometrically...

Objective function max 1 + 619

Constraints r1 < 200 ] )
To Any point here is a
xro < 300 i feasible solution
r1 + o < 400 4008

Ti,%0 > 0

Feasible region — polytope, aka R Y . |
intersection of half-spaces! : : 200 1
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Back to Brewery Example

Hops Malt
4A + 4B < 160 35A+20B=<1190

(0, 32)

(12, 28)

Corn
5A + 15B <480
(26, 14)

Beer

(0, 0) | Ale (34, 0)

v
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Back to Brewery Example
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13A +23B=251600

13A + 23B =5$800

Ale

-~
~

13A + 23B=5442




Optimal Solution At A Vertex

* Claim: Regardless of the objective function, there must be a
vertex that is an optimal solution

(0, 32)

vertex

i«
(26, 14)

Beer

(0, 0) | Ale (34, 0)
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Convexity

e Convex set: S is convex if
x,yES,A€[01]=>2Ax+(1—-A)yES

* Vertex: A point which cannot be written as a strict convex
combination of any two points in the set

e Observation: Feasible region of an LP is a convex set

vertex

~N

convex not convex
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Optimal Solution At A Vertex

* Intuitive proof of the claim:

> Start at some point x in the feasible region
> If x is not a vertex:

o Find a direction d such that points within a positive distance of € from x in
both d and —d directions are within the feasible region

o Objective must not decrease in at least one of the two directions

o Follow that direction until you reach a new point x for which at least one
more constraint is “tight”

> Repeat until we are at a vertex
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LP, Standard Formulation

* Input: c,aq,a,, ...,a,, € R*, b € R™
> There are n variables and m constraints

. T

Subjectto alx < b,

al.x < b,

x =0 .
n more constraints

e Goal:
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LP, Standard Matrix Form

* Input: c,aq,a,, ...,a,, € R*, b € R™
> There are n variables and m constraints

Maximize cT x

x=>0

e Goal:
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Convert to Standard Form

e What if the LP is not in standard form?

» Constraints that use >
oalx>h & —a’x < —-b

> Constraints that use equality
oalx=b © a’x<b, a’Tx>b

> Objective function is a minimization

T T

o Minimizec'x <& Maximize —c' x

» Variable is unconstrained

o x with no constraint < Replace x by two variables x'and x"’, replace
every occurrence of x with x’ — x'’, and add constraints x’ >0, x"" > 0

373F21 - Nisarg Shah




LP Transformation Example

minimize —2x; + 3x, maximize 2x; — 3Xx,
subject to — subject to
X1 + x» =7 Xy, + x», = 7
Yy, — 2x, < 4 Xy — 2x, =
X > 0, X > 0.
maximize 2x; — 3x, 4+ 3xj
subject to ’ )
r + X, - X, = 17
wo— 2x, 4+ 2x; <
X1, X5, X} > (.
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Optimal Solution

* Does an LP always have an optimal solution?

* No! The LP can “fail” for two reasons:
1. Itisinfeasible,i.e., {x |Ax < b} =0
o E.g., the set of constraintsis {x; < 1,—x;< —2}

2. Itis unbounded, i.e., the objective function can be made arbitrarily
large (for maximization) or small (for minimization)

o E.g., “maximize x4 subject to x; = 0”

e But if the LP has an optimal solution, we know that there
must be a vertex which is optimal

373F21 - Nisarg Shah




Simplex Algorithm

let v be any vertex of the feasible region
while there is a neighbor v’ of v with better objective value:
set v="1

» Simple algorithm, easy to specify geometrically
* Worst-case running time is exponential

* Excellent performance in practice
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Simplex: Geometric View

let v be any vertex of the feasible region
while there is a neighbor ¢’ of v with better objective value:

set v=1
Profit $1900
300
max rq + 6x9
Il S 200 200 81400
x9 < 300
3 To < 400
fr e s 100 A
r1,19 >0

00— 95200
0 100 200
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Algorithmic Implementation

Move to a
neighbor vertex
with better
objective value

Start at a Is there a
vertex of neighbor vertex
feasible with better
polytope objective value?

Terminate, declare
the current
solution and value
as optimal
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How Do We Implement This?

