CSC373

Week 6:
Network Flow (contd)

Nisarg Shah

Recap

* Some more DP

> Traveling salesman problem (TSP)

e Start of network flow
» Problem statement
> Ford-Fulkerson algorithm
»> Running time
» Correctness using max-flow, min-cut

373F21 - Nisarg Shah 2

This Lecture

* Network flow in polynomial time
> Edmonds-Karp algorithm (shortest augmenting path)

* Applications of network flow
> Bipartite matching & Hall’s theorem
Edge-disjoint paths & Menger’s theorem
Multiple sources/sinks
Circulation networks

Survey design

>
>
>
> Lower bounds on flows
>
> Image segmentation

373F21 - Nisarg Shah 3

Ford-Fulkerson Recap

* Define the residual graph G of flow f

> Gy has the same vertices as G
> For each edge e = (u, v) in G, G has at most two edges

o Forward edge e = (u, v) with capacity c(e) — f(e)
* We can send this much additional flow on e

o Reverse edge e™®¥ = (v, u) with capacity f(e)

* The maximum “reverse” flow we can send is the maximum
amount by which we can reduce flow on e, which is f (e)

o We only add each edge if its capacity > 0

373F21 - Nisarg Shah 4

Ford-Fulkerson Recap

* Example!
Flow f Residual graph Gy
20/20 0/10 20 10
¢ -~ ® @+ ®
0/10 20/20 10 20

) 4
\Y
373F21 - Nisarg Shah 5

Ford-Fulkerson Recap

MaxFlow(G):
// initialize:
Set f(e) =0 for all e in G

// while there is an s-t path in Gf:

While P = FindPath(s,t,Residual(G,f))!=None:
f = Augment(f,P)
UpdateResidual(G,f)

EndWhile

Return f

373F21 - Nisarg Shah 6

Ford-Fulkerson Recap

* Running time:
» #Augmentations:
o At every step, flow and capacities remain integers
o For path P in Gy, bottleneck(P, f) > 0 implies bottleneck(P, f) = 1
o Each augmentation increases flow by at least 1

o At most C =), c(e) augmentations

e leaving s

> Time for an augmentation:
o Gy has n vertices and at most 2m edges
o Finding an s-t path in Gy takes O(m + n) time

> Total time: O((m +n) - C)

373F21 - Nisarg Shah 7

Edmonds-Karp Algorithm

* At every step, find the shortest path from s to t in G¢, and
augment.

MaxFlow(G): Minimum number of edges
// initialize:
Set f(e) =0 for all e in G

// Find shortest s-t path in Gy & augment:
While P = BFS(s,t,Residual(G,f))!=None:
f = Augment(f,P)
UpdateResidual (G, f)
EndWhile
Return f

373F21 - Nisarg Shah 8

Proof

* d(v) = shortest distance of v from s in residual graph Gy

* Lemma 1: During the execution of the algorithm, d(v) does
not decrease for any v.

* Proof:
> Suppose augmentation f — f' decreases d(v) for some v

> Choose the v with the smallest d(v) in Gf/
oSayd(v) =kinGs,s0d(v) =k +1inGf

> Look at node u just before v on a shortest path s = v in Gfr
o d(u) didn’t decrease, so d(u) < k — 1in G¢

373F21 - Nisarg Shah 9

Proof

* d(v) = shortest distance of v from s in residual graph Gy

* Lemma 1: During the execution of the algorithm, d(v) does
not decrease for any v.

* Proof:

4 d(u) d(v)\

* In Gy, (u, v) must be missing

* We must have added (u, v) by
selecting (v, u) in augmenting path P

l l * But P is a shortest path, so it cannot

have edge (v, u) with d(v) > d(u)

G <k-1 =2k+1

373F21 - Nisarg Shah

Proof

* Call edge (u, v) critical in an augmentation step if

> It’s part of the augmenting path P and its capacity is equal to
bottleneck(P, f)

> Augmentation step removes e and adds e"®V (if missing)

* Lemma 2: Between any two steps in which (u, v) is critical,
d(u) increases by at least 2

* Proof of Edmonds-Karp running time
> Each d(u) can go from 0 ton (Lemma 1)
> So, each edge (u, v) can be critical at most n/2 times (Lemma 2)
> So, there can be at most m - n/2 augmentation steps
» Each augmentation takes O(m) time to perform
> Hence, O(m?n) operations in total!

