
CSC373

Week 4: 
Dynamic Programming

373F21 - Nisarg Shah 1

Nisarg Shah



Recap

373F21 - Nisarg Shah 2

• Greedy Algorithms

➢ Interval scheduling

➢ Interval partitioning

➢ Minimizing lateness

➢ Huffman encoding

➢ …



373F21 - Nisarg Shah 3

Jeff Erickson on greedy algorithms…



373F21 - Nisarg Shah 4

The 1950s were not good years for mathematical research. 
We had a very interesting gentleman in Washington named 
Wilson. He was secretary of Defense, and he actually had a 
pathological fear and hatred of the word ‘research’. I’m not 
using the term lightly; I’m using it precisely. His face would 
suffuse, he would turn red, and he would get violent if 
people used the term ‘research’ in his presence. You can 
imagine how he felt, then, about the term ‘mathematical’. 
The RAND Corporation was employed by the Air Force, and 
the Air Force had Wilson as its boss, essentially. Hence, I felt 
I had to do something to shield Wilson and the Air Force 
from the fact that I was really doing mathematics inside the 
RAND Corporation. What title, what name, could I choose?

— Richard Bellman, on the origin of his term ‘dynamic 
programming’ (1984)

Richard Bellman’s quote from Jeff Erickson’s book



Dynamic Programming

373F21 - Nisarg Shah 5

• Outline
➢ Breaking the problem down into simpler subproblems, solve each 

subproblem just once, and store their solutions. 

➢ The next time the same subproblem occurs, instead of recomputing 
its solution, simply look up its previously computed solution.

➢ Hopefully, we save a lot of computation at the expense of modest 
increase in storage space. 

➢ Also called “memoization”

• How is this different from divide & conquer?



• Problem
➢ Job 𝑗 starts at time 𝑠𝑗 and finishes at time 𝑓𝑗

➢ Each job 𝑗 has a weight 𝑤𝑗

➢ Two jobs are compatible if they don’t overlap

➢ Goal: find a set 𝑆 of mutually compatible jobs with highest total weight 
σ𝑗∈𝑆 𝑤𝑗

• Recall: If all 𝑤𝑗 = 1, then this is simply the interval scheduling 
problem from last week
➢ Greedy algorithm based on earliest finish time ordering was optimal for 

this case

Weighted Interval Scheduling

373F21 - Nisarg Shah 6



Recall: Interval Scheduling

373F21 - Nisarg Shah 7

• What if we simply try to use it again?
➢ Fails spectacularly!



Weighted Interval Scheduling

373F21 - Nisarg Shah 8

• What if we use other orderings?
➢ By weight: choose jobs with highest 𝑤𝑗 first

➢ Maximum weight per time: choose jobs with highest 𝑤𝑗/(𝑓𝑗 − 𝑠𝑗) first

➢ ...

• None of them work!
➢ They’re arbitrarily worse than the optimal solution

➢ In fact, under a certain formalization, “no greedy algorithm” can 
produce any “decent approximation” in the worst case (beyond this 
course!)



Weighted Interval Scheduling

373F21 - Nisarg Shah 9

• Convention
➢ Jobs are sorted by finish time: 𝑓1 ≤ 𝑓2 ≤ ⋯ ≤ 𝑓𝑛

➢ 𝑝 𝑗 = largest 𝑖 < 𝑗 such that job 𝑖 is compatible with job 𝑗 (i.e., 𝑓𝑖 < 𝑠𝑗)

o Jobs 1, … , 𝑖 are compatible with 𝑗, but jobs 𝑖 + 1, … , 𝑗 − 1 aren’t

o 𝑝[𝑗] can be computed via binary search

E.g.,

𝑝[8] = 1,
𝑝[7] = 3,
𝑝[2] = 0,

…



Weighted Interval Scheduling

373F21 - Nisarg Shah 10

• The DP approach
➢ Let OPT be an optimal solution

➢ Two options regarding job 𝑛:

o Option 1: Job 𝑛 is in OPT

• Can’t use incompatible jobs 𝑝 𝑛 + 1, … , 𝑛 − 1

• Must select optimal subset of jobs from {1, … , 𝑝 𝑛 }

o Option 2: Job 𝑛 is not in OPT

• Must select optimal subset of jobs from {1, … , 𝑛 − 1}

➢ OPT is best of both options

➢ Notice that in both options, we need to solve the problem on a prefix 
of our ordering