 We'll work with the slack form of LP

> Convenient for implementing simplex operations

> We want to maximize z in the slack form, but for now, forget about
the maximization objective

Standard form: Slack form:
Maximize cT x 7z =clx
Subjectto Ax < b s=b—Ax

x =0 s, x =0
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Slack Form

maximize  2x,
subject to

X1

_.\‘ l

X1
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3\2 + 3\;
Xy — Xy < 7
X2 + x3 < -7
2x, + 2x3 < 4
e o 0

A

Nonbasic Variables

maximize 2x,
subject to
Xq4 = 7T — X
t{> Basic Variables < ¥s = —/7 + xi
Xe 4 — X1

+ +

[y}
=
(]



Slack Form

-
=N
Il
~]
|
-

-
|
Il
I
~J
_|_
-

X1,X2,X3, X4, X5, Xg

A
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3x, + 3x;
X2 + X3
X9 — X3
2X, —  2X3
0
maximize

subject to

tl Basic Variables X5

Nonbasic Variables

A

I

Lg

+
=

X1

X1.X2,X3, X4, X5, X6

+ +

|V

[y}
=
(]




Simplex: Step 1

e Start at a feasible vertex
> How do we find a feasible vertex?
> For now, assume b = 0 (that is, each b; = 0)
o In this case, x = 0 is a feasible vertex.

o In the slack form, this means setting the nonbasic variables to 0
> WEe’ll later see what to do in the general case

Standard form: Slack form:
Maximize cTx z=clx
Subjectto Ax < b s=b—Ax

x>0 s, x =0
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Simple: Step 2

 What next? Let’s look at an example

’

g = 3x;, + xo + 2x3

x4 = 30 — x; — X5 — 3Xx;3
Xxs = 24 — 2x;, — 2x, — 5x;
X¢e = 36 — 4x; — x5 — 2x3
X1 Koo, K K B, Xe > 0

* To increase the value of z:
> Find a nonbasic variable with a positive coefficient
o This is called an entering variable

> See how much you can increase its value without violating any
constraints
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Simple: Step 2

Try to increase!

Obstacles!
Z 3x;, + x 4+ 2x3
vy = 30 - i — Yo, — 943 x; < 30
Xs = 24 — 2x; — 2x, — 5x; xXp <24/2=12
X6 36 — 4x;, — x» — 2x3 x;1 <36/4=9
X1 Xos Kas Kis Xiw Xig > 0

Tightest obstacle!

This is because the current
values of x, and x5 are 0,
and we need x4, x5, xg = 0
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Simple: Step 2

3.\‘1 + X9 + 2.\‘3

x4 = 30 — x; — X5 — 3Xx;3

Xxs = 24 — 2x;, — 2x, — 5x;

X 3B — Axy — X — Ty Tightest obstacle
X1,X2,X3,X4,X5, X6 > 0

> Solve the tightest obstacle for the nonbasic variable

_o X2 X3 X
MEPT Y T T

o Substitute the entering variable (called pivot) in other equations
o Now x; becomes basic and x5 becomes non-basic
o Xg is called the leaving variable
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Simplex: Step 2

X2 X3 3x6

z = 27 + T -+ = = =

s Wt

X1 — 0 - — — S s —

Xy, = 30 — Xx; — X, - 4 2 4

3X7 S5x3 X6

\‘5 —_— 2“" - 2.1‘1 - 2,\‘2 — X 4 — 21 — 4 — - + T

Yo = 36 — 4x 1 - X2 o X5 = 6 — i — 4x3 + i

. ) . L ) - 3 1 >
X1,X2,X3,X4.X5,Xg > 0 _
X1,X2,X3, X4, X5, X¢ > 0

» After one iteration of this step:

> The basic feasible solution (i.e., substituting 0 for all nonbasic
variables) improves fromz =0toz = 27

* Repeat!
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Simplex: Step 2

Entering variable
Try to increase!