373F21 - Nisarg Shah

Proof

* Lemma 2: Between any two steps in which (u, v) is critical,
d(u) increases by at least 2

* Proof:

> Suppose (u, v) was critical in Gy
o So, the augmentation step must have removed it

> Letk =d(u)in Gy
o Because (u, v) is part of a shortest path, d(v) = k + 1in G¢

» For (u, v) to be critical again, it must be added back at some point
o Suppose f' — f" steps adds it back
o Augmenting path in f" must have selected (v, u)
olnGe:dw) =dw)+1=2(k+1D)+1=k+2

373F21 - Nisarg Shah

Edmonds-Karp Proof Overview

* Note:
> Some graphs require {(mn) augmentation steps

> But we may be able to reduce the time to run each augmentation
step

* Two algorithms use this idea to reduce run time
> Dinitz’s algorithm [1970] = 0(mn?)
> Sleator—Tarjan algorithm [1983] = O(m nlogn)
o Using the dynamic trees data structure

373F21 - Nisarg Shah

Network Flow Applications

373F21 - Nisarg Shah

Rail network connecting Soviet Union with Eastern European countries
(Tolstoi 1930s)

flow
capacity——> U %

2 of %)
. LG]

= la

d - l?; ‘
] ORIGING

R A

373F21 - Nisarg Shah

Rail network connecting Soviet Union with Eastern European countries
(Tolstoi 1930s)

Min-cut

flow
capacity——>13

2 of %)
. LG]

= la

d - l?; ‘
] ORIGING

R A

373F21 - Nisarg Shah

Integrality Theorem

* Before we look at applications, we need the following
special property of the max-flow computed by Ford-
Fulkerson and its variants

e Observation:

> If edge capacities are integers, then the max-flow computed by Ford-
Fulkerson and its variants are also integral (i.e., the flow on each
edge is an integer).

> Easy to check that each augmentation step preserves integral flow

373F21 - Nisarg Shah

Bipartite Matching

4)
* Problem
> Given a bipartite graph ¢ = (U UV, E), find a maximum cardinality
matching)

* We do not know any efficient greedy or dynamic
programming algorithm for this problem.

e Butit can be reduced to max-flow.

373F21 - Nisarg Shah

Bipartite Matching

U IV

©

or
O\e
O e
©

* Create a directed flow graph where we...
> Add a source node s and target node t
> Add edges, all of capacity 1:
oSs—->uforeachu€eU,v—-tforeachveV
ou — vforeach (u,v) €EE

373F21 - Nisarg Shah

Bipartite Matching

e Observation

> There is a 1-1 correspondence between matchings of size k in the
original graph and flows with value k in the corresponding flow
network.

* Proof: (matching = integral flow)
> Take a matching M = {(uq,v4), ..., (ug, Vi) } of size k

> Construct the corresponding unique flow f; where...
o Edgess = u;, u; = v;,and v; = t haveflow 1, foralli =1, ..., k
o The rest of the edges have flow 0

> This flow has value k

373F21 - Nisarg Shah

Bipartite Matching

e Observation

> There is a 1-1 correspondence between matchings of size k in the
original graph and flows with value k in the corresponding flow
network.

* Proof: (integral flow = matching)
> Take any flow f with value k

> The corresponding unique matching My = set of edges from U to IV
with a flow of 1

o Since flow of k comes out of s, unit flow must go to k distinct
vertices in U

o From each such vertex in U, unit flow goes to a distinct vertex in V
o Uses integrality theorem

373F21 - Nisarg Shah

Bipartite Matching

e Perfect matching = flow with value n
> wheren = |U| = |V|

e Recall naive Ford-Fulkerson running time:
> O((m +n) - C), where C = sum of capacities of edges leaving s
> Q: What's the runtime when used for bipartite matching?

e Some variants are faster...

> Dinitz’s algorithm runs in time O(m+/n) when all edge capacities are
1

373F21 - Nisarg Shah

Hall's Marriage Theorem

 When does a bipartite graph have a perfect matching?
> Well, when the corresponding flow network has value n

> But can we interpret this condition in terms of edges of the original
bipartite graph?

> ForS € U, let N(S§) € V be the set of all nodes in V adjacent to some
nodein S

* Observation:
> If G has a perfect matching, |[N(S)| = |S| foreachS € U
> Because each node in S must be matched to a distinct node in N(S)

373F21 - Nisarg Shah

Hall's Marriage Theorem

 We'll consider a slightly different flow network, which is still
equivalent to bipartite matching
> All U — V edges now have oo capacity
> s > UandV — t edges are still unit capacity

373F21 - Nisarg Shah

Hall's Marriage Theorem

* Hall’'s Theorem:
> G has a perfect matching iff [IN(S)| = |S| foreachS SV

* Proof (reverse direction, via network flow):
> Suppose G doesn’t have a perfect matching