Weighted Interval Scheduling

373F21 - Nisarg Shah 11

• The DP approach
➢ 𝑂𝑃𝑇(𝑗) = max total weight of compatible jobs from 1, … , 𝑗

➢ Base case: 𝑂𝑃𝑇 0 = 0

➢ Two cases regarding job 𝑗:

o Job 𝑗 is selected: optimal weight is 𝑤𝑗 + 𝑂𝑃𝑇(𝑝 𝑗 )

o Job 𝑗 is not selected: optimal weight is 𝑂𝑃𝑇(𝑗 − 1)

➢ Bellman equation:

𝑂𝑃𝑇 𝑗 = ൝
0 if 𝑗 = 0

max 𝑂𝑃𝑇 𝑗 − 1 , 𝑤𝑗 +𝑂𝑃𝑇 𝑝 𝑗 if 𝑗 > 0



Brute Force Solution

373F21 - Nisarg Shah 12



Brute Force Solution

373F21 - Nisarg Shah 13

• Q: Worst-case running time of COMPUTE-OPT(𝑛)?
a) Θ(𝑛)

b) Θ 𝑛 log 𝑛

c) Θ 1.618𝑛

d) Θ(2𝑛)



Dynamic Programming

373F21 - Nisarg Shah 15

• Why is the runtime high?
➢ Some solutions are being computed many, many times

o E.g., if 𝑝[5] = 3, then Compute-OPT(5) calls Compute-OPT(4) and 
Compute-OPT(3)

o But Compute-OPT(4) in turn calls Compute-OPT(3) again

• Memoization trick
➢ Simply remember what you’ve already computed, and re-use the 

answer if needed in future



Dynamic Program: Top-Down

373F21 - Nisarg Shah 16

• Let’s store COMPUTE-OPT(j) in 𝑀[𝑗]



Dynamic Program: Top-Down

373F21 - Nisarg Shah 17

• Claim: This memoized version takes 𝑂 𝑛 log 𝑛 time
➢ Sorting by finish time: 𝑂 𝑛 log 𝑛

➢ Computing 𝑝[𝑗]-s: 𝑂(𝑛 log 𝑛)

➢ For each 𝑗, at most one of the calls to M-Compute-OPT(𝑗) will make 
two recursive calls to M-Compute-OPT

o At most 𝑂(𝑛) total calls to M-Compute-OPT

o Each call takes 𝑂(1) time, not considering the time spent in the 
recursive calls

o Hence, the initial call, M-Compute-OPT(𝑛), finishes in 𝑂 𝑛 time

➢ Overall time is 𝑂 𝑛 log 𝑛



Dynamic Program: Bottom-Up

373F21 - Nisarg Shah 18

• Find an order in which to call the functions so that the sub-
solutions are ready when needed



Top-Down vs Bottom-Up

373F21 - Nisarg Shah 19

• Top-Down may be preferred…
➢ …when not all sub-solutions need to be computed on some inputs

➢ …because one does not need to think of the “right order” in which to 
compute sub-solutions

• Bottom-Up may be preferred…
➢ …when all sub-solutions will anyway need to be computed

➢ …because it is faster as it prevents recursive call overheads and 
unnecessary random memory accesses

➢ …because sometimes we can free-up memory early



Optimal Solution

373F21 - Nisarg Shah 20

• This approach gave us the optimal value

• What about the actual solution (subset of jobs)?
➢ Idea: Maintain the optimal value and an optimal solution

➢ So, we compute two quantities:

𝑂𝑃𝑇 𝑗 = ൝
0 if 𝑗 = 0

max 𝑂𝑃𝑇 𝑗 − 1 , 𝑤𝑗 + 𝑂𝑃𝑇 𝑝 𝑗 if 𝑗 > 0

𝑆 𝑗 = ൞

∅ if 𝑗 = 0

𝑆(𝑗 − 1) if 𝑗 > 0 ∧ 𝑂𝑃𝑇 𝑗 − 1 ≥ 𝑤𝑗 + 𝑂𝑃𝑇 𝑝 𝑗

𝑗 ∪ 𝑆(𝑝 𝑗 ) if 𝑗 > 0 ∧ 𝑂𝑃𝑇 𝑗 − 1 < 𝑤𝑗 + 𝑂𝑃𝑇 𝑝 𝑗



Optimal Solution

373F21 - Nisarg Shah 21

𝑂𝑃𝑇 𝑗 = ൝
0 if 𝑗 = 0

max 𝑂𝑃𝑇 𝑗 − 1 , 𝑤𝑗 + 𝑂𝑃𝑇 𝑝 𝑗 if 𝑗 > 0

𝑆 𝑗 = ൞

∅ if 𝑗 = 0

𝑆(𝑗 − 1) if 𝑗 > 0 ∧ 𝑂𝑃𝑇 𝑗 − 1 ≥ 𝑤𝑗 + 𝑂𝑃𝑇 𝑝 𝑗

𝑗 ∪ 𝑆(𝑝 𝑗 ) if 𝑗 > 0 ∧ 𝑂𝑃𝑇 𝑗 − 1 < 𝑤𝑗 + 𝑂𝑃𝑇 𝑝 𝑗

This works with both top-down and 
bottom-up implementations. 

We can compute 𝑂𝑃𝑇 and 𝑆
simultaneously, or compute 𝑂𝑃𝑇 first 
and then compute 𝑆.



Optimal Solution

373F21 - Nisarg Shah 22

𝑂𝑃𝑇 𝑗 = ൝
0 if 𝑗 = 0

max 𝑂𝑃𝑇 𝑗 − 1 , 𝑤𝑗 + 𝑂𝑃𝑇 𝑝 𝑗 if 𝑗 > 0

𝑆 𝑗 = ൞

⊥ if 𝑗 = 0

𝐿 if 𝑗 > 0 ∧ 𝑂𝑃𝑇 𝑗 − 1 ≥ 𝑤𝑗 + 𝑂𝑃𝑇 𝑝 𝑗

𝑅 if 𝑗 > 0 ∧ 𝑂𝑃𝑇 𝑗 − 1 < 𝑤𝑗 + 𝑂𝑃𝑇 𝑝 𝑗

• Save space by storing only one bit of information for each 𝑗: 
which option yielded the maximum weight

• To reconstruct the optimal solution, start with 𝑗 = 𝑛
➢ If 𝑆 𝑗 = 𝐿, update 𝑗 ← 𝑗 − 1

➢ If 𝑆 𝑗 = 𝑅, add 𝑗 to the solution and update 𝑗 ← 𝑝[𝑗]

➢ If 𝑆 𝑗 =⊥, stop



Optimal Substructure Property

373F21 - Nisarg Shah 23

• Dynamic programming applies well to problems that have 
optimal substructure property
➢ Optimal solution to a problem can be computed easily given optimal 

solution to subproblems

• Recall: divide-and-conquer also uses this property
➢ Divide-and-conquer is a special case in which the subproblems don’t 

“overlap”

➢ So, there’s no need for memoization

➢ In dynamic programming, two of the subproblems may in turn 
require access to solution to the same subproblem



Knapsack Problem

373F21 - Nisarg Shah 24

• Problem
➢ 𝑛 items: item 𝑖 provides value 𝑣𝑖 > 0 and has weight 𝑤𝑖 > 0

➢ Knapsack has weight capacity 𝑊

➢ Assumption: 𝑊, 𝑣𝑖-s, and 𝑤𝑖-s are all integers 

➢ Goal: pack the knapsack with a subset of items with highest total 
value subject to their total weight being at most 𝑊



A First Attempt

373F21 - Nisarg Shah 25

• Let 𝑂𝑃𝑇(𝑤) = maximum value we can pack with a knapsack of 
capacity 𝑤
➢ Goal: Compute 𝑂𝑃𝑇(𝑊)

➢ Claim: 𝑂𝑃𝑇(𝑤) must use at least one job 𝑗 with weight ≤ 𝑤 and then 
optimally pack the remaining capacity of 𝑤 − 𝑤𝑗

➢ Let 𝑤∗ = min𝑗 𝑤𝑗

➢ 𝑂𝑃𝑇 𝑤 = ൝
0 if 𝑤 < 𝑤∗

max
𝑗:𝑤𝑗≤𝑤

𝑣𝑗 + 𝑂𝑃𝑇 𝑤 − 𝑤𝑗 if 𝑤 ≥ 𝑤∗

• This is wrong!
➢ It might use an item more than once!



