CSC373

Week 2: Greedy Algorithms

Nisarg Shah

Recap

- Divide \& Conquer
> Master theorem
$>$ Counting inversions in $O(n \log n)$
> Finding closest pair of points in \mathbb{R}^{2} in $O(n \log n)$
> Fast integer multiplication in $O\left(n^{\log _{2} 3}\right)$
> Fast matrix multiplication in $O\left(n^{\log _{2} 7}\right)$
> Finding $k^{\text {th }}$ smallest element (in particular, median) in $O(n)$

Greedy Algorithms

- Greedy/myopic algorithm outline
> Goal: find a solution x maximizing/minimizing objective function f
> Challenge: space of possible solutions x is too large
> Insight: x is composed of several parts (e.g., x is a set or a sequence)
> Approach: Instead of computing x directly...
- Compute it one part at a time
- Select the next part "greedily" to get the most immediate "benefit" (this needs to be defined carefully for each problem)
- Polynomial running time is typically guaranteed
- Need to prove that this will always return an optimal solution despite having no foresight

Interval Scheduling

- Problem
> Job j starts at time s_{j} and finishes at time f_{j}
> Two jobs i and j are compatible if $\left[s_{i}, f_{i}\right)$ and $\left[s_{j}, f_{j}\right.$) don't overlap
- Note: we allow a job to start right when another finishes
> Goal: find maximum-size subset of mutually compatible jobs

Interval Scheduling

- Greedy template
> Consider jobs in some "natural" order
> Take a job if it's compatible with the ones already chosen
- What order?
> Earliest start time: ascending order of s_{j}
> Earliest finish time: ascending order of f_{j}
> Shortest interval: ascending order of $f_{j}-s_{j}$
> Fewest conflicts: ascending order of c_{j}, where c_{j} is the number of remaining jobs that conflict with j

Example

- Earliest start time: ascending order of s_{j}
- Earliest finish time: ascending order of f_{j}
- Shortest interval: ascending order of $f_{j}-s_{j}$
- Fewest conflicts: ascending order of c_{j}, where c_{j} is the number of remaining jobs that conflict with j

Interval Scheduling

- Does it work?

Counterexamples for
earliest start time
shortest interval
fewest conflicts

Interval Scheduling

- Implementing greedy with earliest finish time (EFT)
> Sort jobs by finish time, say $f_{1} \leq f_{2} \leq \cdots \leq f_{n}$
- $O(n \log n)$
> For each job j, we need to check if it's compatible with all previously added jobs
- Naively, this can take $O(n)$ time per job j, so $O\left(n^{2}\right)$ total time
- We only need to check if $s_{j} \geq f_{i^{*}}$, where i^{*} is the last added job
- For any jobs i added before $i^{*}, f_{i} \leq f_{i^{*}}$
- By keeping track of $f_{i^{*}}$, we can check job j in $O(1)$ time
> Running time: $O(n \log n)$

Interval Scheduling

- Proof of optimality by contradiction
> Suppose for contradiction that greedy is not optimal
> Say greedy selects jobs $i_{1}, i_{2}, \ldots, i_{k}$ sorted by finish time
> Consider an optimal solution $j_{1}, j_{2}, \ldots, j_{m}$ (also sorted by finish time) which matches greedy for as many indices as possible
○ That is, we want $j_{1}=i_{1}, \ldots, j_{r}=i_{r}$ for the greatest possible r
> Both i_{r+1} and j_{r+1} must be compatible with the previous selection $\left(i_{1}=j_{1}, \ldots, i_{r}=j_{r}\right)$

Interval Scheduling

- Proof of optimality by contradiction
> Consider a new solution $i_{1}, i_{2}, \ldots, i_{r}, i_{r+1}, j_{r+2}, \ldots, j_{m}$
- We have replaced j_{r+1} by i_{r+1} in our reference optimal solution
\circ This is still feasible because $f_{i_{r+1}} \leq f_{j_{r+1}} \leq s_{j_{t}}$ for $t \geq r+2$
- This is still optimal because m jobs are selected
- But it matches the greedy solution in $r+1$ indices
- This is the desired contradiction