> Hence, max-flow = min-cut < n

> Let (4, B) be the min-cut
o Can’t have any U — V (oo capacity edges)
o Has unit capacityedgess = UNBandVNA-t

373F21 - Nisarg Shah

Hall's Marriage Theorem

* Hall’'s Theorem:
> G has a perfect matching iff [IN(S)| = |S| foreachS SV

* Proof (reverse direction, via network flow):
> cap(A,B) =|UNB|+|VNA|l<n=|U|

> So |[VNA|l<|UnNA|
> But N(U N A) € V N A because the cut doesn’t include any oo edges

>SOINWUNA)|<|IVNA|<|UNA|. =

373F21 - Nisarg Shah

Some Notes

* Runtime for bipartite perfect matching
» 1955: O(mn) — Ford-Fulkerson
> 1973: 0(m+/n) — blocking flow (Hopcroft-Karp, Karzanov)
> 2004: 0(n?378) - fast matrix multiplication (Mucha—Sankowsi)
> 2013: 0(m'%/7) - electrical flow (Madry)
> Best running time is still an open question

* Nonbipartite graphs
» Hall’s theorem — Tutte’s theorem
> 1965: 0(n*) - Blossom algorithm (Edmonds)
> 1980/1994: 0 (m+/n) — Micali-Vazirani

373F21 - Nisarg Shah

Edge-Disjoint Paths

4)
* Problem

> Given a directed graph ¢ = (V, E), two nodes s and t, find the
maximum number of edge-disjoint s — t paths

> Two s — t paths P and P’ are edge-disjoint if they don’t share an
edge

®

373F21 - Nisarg Shah

Edge-Disjoint Paths
e Application:
> Communication networks

* Max-flow formulation
> Assign unit capacity on all edges

373F21 - Nisarg Shah

Edge-Disjoint Paths

e Theorem:

> There is 1-1 correspondence between sets of k edge-disjoints — t
paths and integral flows of value k

* Proof (paths — flow)
> Let {P,, ..., P;} be a set of k edge-disjoint s — t paths

> Define flow f where f(e) = 1 whenever e € P; for some i, and 0
otherwise

> Since paths are edge-disjoint, flow conservation and capacity
constraints are satisfied

> Unique integral flow of value k

373F21 - Nisarg Shah

Edge-Disjoint Paths

e Theorem:

> There is 1-1 correspondence between k edge-disjoint s — t paths
and integral flows of value k

* Proof (flow — paths)
> Let f be an integral flow of value k
> k outgoing edges from s have unit flow

> Pick one such edge (s,u,)

o By flow conservation, u; must have unit outgoing flow (which we
haven’t used up yet).

o Pick such an edge and continue building a path until you hit t

> Repeat this for the other k — 1 edges from s with unit flow =

373F21 - Nisarg Shah

Edge-Disjoint Paths

 Maximum number of edge-disjoint s — t paths
» Equals max flow in this network
> By max-flow min-cut theorem, also equals minimum cut
> Exercise: minimum cut = minimum number of edges we need to
delete to disconnect s from t
o Hint: Show each direction separately (< and >)

373F21 - Nisarg Shah

Edge-Disjoint Paths

 Exercise!

» Show that to compute the maximum number of edge-disjoint s-t
paths in an undirected graph, you can create a directed flow network
by adding each undirected edge in both directions and setting all
capacitiesto 1

* Menger’s Theorem
> In any directed/undirected graph, the maximum number of edge-
disjoint (resp. vertex-disjoint) s — t paths equals the minimum
number of edges (resp. vertices) whose removal disconnects s and t

373F21 - Nisarg Shah

Multiple Sources/Sinks

 Problem

> Given a directed graph G = (V, E) with edge capacitiesc: E = N,
sources Sy, ..., S and sinks t4, ..., tp, find the maximum total flow
from sources to sinks.

~

flow network G

I Y
© 9 (L 6)

3 7

2

8 4
N 14 N
32] _/ : \2)

373F21 - Nisarg Shah

Multiple Sources/Sinks

* Network flow formulation
» Add a new source s, edges from s to each s; with oo capacity
> Add a new sink t, edges from each t; to t with oo capacity
> Find max-flow fromstot
> Claim: 1 — 1 correspondence between flows in two networks

flow network G’ N\ on
(s1) 9 (! 6 ey
0'o)
3 7
S z ®
8 4 0o
T oo o3 Y N
G N ! _/ : \&)
oo 10

373F21 - Nisarg Shah

Circulation

(* Input N

> Directed graph G = (V,E)
> Edge capacitiesc : E = N
> Nodedemandsd : V - Z

* Output
» Some circulation f : E — N satisfying
o Foreache € E:0 < f(e) < c(e)

K o Foreachv €V :), enteringvf(v) - Zeleavingvf(v) =d(v) /

> Note that you need Y., 5(,)>0 4 (V) = 2yp.qw)<0 —4 (V)
> What are demands?