A Refined Attempt

373F21 - Nisarg Shah 26

• 𝑂𝑃𝑇(𝑖, 𝑤) = maximum value we can pack using only items 
1, … , 𝑖 in a knapsack of capacity 𝑤
➢ Goal: Compute 𝑂𝑃𝑇(𝑛, 𝑊)

• Consider item 𝑖
➢ If 𝑤𝑖 > 𝑤, then we can’t choose 𝑖. Use 𝑂𝑃𝑇(𝑖 − 1, 𝑤)

➢ If 𝑤𝑖 ≤ 𝑤, there are two cases:

o If we choose 𝑖, the best is 𝑣𝑖 + 𝑂𝑃𝑇 𝑖 − 1, 𝑤 − 𝑤𝑖

o If we don’t choose 𝑖, the best is 𝑂𝑃𝑇(𝑖 − 1, 𝑤)



Running Time

373F21 - Nisarg Shah 27

• Consider possible evaluations 𝑂𝑃𝑇(𝑖, 𝑤)
➢ 𝑖 ∈ 1, … , 𝑛

➢ 𝑤 ∈ {1, … , 𝑊} (recall weights and capacity are integers)

➢ There are 𝑂(𝑛 ⋅ 𝑊) possible evaluations of 𝑂𝑃𝑇

➢ Each is evaluated at most once (memoization / bottom-up)

➢ Each takes 𝑂(1) time to evaluate

➢ The total running time is 𝑂(𝑛 ⋅ 𝑊)

• Q: Is this polynomial in the input size?
➢ A: No! But it’s pseudo-polynomial.

➢ Recall the inputs: 𝑊, 𝑣1, … , 𝑣𝑛, 𝑤1, … , 𝑤𝑛

➢ Time should be polynomial in log 𝑊 + σ𝑖=1
𝑛 log 𝑣𝑖 + log 𝑤𝑖



What if…?

373F21 - Nisarg Shah 28

• If we were told that 𝑊 = 𝑝𝑜𝑙𝑦 𝑛 …
➢ That is, the value of 𝑊, and not its number of bits, is polynomially 

bounded in the input length

➢ Then, this algorithm would run in polynomial time

• Q: What if, instead of the weights being small integers, we 
are told that the values are small integers?
➢ Then we can use a different dynamic programming approach!



A Different DP

373F21 - Nisarg Shah 29

• 𝑂𝑃𝑇(𝑖, 𝑣) = minimum capacity needed to pack a total value 
of at least 𝑣 using items 1, … , 𝑖
➢ Goal: Compute max 𝑣 ∶ 𝑂𝑃𝑇 𝑛, 𝑣 ≤ 𝑊

• Consider item 𝑖
➢ If we choose 𝑖, we need capacity 𝑤𝑖 + 𝑂𝑃𝑇(𝑖 − 1, 𝑣 − 𝑣𝑖)

➢ If we don’t choose 𝑖, we need capacity 𝑂𝑃𝑇 𝑖 − 1, 𝑣

𝑂𝑃𝑇 𝑖, 𝑣 =

0 if 𝑣 ≤ 0
∞ if 𝑣 > 0, 𝑖 = 0

min
𝑤𝑖 + 𝑂𝑃𝑇 𝑖 − 1, 𝑣 − 𝑣𝑖 ,

𝑂𝑃𝑇 𝑖 − 1, 𝑣
if 𝑣 > 0, 𝑖 > 0



A Different DP

373F21 - Nisarg Shah 30

• 𝑂𝑃𝑇(𝑖, 𝑣) = minimum capacity needed to pack a total value 
of at least 𝑣 using items 1, … , 𝑖
➢ Goal: Compute max 𝑣 ∶ 𝑂𝑃𝑇 𝑛, 𝑣 ≤ 𝑊

➢ This approach has running time 𝑂(𝑛 ⋅ 𝑉), where 𝑉 = 𝑣1 + ⋯ + 𝑣𝑛

➢ So, we can get 𝑂(𝑛 ⋅ 𝑊) or 𝑂(𝑛 ⋅ 𝑉), whichever is smaller

• Can we remove the dependence on both 𝑉 and 𝑊?
➢ Not likely. 

➢ Knapsack problem is NP-complete (we’ll see later). 