Interval Scheduling

- Proof of optimality by induction
> Let S_{j} be the subset of jobs picked by greedy after considering the first j jobs in the increasing order of finish time
- Define $S_{0}=\varnothing$
> We call this partial solution promising if there is a way to extend it to an optimal solution by picking some subset of jobs $j+1, \ldots, n$
○ $\exists T \subseteq\{j+1, \ldots, n\}$ such that $O_{j}=S_{j} \cup T$ is optimal
> Inductive claim: For all $t \in\{0,1, \ldots, n\}, S_{t}$ is promising
> If we prove this, then we are done!
- For $t=n$, if S_{n} is promising, then it must be optimal (Why?)
- We chose $t=0$ as our base case since it is "trivial"

Interval Scheduling

- Proof of optimality by induction
> S_{j} is promising if $\exists T \subseteq\{j+1, \ldots, n\}$ such that $O_{j}=S_{j} \cup T$ is optimal
> Inductive claim: For all $t \in\{0,1, \ldots, n\}, S_{t}$ is promising
> Base case: For $t=0, S_{0}=\varnothing$ is clearly promising
- Any optimal solution extends it
> Induction hypothesis: Suppose the claim holds for $t=j-1$ and optimal solution O_{j-1} extends S_{j-1}
> Induction step: At $t=j$, we have two possibilities:

1) Greedy did not select job j, so $S_{j}=S_{j-1}$

- Job j must conflict with some job in S_{j-1}
- Since $S_{j-1} \subseteq O_{j-1}, O_{j-1}$ also cannot include job j
- $O_{j}=O_{j-1}$ also extends $S_{j}=S_{j-1}$

Interval Scheduling

- Proof of optimality by induction
> Induction step: At $t=j$, we have two possibilities:

2) Greedy selected job j, so $S_{j}=S_{j-1} \cup\{j\}$

- Consider the earliest job r in $O_{j-1} \backslash S_{j-1}$
- Consider O_{j} obtained by replacing r with j in O_{j-1}
- Prove that O_{j} is still feasible
- O_{j} extends S_{j}, as desired!

Contradiction vs Induction

- Both methods make the same claim
> "The greedy solution after j iterations can be extended to an optimal solution, $\forall j "$
- They also use the same key argument
> "If the greedy solution after j iterations can be extended to an optimal solution, then the greedy solution after $j+1$ iterations can be extended to an optimal solution as well"
> For proof by induction, this is the key induction step
> For proof by contradiction, we take the greatest j for which the greedy solution can be extended to an optimal solution, and derive a contradiction by extending the greedy solution after $j+1$ iterations

Interval Partitioning

- Problem
> Job j starts at time s_{j} and finishes at time f_{j}
> Two jobs are compatible if they don't overlap
> Goal: group jobs into fewest partitions such that jobs in the same partition are compatible
- One idea
> Find the maximum compatible set using the previous greedy EFT algorithm, call it one partition, recurse on the remaining jobs.
> Doesn't work (check by yourselves)

Interval Partitioning

- Think of scheduling lectures for various courses into as few classrooms as possible
- This schedule uses 4 classrooms for scheduling 10 lectures

Interval Partitioning

- Think of scheduling lectures for various courses into as few classrooms as possible
- This schedule uses 3 classrooms for scheduling 10 lectures

Interval Partitioning

- Let's go back to the greedy template!
> Go through lectures in some "natural" order
> Assign each lecture to an (arbitrary?) compatible classroom, and create a new classroom if the lecture conflicts with every existing classroom
- Order of lectures?
> Earliest start time: ascending order of s_{j}
> Earliest finish time: ascending order of f_{j}
> Shortest interval: ascending order of $f_{j}-s_{j}$
> Fewest conflicts: ascending order of c_{j}, where c_{j} is the number of remaining jobs that conflict with j