373F21 - Nisarg Shah

Circulation

 Demand at v = amount of flow you need to take out at
node v

> d(v) > 0: You need to take some flow out at v
o So, there should be d(v) more incoming flow than outgoing flow
o “Demand node”

> d(v) < 0:You need to put some flow in at v
o So, there should be |d(v)| more outgoing flow than incoming flow
o “Supply node”

> d(v) = 0: Node has flow conservation
o Equal incoming and outgoing flows
o “Transshipment node”

373F21 - Nisarg Shah

Circulation

 Example

flow network G

4/10

—7 (Y
?k_/ 3/3

373F21 - Nisarg Shah

-
@
6/7

6/6

O

10

(demand node)

(supply node)
-6

()

1/7

O

0

(transshipment node)

flow capacity

V

7/9

4/4

Circulation

e Network-flow formulation G’
> Add a new source s and a new sink t

> For each “supply” node v with d(v) < 0, add edge (s, v) with
capacity —d(v)

> For each “demand” node v with d(v) > 0, add edge (v, t) with
capacity d(v)

e Claim:
> G has a circulation iff G’ has max flow of value

Z d(v) = z —d(v)
v:d(v)>0 v:d(v)<0

373F21 - Nisarg Shah

Circulation

 Example
(supply node)

flow network G -8 -6
~ :
u\:} O flow capacity

6/7 1/7 e
4/10 6/6 2/4 s
_7 (Y
7 OF— 3113 ——Q) O—— 14— 1
10 0
(demand node) (transshipment node)

373F21 - Nisarg Shah

Circulation

 Example
saturates all edges
ﬁ\ leaving s
suppl '
, ’ — UPPYY and entering ¢
8

flow network G’ —i/ -6

(o

A

7 7
10 6 4 9

373F21 - Nisarg Shah

Circulation with Lower Bounds

(< Input N

> Directed graph G = (V,E)
> Edge capacities ¢ : E = N and lower bounds ¢ : E - N
> Nodedemandsd : V - Z

* Output
» Some circulation f : E — N satisfying
o Foreache € E:¥(e) < f(e) < c(e)

\ o Foreachv €V :), enteringvf(v) - Zeleavingvf(v) =d(v) /

> Note that you still need Y.,.5(,)>0 4 (V) = Zyp.a)<0 —2 (V)

373F21 - Nisarg Shah

Circulation with Lower Bounds

 Transform to circulation without lower bounds
> Do the following operation to each edge

lower bound upper bound capacity
() [2,9] _;../1; () ;./1;\
Y, 2 N O/ 7 N

dv) +2 dw) =2

flow network G flow network G’

e Claim: Circulation in G iff circulation in G’

> Proof sketch: f(e) gives a valid circulation in G iff f(e) — £(e) gives a
valid circulation in G’

373F21 - Nisarg Shah

Survey Design

KProbIem

> We want to design a survey about m products
o We have one question in mind for each product
o Need to ask product j’s question to between p; and p]'- consumers

» There are a total of n consumers
o Consumer i owns a subset of products O;
o We can ask consumer i questions about only these products
o We want to ask consumer i between c; and ¢; questions

\> Is there a survey meeting all these requirements?

373F21 - Nisarg Shah

Survey Design

* Bipartite matching is a special case
> ¢ =c¢; =p;=p;=1foralliandj

* Formulate as circulation with lower bounds

> Create a network with special nodes s and t

> Edge from s to each consumer i with flow € [c;, ¢;]

» Edge from each consumer i to each product j € O; with flow € [0,1]
> Edge from each product j to t with flow € [p;, p;]
» Edge from t to s with flow in [0, o]
> All demands and supplies are 0

373F21 - Nisarg Shah

Survey Design

* Max-flow formulation:
> Feasible survey iff feasible circulation in this network

[0, =]

(1) [0.1]

[c1,e1'] [pl,Pll]

=)

(A
@ 2
) € 3 7
@ @
consumers products

373F21 - Nisarg Shah

Image Segmentation

* Foreground/background segmentation
» Given an image, separate “foreground” from “background”

* Here’s the power of PowerPoint (or the lack thereof)

Remove
background

373F21 - Nisarg Shah

Image Segmentation

* Foreground/background segmentation
» Given an image, separate “foreground” from “background”