FPTAS

373F21 - Nisarg Shah 31

• While we cannot hope to solve the problem exactly in time 
𝑂 𝑝𝑜𝑙𝑦 𝑛, log 𝑊 , log 𝑉 …

➢ For any 𝜖 > 0, we can get a value that is within 1 + 𝜖 multiplicative 

factor of the optimal value in time 𝑂 𝑝𝑜𝑙𝑦 𝑛, log 𝑊 , log 𝑉 ,
1

𝜖

➢ Such algorithms are known as fully polynomial-time approximation 
scheme (FPTAS)

➢ Core idea behind FPTAS for knapsack: 

o Approximate all weights and values up to the desired precision

o Solve knapsack on approximate input using DP

NOT IN SYLLABUS



Single-Source Shortest Paths

373F21 - Nisarg Shah 32

• Problem
➢ Input: A directed graph 𝐺 = (𝑉, 𝐸) with edge lengths ℓ𝑣𝑤 on each 

edge (𝑣, 𝑤), and a source vertex 𝑠

➢ Goal: Compute length of the shortest path from 𝑠 to every vertex 𝑡

• When ℓ𝑣𝑤 ≥ 0 for each (𝑣, 𝑤)…
➢ Dijkstra’s algorithm can be used for this purpose

➢ But it fails when some edge lengths can be negative

➢ What do we do in this case?



Single-Source Shortest Paths

373F21 - Nisarg Shah 33

• Cycle length = sum of lengths of edges in the cycle

• If there is a negative length cycle, shortest paths are not 
even well defined…
➢ You can traverse the cycle arbitrarily many times to get arbitrarily 

“short” paths

𝑠



Single-Source Shortest Paths

373F21 - Nisarg Shah 34

• But if there are no negative cycles…
➢ Shortest paths are well-defined even when some of the edge lengths 

may be negative

• Claim: With no negative cycles, there is always a shortest 
path from any vertex to any other vertex that is simple
➢ Consider the shortest 𝑠 ⇝ 𝑡 path with the fewest edges among all 

shortest 𝑠 ⇝ 𝑡 paths

➢ If it has a cycle, removing the cycle creates a path with fewer edges 
that is no longer than the original path



Optimal Substructure Property

373F21 - Nisarg Shah 35

• Consider a simple shortest 𝑠 ⇝ 𝑡 path 𝑃
➢ It could be just a single edge

➢ But if 𝑃 has more than one edges, consider 𝑢 which immediately 
precedes 𝑡 in the path

➢ If 𝑠 ⇝ 𝑡 is shortest, 𝑠 ⇝ 𝑢 must be shortest as well and it must use 
one fewer edge than the 𝑠 ⇝ 𝑡 path

𝑡



Optimal Substructure Property

373F21 - Nisarg Shah 36

• 𝑂𝑃𝑇(𝑡, 𝑖) = length of the shortest path from 𝑠 to 𝑡 using at most 
𝑖 edges

• Then:
➢ Either this path uses at most 𝑖 − 1 edges ⇒ 𝑂𝑃𝑇(𝑡, 𝑖 − 1)

➢ Or it uses 𝑖 edges ⇒ min
𝑢

𝑂𝑃𝑇 𝑢, 𝑖 − 1 + ℓ𝑢𝑡

𝑡



Optimal Substructure Property

373F21 - Nisarg Shah 37

• 𝑂𝑃𝑇(𝑡, 𝑖) = shortest path from 𝑠 to 𝑡 using at most 𝑖 edges

• Then:
➢ Either this path uses at most 𝑖 − 1 edges ⇒ 𝑂𝑃𝑇(𝑡, 𝑖 − 1)

➢ Or it uses exactly 𝑖 edges ⇒ min
𝑢

𝑂𝑃𝑇 𝑢, 𝑖 − 1 + ℓ𝑢𝑡

𝑂𝑃𝑇 𝑡, 𝑖 =

0
∞

𝑖 = 0 ∨ 𝑡 = 𝑠
𝑖 = 0 ∧ 𝑡 ≠ 𝑠

min 𝑂𝑃𝑇 𝑡, 𝑖 − 1 , min
𝑢

𝑂𝑃𝑇 𝑢, 𝑖 − 1 + ℓ𝑢𝑡 otherwise

➢ Running time: 𝑂(𝑛2) calls, each takes 𝑂(𝑛) time ⇒ 𝑂 𝑛3

➢ Q: What do you need to store to also get the actual paths?



Side Notes

373F21 - Nisarg Shah 38

• Bellman-Ford-Moore 
algorithm
➢ Improvement over this DP

➢ Running time 𝑂(𝑚𝑛) for 
𝑛 vertices and 𝑚 edges

➢ Space complexity reduces 
to 𝑂(𝑚 + 𝑛)



Maximum Length Paths?