4

z = 27 + 2 + i — & z = u + 2 X _ L1xe
4 . 4 4 16 8 16
o= 9 - 2 - ; - = Y, = ﬁ _ X + Y5 &
2:‘ : \4 o 4 16 8 16
X — 2[ — 2 — : + _6 3 “;\7 X35 Xe
4 4 2 4 X3 = 5 - = - 7Tt 3
. - 3x5 ‘e 6:) 3x 5x X
Xs = 6 — — - 4 + . R - e
“~ = 4 16 8 16
- - - - - >.
TLARL3 M A5 X6 2 0 By 0 B B g P 0

Leaving variable
Tightest obstacle!
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Simplex: Step 2

Entering variable
Try to increase!

. - ")_
o w X5 1 1xe o= 28 - » L =
ST 4 16 8 16 \6 \6 f
33 X2 2 5x6 x, = 8 + = 4+ = - =2
X = —_— —_ —_— —_— — JR—

: 4 16 8 16 86 76 3
- - X X X
2 8 4 8 3 3 3

69 3x5 5xs Xg X3 X5

= —_— - — — . X . = 18 — —_— o —

H R TR 16 ! 2 2

Ky Ko, DN Ris Xin, Xg 2 0 X1,X2,X3,X4,X5, X6 = 0

" Leaving variable
Tightest obstacle!
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Simplex: Step 2

Lo X3 X 2
6 6 3
X3 Xs Xg

X, = 3 + o + — — -
6 6 3
H_'I[; 2.\'5 e

X9 == "I' - - - — + -
A 1 J
X3 Xs

o = 18 — =2 —

4 . 2 2

X1.X2,X3,X4.X5. X = 0

* There is no entering variable (nonbasic variable with positive coefficient)
 What now? Nothing! We are done.

* Take the basic feasible solution (x; = x5 = x4 = 0).
* Gives the optimal value z = 28
* Inthe optimal solution, x; =8,x, =4,x3 =0
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Simplex Overview

Start at a Is there a
vertex of neighbor vertex
feasible with better
polytope objective value?
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Move to a
neighbor vertex
with better
objective value

Terminate, declare
the current
solution and value
as optimal




Simplex Overview

Assuming b > Is there a
0, start with a neighbor vertex

basic feasible with better
SellVjelely objective value?
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Move to a
neighbor vertex
with better
objective value

Terminate, declare
the current
solution and value
as optimal




Simplex Overview

Assuming b > Is there an

0, start with a entering variable

basic feasible with positive
solution coefficient?
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Move to a
neighbor vertex
with better
objective value

Terminate, declare
the current
solution and value
as optimal




Simplex Overview

Assuming b > Is there an

0, start with a entering variable

basic feasible with positive
solution coefficient?
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Pivot on a leaving
variable

Terminate, declare
the current
solution and value
as optimal




Simplex Overview

Assuming b > Is there an

0, start with a entering variable

basic feasible with positive
solution coefficient?
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Pivot on a leaving
variable

Terminate, declare
optimal value




Some Outstanding Issues

* What if the entering variable has no upper bound?
> If it doesn’t appear in any constraints, or only appears in constraints

where it can go to o
> Then z can also go to oo, so declare that LP is unbounded

 What if pivoting doesn’t change the constant in z?

> Known as degeneracy, and can lead to infinite loops
> Can be prevented by “perturbing” b by a small random amount in
each coordinate

> Or by carefully breaking ties among entering and leaving variables,
e.g., by smallest index (known as Bland’s rule)
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Some Outstanding Issues

« We assumed b = 0, and then started with the vertex x = 0

* What if this assumption does not hold?

LP,
Max cTx
st.alx < b,

aryx < b,

LP,

Max cTx

" s.t. a{x + Sl - bl

alx + s, = b,

al.x + s, = by,

x,s =0

LP,
Max cTx

st.alx+s, =b,

—alx —s, = —by, *]

—alx — s, =

x,s =0

_bm

/
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Multiply every
constraint with
negative b; by
— 1soRHS is
now positive




Some Outstanding Issues

« We assumed b = 0, and then started with the vertex x = 0

* What if this assumption does not hold?

LP; LP,
T , — Remember:
Max ¢’ x Min ); z; — we only
st.alx+s, =by st.alx+s;,+z, =b; want to
feasible
solution to
—alx — s, = —by —alx — sy + Zym = —bpy, LP;
x5 >0 Remember: x,5,220
RHS is now
positive
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Some Outstanding Issues

« We assumed b = 0, and then started with the vertex x = 0

* What if this assumption does not hold?