* Here’s what remove.bg gets using Al

Remove
background

373F21 - Nisarg Shah

Image Segmentation

* Informal problem

> Given an image (2D array of pixels), and likelihood estimates of
different pixels being foreground/background, label each
pixel as foreground or background

> Want to prevent having too many
neighboring pixels where one is
labeled foreground but the other i
is labeled background o

373F21 - Nisarg Shah

Image Segmentation

* Input
> An image (2D array of pixels)
> a; = likelihood of pixel i being in foreground
> b; = likelihood of pixel i being in background

> p;;j = penalty for “separating” pixels i and j (i.e. labeling one of them
as foreground and the other as background)

* Output
> Label each pixel as “foreground” or “background”
> Minimize “total penalty”

o Want it to be high if a; is high but i is labeled background, b; is high
but i is labeled foreground, or p; ; is high but i and j are separated

373F21 - Nisarg Shah

Image Segmentation

e Recall
> a; = likelihood of pixels i being in foreground
> b; = likelihood of pixels i being in background
> pij = penalty for separating pixels i and j
> Let E = pairs of neighboring pixels

* Output
> Minimize total penalty
o A = set of pixels labeled foreground
o B = set of pixels labeled background

o Penalty =
z bi + z Clj + z pi,j
IEA jEB (i,j)EE
|AN{i,j}=1

373F21 - Nisarg Shah

Image Segmentation

* Formulate as a min-cut problem
> Want to divide the set of pixels V into (4, B) to minimize

Zbi+2aj+ Z pi,]-

i€A jEB (i,j)EE
lAn{i,j}=1
> Nodes:
o source s, target t, and v; for each pixel i
> Edges:

o (s,v;) with capacity a; for all i
o (v;, t) with capacity b; for all i
o (v;,vj) and (v}, v;) with capacity p; ; each for all neighboring (i, j)

373F21 - Nisarg Shah

Image Segmentation

* Formulate as min-cut problem
» Here’s what the network looks like

373F21 - Nisarg Shah

If i and j are labeled differently, it
will add p; ; exactly once

» Consider the min-cut (4, B) /
cap(A,B) = z b; + z a; + z Dij

IEA JEB (i,j)EE
IEA,JEB

Image Segmentation

> Exactly what we want to minimize!

(< 20> ‘:@1

4

-
>

()

NG
/\

3

r@

L J

v v
\’U‘

373F21 - Nisarg Shah

Image Segmentation

* GrabCut [Rother-Kolmogorov-Blake 2004]

“GrabCut” — Interactive Foreground Extraction using lterated Graph Cuts

Carsten Rother” Vladimir Kolmogorov® Andrew Blake*
Microsoft Research Cambridge. UK

Figure 1: Three examples of GrabCut . The user drags a rectangle loosely around an object. The object 1s then extracted automatically.

373F21 - Nisarg Shah

Profit Maximization (Yeaa...!

KProbIem

> There are n tasks
» Performing task i generates a profit of p;
o We allow p; < 0 (i.e., performing task i may be costly)
> There is a set E of precedence relations
o (i,j) € E indicates that if we perform i, we must also perform j

e Goal

> Find a subset of tasks S which, subject to the precedence constraints,
\ maximizes profit(S) = YiesDi

J

373F21 - Nisarg Shah

Profit Maximization

* We can represent the input as a graph
> Nodes = tasks, node weights = profits,
» Edges = precedence constraints

> Goal: find a subset of nodes S with highest total weights.t.ifi €S
and (i,j) € E, thenj € S as well

e’: -
< o C

373F21 - Nisarg Shah

Profit Maximization

* Want to formulate as a min-cut
> Add source s and target t
> min-cut (4, B) = want desired solutiontobe § = A \ {s}
> Goals:
o cap(4, B) should nicely relate to profit(S)

o Precedence constraints must be respected
e “Hard” constraints are usually enforced using infinite capacity edges

* Construction:
> Add each (i,j) € E with infinite capacity
> For eachi:
o If p; > 0, add (s, i) with capacity p;
o If p; <0, add (i, t) with capacity —p;

373F21 - Nisarg Shah

Profit Maximization

373F21 - Nisarg Shah

Profit Maximization

373F21 - Nisarg Shah

Profit Maximization

QUESTION: What is the capacity of this cut?

373F21 - Nisarg Shah

Profit Maximization

Exercise: Show that...
1. A finite capacity cut exists.
2. If cap(A, B) is finite, then A\{s} is a valid solution;
3. Minimizing cap(A, B) maximizes profit(A\{s})

* Show that cap(4, B) = constant — profit(A\{s}), where the
constant is independent of the choice of (4, B)

373F21 - Nisarg Shah