373F21 - Nisarg Shah 39

• Can we use a similar DP to compute maximum length paths 
from 𝑠 to all other vertices?

• This is well defined when there are no positive cycles, in 
which case, yes. 

• What if there are positive cycles, but we want maximum 
length simple paths?



Maximum Length Paths?

373F21 - Nisarg Shah 40

• What goes wrong?
➢ Our DP doesn’t work because its path from 𝑠 to 𝑡 might use a path 

from 𝑠 to 𝑢 and edge from 𝑢 to 𝑡

➢ But path from 𝑠 to 𝑢 might in turn go through 𝑡

➢ The path may no longer remain simple

• In fact, maximum length simple path is NP-hard
➢ Hamiltonian path problem (i.e., “is there a path of length 𝑛 − 1 in a 

given undirected graph?”) is a special case



All-Pairs Shortest Paths

373F21 - Nisarg Shah 41

• Problem
➢ Input: A directed graph 𝐺 = (𝑉, 𝐸) with edge lengths ℓ𝑣𝑤 on each 

edge (𝑣, 𝑤) and no negative cycles

➢ Goal: Compute the length of the shortest path from all vertices 𝑠 to 
all other vertices 𝑡

• Simple idea:
➢ Run single-source shortest paths from each source 𝑠

➢ Running time is 𝑂 𝑛4

➢ Actually, we can do this in 𝑂(𝑛3) as well



All-Pairs Shortest Paths

373F21 - Nisarg Shah 42

• Problem
➢ Input: A directed graph 𝐺 = (𝑉, 𝐸) with edge lengths ℓ𝑣𝑤 on each 

edge (𝑣, 𝑤) and no negative cycles

➢ Goal: Compute the length of the shortest path from all vertices 𝑠 to 
all other vertices 𝑡

➢ 𝑂𝑃𝑇 𝑢, 𝑣, 𝑘 = length of shortest simple path from 𝑢 to 𝑣 in which 
intermediate nodes are from {1, … , 𝑘}

➢ Exercise: Write down the Bellman equation for 𝑂𝑃𝑇 such that given 
all subsolutions, it requires 𝑂(1) time to compute

➢ Running time: 𝑂 𝑛3 calls, 𝑂 1 per call ⇒ 𝑂 𝑛3



Chain Matrix Product

373F21 - Nisarg Shah 43

• Problem
➢ Input: Matrices 𝑀1, … , 𝑀𝑛 where the dimension of 𝑀𝑖 is 𝑑𝑖−1 × 𝑑𝑖

➢ Goal: Compute 𝑀1 ⋅ 𝑀2 ⋅ … ⋅ 𝑀𝑛

• But matrix multiplication is associative
➢ 𝐴 ⋅ 𝐵 ⋅ 𝐶 = 𝐴 ⋅ 𝐵 ⋅ 𝐶

➢ So, isn’t the optimal solution going to call the algorithm for 
multiplying two matrices exactly 𝑛 − 1 times?

➢ Insight: the time it takes to multiply two matrices depends on their 
dimensions



Chain Matrix Product

373F21 - Nisarg Shah 44

• Assume
➢ We use the brute force approach for matrix multiplication

➢ So, multiplying 𝑝 × 𝑞 and 𝑞 × 𝑟 matrices requires 𝑝 ⋅ 𝑞 ⋅ 𝑟 operations

• Example: compute 𝑀1 ⋅ 𝑀2 ⋅ 𝑀3

➢ 𝑀1 is 5 X 10

➢ 𝑀2 is 10 X 100

➢ 𝑀3 is 100 X 50

➢ 𝑀1 ⋅ 𝑀2 ⋅ 𝑀3 → 5 ⋅ 10 ⋅ 100 + 5 ⋅ 100 ⋅ 50 = 30000 ops

➢ 𝑀1 ⋅ 𝑀2 ⋅ 𝑀3 → 10 ⋅ 100 ⋅ 50 + 5 ⋅ 10 ⋅ 50 = 52500 ops



Chain Matrix Product

373F21 - Nisarg Shah 45

• Note
➢ Our input is simply the dimensions 𝑑0, 𝑑1, … , 𝑑𝑛 (such that each 𝑀𝑖 is 

𝑑𝑖−1 × 𝑑𝑖) and not the actual matrices

• Why is DP right for this problem?
➢ Optimal substructure property

➢ Think of the final product computed, say 𝐴 ⋅ 𝐵

➢ 𝐴 is the product of some prefix, 𝐵 is the product of the remaining 
suffix

➢ For the overall optimal computation, each of 𝐴 and 𝐵 should be 
computed optimally