What now?
LPy * Solve LP, using simplex with
Min }; z; the initial basic solution
st.alx+s;,+z, =b; beingx =5 =0,z = |b]
. e Ifiits optimum value is 0O,
—axx =Sz + 7 = b, extract a basic feasible
/ 5 solution x™ from it, use it to
—alx —s, +2z, =—b, solve LP; using simplex
Remember: * If optimum value for LP, is
the RHS is now X,5,z20 greater than 0, then LP; is
positive infeasible
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Some Outstanding Issues

e Curious about pseudocode? Proof of correctness? Running
time analysis?

e See textbook for details, but this is NOT in syllabus!
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Running Time

* Notes
> #vertices of a polytope can be exponential in the #constraints

o There are examples where simplex takes exponential time if you
choose your pivots arbitrarily

o No pivot rule known which guarantees polynomial running time

> Other algorithms known which run in polynomial time
o Ellipsoid method, interior point method, ...
o Ellipsoid uses O(mn3L) arithmetic operations
e L =length of inputin binary
o But no known strongly polynomial time algorithm
 Number of arithmetic operations = poly(m,n)

* We know how to avoid dependence on length(b), but not for
length(A)
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Certificate of Optimality

e Suppose you design a state-of-the-art LP solver that can
solve very large problem instances

* You want to convince someone that you have this new
technology without showing them the code

> |dea: They can give you very large LPs and you can quickly return the
optimal solutions

> Question: But how would they know that your solutions are optimal,
if they don’t have the technology to solve those LPs?
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Certificate of Optimality

max x1 + 6x9
r1 < 200
T9 < 300
r1 + x9 < 400

&y, Lo > 0

* Suppose | tell you that (x1,x,) = (100,300) is optimal with
objective value 1900

 How can you check this?

> Note: Can easily substitute (x1, x,), and verify that it is feasible, and
its objective value is indeed 1900

373F21 - Nisarg Shah




Certificate of Optimality

max xrq1 + 6xo

r1 < 200
— e Claim: (x4,x,) = (100,300) is
ro < 300 . _ o\
N optimal with objective value 1900
r1 + x9 < 400
T, 29 21U

* Any solution that satisfies these inequalities also satisfies
their positive combinations
> E.g. 2*first_constraint + 5*second_constraint + 3*third_constraint
» Try to take combinations which give you x; + 6x, on LHS
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Certificate of Optimality

max xrq1 + 6xo

r1 < 200
9 < 300 . Clalom: (xl_,xz) = (1.00,300) is
N optimal with objective value 1900
r1 + x9 < 400
T, 29 21U

e first_constraint + 6*second_constraint
> X1 +6x, <200+ 6 300 = 2000
> This shows that no feasible solution can beat 2000
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Certificate of Optimality

max xrq1 + 6xo

r1 < 200
9 < 300 . Clalom: (xl_,xz) = (1.00,300) is
N optimal with objective value 1900
r1 + x9 < 400
&y, Lo > 0

* 5*second_constraint + third _constraint
> 5x, + (x1 + x,) <5300+ 400 = 1900
> This shows that no feasible solution can beat 1900
o No need to proceed further

o We already know one solution that achieves 1900, so it must be
optimal!
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[s There a General Algorithm?

* Introduce variables y, y,, y3 by which we will be
multiplying the three constraints

> Note: These need not be integers. They can be reals.

Multiplier Inequality
U1 s 200
Y2 T 300
U3 r1 + 9 400

IA A IA

e After multiplying and adding constraints, we get:
(71 +¥3)x1 + (y2 + y3)x2 < 200y, + 300y, + 400y;
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[s There a General Algorithm?

Multiplier Inequality
Y1 T < 200
Y2 ro < 300
U3 Ty + 9 < 400

> We have:
(y1 + ¥3)x1 + (2 + ¥3)x2 < 200y, + 300y, + 400y;

» What do we want?
O V1,¥V2,Y3 = 0 because otherwise direction of inequality flips
o LHS to look like objective x; + 6x,
* In fact, it is sufficient for LHS to be an upper bound on objective
* So,wewanty; +y; =1landy, +y; =6
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[s There a General Algorithm?

Multiplier Inequality
Y1 1 < 200
Y2 ro < 300
3 1 + 9 < 400

> We have:
(y1 + ¥3)x1 + (2 + ¥3)x2 < 200y, + 300y, + 400y;

> What do we want?
0 Y1,Y2,Y3 =0
oy +ys=1, y,+y; =6

o Subject to these, we want to minimize the upper bound 200y, +
300y, + 400y5
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[s There a General Algorithm?

Multiplier Inequality
Y1 1 < 200
Y2 ro < 300
3 1 + 9 < 400

> We have:
(y1 + ¥3)x1 + (2 + ¥3)x2 < 200y, + 300y, + 400y;

> What do we want?
o This is just another LP! min 200y; + 300y + 4004
o Called the dual y1 +v3 > 1

o Original LP is called the primal Yo + 4z > 6

y1.Y2.y3 = 0
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[s There a General Algorithm?

PRIMAL DUAL
max 1 + 69
r1 < 200 min 200y, + 300y + 4004
r9 < 300 1 +ys =1
r1 + 1o < 400 Y2 +1y3 > 6
1,29 >0 Y1, y2.y3 = 0

> The problem of verifying optimality is another LP

o For any (y4,y,, y3) that you can find, the objective value of the
dual is an upper bound on the objective value of the primal

o If you found a specific (y4, y,, ¥3) for which this dual objective
becomes equal to the primal objective for the (x4, x,) given to
you, then you would know that the given (x4, x,) is optimal for
primal (and your (y4, ¥,, ¥3) is optimal for dual)
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[s There a General Algorithm?

PRIMAL DUAL
max 1 + 69
r1 < 200 min 200y, + 300y, + 400y,
ro < 300 y1 +y3 > 1
r1 + r9 < 400 Y2 +y3 =6

LYo, ya > 0
r1,r9 = 0 y1-y2.4y3 =

> The problem of verifying optimality is another LP

o Issue 1: But...but...if | can’t solve large LPs, how will | solve the dual
to verify if optimality of (x4, x,) given to me?
* You don’t. Ask the other party to give you both (x4, x,) and the
corresponding (v1, v, ¥3) for proof of optimality

o Issue 2: What if there are no (y, y,, ¥3) for which dual objective
matches primal objective under optimal solution (x{, x,)?

* As we will see, this can’t happen!
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[s There a General Algorithm?

Primal LP Dual LP
max ¢! x min yTb
Ax <b yTA b (:T

x >0 y >0

> General version, in our standard form for LPs
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[s There a General Algorithm?

Primal LP Dual LP
. . T
max ¢! x min y- b
Ax<b yl'A >l
x U y >0
o c!'x for any feasible x < y'b for any feasible y
o  max_  c'x < min  y'b
primal feasible x dual feasible y

o If thereis (x*,y*) with cTx* = (y*)T b, then both must be optimal

o In fact, for optimal (x*, y*), we claim that this must happen!
* Does this remind you of something? Max-flow, min-cut...
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Weak Duality

Primal LP Dual LP
max ¢! x min yTb
Ax <b yTA b (:T

x > () y >0

* From here on, assume primal LP is feasible and bounded

* Weak duality theorem:
> For any primal feasible x and dual feasible y, cTx < yTh

* Proof:
cTx < (YTA)x =yT(Ax) < yTb
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Strong Duality

Primal LP Dual LP
max ¢! x min yTb
Ax <b yTA b (:T

x > () y >0

e Strong duality theorem:
> For any primal optimal x* and dual optimal y*, cTx* = (y*)Tb

Primal Dual
Primal feasible opt opt Dual feasible

This duality gap is zero

» Objective
value
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This slide is not in the

Strong Duality Proof scope of the course

* Farkas’ lemma (one of many, many versions):
> Exactly one of the following holds:
1) There exists x such that Ax < b
2) There exists y suchthaty’A =0, y >0, y'b <0

* Geometric intuition:
> Define image of A = set of all possible values of Ax

> It is known that this is a “linear subspace” (e.g., a line in a plane, a
line or plane in 3D, etc)
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This slide is not in the