Chain Matrix Product

373F21 - Nisarg Shah 46

• 𝑂𝑃𝑇(𝑖, 𝑗) = min ops required to compute 𝑀𝑖 ⋅ … ⋅ 𝑀𝑗

➢ Here, 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛

➢ Q: Why do we not just care about prefixes and suffices?

o 𝑀1 ⋅ 𝑀2 ⋅ 𝑀3 ⋅ 𝑀4 ⋅ 𝑀5 ⇒ need to know optimal solution for 
𝑀2 ⋅ 𝑀3 ⋅ 𝑀4

➢ Running time: 𝑂 𝑛2 calls, 𝑂(𝑛) time per call ⇒ 𝑂 𝑛3

𝑂𝑃𝑇 𝑖, 𝑗 = ൝
0 𝑖 = 𝑗

min
k:i≤k<j

𝑂𝑃𝑇 𝑖, 𝑘 + 𝑂𝑃𝑇 𝑘 + 1, 𝑗 + 𝑑𝑖−1𝑑𝑘𝑑𝑗 if 𝑖 < 𝑗



Chain Matrix Product

373F21 - Nisarg Shah 47

• Can we do better?
➢ Surprisingly, yes. But not by a DP algorithm (that I know of)

➢ Hu & Shing (1981) developed 𝑂(𝑛 log 𝑛) time algorithm by reducing 
chain matrix product to the problem of “optimally” triangulating a 
regular polygon

Source: Wikipedia

Example
• 𝐴 is 10 × 30, 𝐵 is 30 × 5, 𝐶 is 5 × 60
• The cost of each triangle is the product 

of its vertices
• Want to minimize total cost of all 

triangles 

NOT IN SYLLABUS



• Edit distance (aka sequence alignment) problem
➢ How similar are strings 𝑋 = 𝑥1, … , 𝑥𝑚 and 𝑌 = 𝑦1, … , 𝑦𝑛?

• Suppose we can delete or replace symbols
➢ We can do these operations on any symbol in either string

➢ How many deletions & replacements does it take to match the two 
strings?

Edit Distance

373F21 - Nisarg Shah 48



• Example: ocurrance vs occurrence

Edit Distance

373F21 - Nisarg Shah 49

6 replacements, 1 deletion

1 replacement, 1 deletion



• Edit distance problem
➢ Input

o Strings 𝑋 = 𝑥1, … , 𝑥𝑚 and 𝑌 = 𝑦1, … , 𝑦𝑛

o Cost 𝑑(𝑎) of deleting symbol 𝑎

o Cost 𝑟(𝑎, 𝑏) of replacing symbol 𝑎 with 𝑏

• Assume 𝑟 𝑎, 𝑏 = 𝑟(𝑏, 𝑎) and 𝑟 𝑎, 𝑎 = 0, for all 𝑎, 𝑏

➢ Goal

o Compute the minimum total cost for matching the two strings

• Optimal substructure?
➢ Want to delete/replace at one end and recurse

Edit Distance

373F21 - Nisarg Shah 50



• Optimal substructure
➢ Goal: match 𝑥1, … , 𝑥𝑚 and 𝑦1, … , 𝑦𝑛

➢ Consider the last symbols 𝑥𝑚 and 𝑦𝑛

➢ Three options: 

o Delete 𝑥𝑚, and optimally match 𝑥1, … , 𝑥𝑚−1 and 𝑦1, … , 𝑦𝑛

o Delete 𝑦𝑛, and optimally match 𝑥1, … , 𝑥𝑚 and 𝑦1, … , 𝑦𝑛−1

o Match 𝑥𝑚 and 𝑦𝑛, and optimally match 𝑥1, … , 𝑥𝑚−1 and 𝑦1, … , 𝑦𝑛−1

• We incur cost 𝑟(𝑥𝑚, 𝑦𝑛)

• Recall: 𝑟 𝑎, 𝑎 = 0, so no cost if 𝑥𝑚 and 𝑦𝑛 already match

➢ Hence in the DP, we need to compute the optimal solutions for matching 
𝑥1, … , 𝑥𝑖 with 𝑦1, … , 𝑦𝑗 for all (𝑖, 𝑗)