Strong Duality Proof scope of the course

* Farkas’ lemma: Exactly one of the following holds:
1) There exists x such that Ax < b
2) There exists y suchthat yTA =0, y>0, yTb <0

1) Image of A contains a point “below” b 2) The region “below” b doesn’t intersect image of A
this is witnessed by normal vector to the image of A

v

Image of A, aka
linear subspace

Image of A, aka
linear subspace
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This slide is not in the

Str() ng Duallty scope of the course

Primal LP Dual LP
max ¢! x min yTb
Ax <b yTA b (:T

x > () y >0

e Strong duality theorem:
> For any primal optimal x* and dual optimal y*, cTx* = (y*)Tb
> Proof (by contradiction):
o Let z* = cTx* be the optimal primal value.

o Suppose optimal dual objective value > z*
o So, thereisno y such that y’A > ¢T and yTb < z%, i.e,,

(57 )r=()
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This slide is not in the

StrO ng Duallty scope of the course

—AT C
> There is no y such that ( pT )y = (Z)
> By Farkas’ lemma, there is x and A such that
AT
(xT A)( b/% ) =0,x>01>0—xTc+Az"*<0
> Case1: 1 >0
o Note: cTx > Az* and Ax = 0 = Ab.

o Divide both by 1 to get A G) =bandcT G) > z*

* Contradicts optimality of z*

» Case2: A =0
o Wehave Ax =0andclx >0

o Adding x to optimal x™ of primal improves objective value beyond z* =
contradiction
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Exercise: Formulating LPs

* Acanning company operates two 7 oSl temne e
canning plants (A and B) e o 53:420 tonnes at 59 tonne

]
/

Three suppliers of fresh fruits: ---

To: Plant A Plant B

. . . From: 51 3 3.5
* Shipping costs in S/tonne: - —______ R 2 2 2.5
53 & 4
* Plant capacities and labour costs: Plant A Plant B
: Capacity 458 tonnes 56@ tonnes
____________ > Labour cost %26/ /tonne $£21/tonne

Selling price: $50/tonne, no limit

Objective: Find which plant should get how much supply
from each grower to maximize profit
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Exercise: Formulating LPs

e Similarly to the brewery example from earlier:

> A brewery can invest its inventory of corn, hops and malt into
producing three types of beer

> Per unit resource requirement and profit are as given below
> The brewery cannot produce positive amounts of both A and B
> Goal: maximize profit

| Beverage | Com (kg) | Hops (ke) | Malt (ke) | Profit(s) _
A 5 4 35 13

B 15 4 20 23
C 10 7 25 15
Limit 500 300 1000
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Exercise: Formulating LPs

e Similarly to the brewery example from the beginning:

> A brewery can invest its inventory of corn, hops and malt into
producing three types of beer

> Per unit resource requirement and profit are as given below
> The brewery can only produce C in integral guantities up to 100
> Goal: maximize profit

| Beverage | Com (kg) | Hops (ke) | Malt (ke) | Profit(s) _
A 5 4 35 13

B 15 4 20 23
C 10 7 25 15
Limit 500 300 1000
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Exercise: Formulating LPs

e Similarly to the brewery example from the beginning:

> A brewery can invest its inventory of corn, hops and malt into
producing three types of beer

> Per unit resource requirement and profit are as given below

> Goal: maximize profit, but if there are multiple profit-maximizing
solutions, then...
o Break ties to choose those with the largest quantity of A
o Break any further ties to choose those with the largest quantity of B

| Beverage | Corn (kg) | Hops (kg) | Malt (kg) | Profit (5)
A 5 4 35 13

B 15 4 20 23
C 10 7 25 15
Limit 500 300 1000
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More Tricks

Constraint: [x| < 3
> Replace with constraints x < 3 and —x < 3
> What if the constraint is |x| > 3?

Objective: minimize 3|x| + y

> Add a variable t

> Add the constraintst = xandt = —x (sot = |x|)
» Change the objective to minimize 3t + y

> What if the objective is to maximize 3|x| + y?

Objective: minimize max(3x + y, x + 2y)

> Hint: minimizing 3|x| 4+ y in the earlier bullet was equivalent to
minimizing max(3x + y,—3x + y)
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