Edit Distance

373F21 - Nisarg Shah 51



• 𝐸[𝑖, 𝑗] = edit distance between 𝑥1, … , 𝑥𝑖 and 𝑦1, … , 𝑦𝑗

• Bellman equation

𝐸 𝑖, 𝑗 =

0 if 𝑖 = 𝑗 = 0
𝐵 if 𝑖 = 0 ∧ 𝑗 > 0
𝐴 if 𝑖 > 0 ∧ 𝑗 = 0

min{𝐴, 𝐵, 𝐶} otherwise
where
𝐴 = 𝑑 𝑥𝑖 + 𝐸 𝑖 − 1, 𝑗 , 𝐵 = 𝑑 𝑦𝑗 + 𝐸 𝑖, 𝑗 − 1
𝐶 = 𝑟 𝑥𝑖 , 𝑦𝑗 + 𝐸[𝑖 − 1, 𝑗 − 1]

• 𝑂(𝑛 ⋅ 𝑚) time, 𝑂(𝑛 ⋅ 𝑚) space

Edit Distance

373F21 - Nisarg Shah 52



Edit Distance

373F21 - Nisarg Shah 53

𝐸 𝑖, 𝑗 =

0 if 𝑖 = 𝑗 = 0

𝑑 𝑦𝑗 + 𝐸[𝑖, 𝑗 − 1] if 𝑖 = 0 ∧ 𝑗 > 0

𝑑 𝑥𝑖 + 𝐸[𝑖 − 1, 𝑗] if 𝑖 > 0 ∧ 𝑗 = 0
min{𝐴, 𝐵, 𝐶} otherwise

where
𝐴 = 𝑑 𝑥𝑖 + 𝐸 𝑖 − 1, 𝑗 , 𝐵 = 𝑑 𝑦𝑗 + 𝐸 𝑖, 𝑗 − 1
𝐶 = 𝑟 𝑥𝑖 , 𝑦𝑗 + 𝐸[𝑖 − 1, 𝑗 − 1]

• Space complexity can be reduced in bottom-up approach
➢ While computing 𝐸[⋅, 𝑗], we only need to store 𝐸[⋅, 𝑗] and 𝐸 ⋅, 𝑗 − 1 , 

➢ So, the additional space required is 𝑂(𝑚)

➢ By storing two rows at a time instead, we can make it 𝑂 𝑛

➢ Usually, we include the storage of inputs, so both are 𝑂(𝑛 + 𝑚)

➢ But this is not enough if we want to compute the actual solution



Hirschberg’s Algorithm

373F21 - Nisarg Shah 54

• The optimal solution can be computed in 𝑂 𝑛 ⋅ 𝑚 time and 
𝑂(𝑛 + 𝑚) space too!

NOT IN SYLLABUS



Hirschberg’s Algorithm

373F21 - Nisarg Shah 55

• Key idea nicely combines divide & conquer with DP

• Edit distance graph

𝑑(𝑥𝑖)

𝑑(𝑦𝑗)

NOT IN SYLLABUS



Hirschberg’s Algorithm

373F21 - Nisarg Shah 56

• Observation (can be proved by induction)
➢ 𝐸[𝑖, 𝑗] = length of shortest path from (0,0) to (𝑖, 𝑗)

𝑑(𝑥𝑖)

𝑑(𝑦𝑗)

NOT IN SYLLABUS



Hirschberg’s Algorithm

373F21 - Nisarg Shah 57

• Lemma
➢ Shortest path from (0,0) to (𝑚, 𝑛) passes through (𝑞, Τ𝑛

2) where 𝑞
minimizes length of shortest path from (0,0) to (𝑞, Τ𝑛

2) + length of 
shortest path from (𝑞, Τ𝑛

2) to (𝑚, 𝑛)

NOT IN SYLLABUS



Hirschberg’s Algorithm

373F21 - Nisarg Shah 58

• Idea
➢ Find 𝑞 using divide-and-conquer

➢ Find shortest paths from (0,0) to (𝑞, Τ𝑛
2) and (𝑞, Τ𝑛

2) to (𝑚, 𝑛) using 
DP

NOT IN SYLLABUS



373F21 - Nisarg Shah 59

Application: Protein Matching