Interval Partitioning

counterexample for fewest conflicts

- At least when you assign each lecture to an arbitrary compatible classroom, three of these heuristics do not work.
- The fourth one works! (next slide)

Interval Partitioning

```
EARLIESTSTARTTimEFirst \(\left(n, s_{1}, s_{2}, \ldots, s_{n}, f_{1}, f_{2}, \ldots, f_{n}\right)\)
SORT lectures by start time so that \(s_{1} \leq s_{2} \leq \ldots \leq s_{n}\).
\(d \leftarrow 0 \longleftarrow\) number of allocated classrooms
FOR \(j=1\) TO \(n\)
    IF lecture \(j\) is compatible with some classroom
        Schedule lecture \(j\) in any such classroom \(k\).
    Else
        Allocate a new classroom \(d+1\).
        Schedule lecture \(j\) in classroom \(d+1\).
        \(d \leftarrow d+1\)
RETURN schedule.
```


Interval Partitioning

- Running time
> Key step: check if the next lecture can be scheduled at some classroom
> Store classrooms in a priority queue
- key = latest finish time of any lecture in the classroom
> Is lecture j compatible with some classroom?
- Same as "Is s_{j} at least as large as the minimum key?"
- If yes: add lecture j to classroom k with minimum key, and increase its key to f_{j}
- Otherwise: create a new classroom, add lecture j, set key to f_{j}
> $O(n)$ priority queue operations, $O(n \log n)$ time

Interval Partitioning

- Proof of optimality (lower bound)
> \# classrooms needed \geq "depth"
- depth = maximum number of lectures running at any time
- Recall, as before, that job i runs in $\left[s_{i}, f_{i}\right.$)
> Claim: our greedy algorithm uses only these many classrooms!

Interval Partitioning

- Proof of optimality (upper bound)
> Let $d=\#$ classrooms used by greedy
> Classroom d was opened because there was a lecture j which was incompatible with some lectures already scheduled in each of $d-1$ other classrooms
> All these d lectures end after s_{j}
> Since we sorted by start time, they all start at/before s_{j}
> So, at time s_{j}, we have d mutually overlapping lectures
> Hence, depth $\geq d=$ \#classrooms used by greedy $■$
> Note: before we proved that \#classrooms used by any algorithm (including greedy) \geq depth, so greedy uses exactly as many classrooms as the depth.

Interval Graphs

- Interval scheduling and interval partitioning can be seen as graph problems
- Input
> Graph $G=(V, E)$
> Vertices $V=$ jobs/lectures
> Edge $(i, j) \in E$ if jobs i and j are incompatible
- Interval scheduling = maximum independent set (MIS)
- Interval partitioning = graph coloring

Interval Graphs

- MIS and graph coloring are NP-hard for general graphs
- But they're efficiently solvable for "interval graphs"
> Graphs which can be obtained from incompatibility of intervals
> In fact, this holds even when we are not given an interval representation of the graph
- Can we extend this result further?
> Yes! Chordal graphs
- Every cycle with 4 or more vertices has a chord

Minimizing Lateness

- Problem
> We have a single machine
> Each job j requires t_{j} units of time and is due by time d_{j}
> If it's scheduled to start at s_{j}, it will finish at $f_{j}=s_{j}+t_{j}$
$>$ Lateness: $\ell_{j}=\max \left\{0, f_{j}-d_{j}\right\}$
> Goal: minimize the maximum lateness, $L=\max _{j} \ell_{j}$
- Contrast with interval scheduling
> We can decide the start time
> There are soft deadlines

Minimizing Lateness

- Example

Input

	1	2	3	4	5	6
t_{j}	3	2	1	4	3	2
d_{j}	6	8	9	9	14	15

An example schedule

Minimizing Lateness

- Let's go back to greedy template
> Consider jobs one-by-one in some "natural" order
> Schedule jobs in this order (nothing special to do here, since we have to schedule all jobs and there is only one machine available)
- Natural orders?
> Shortest processing time first: ascending order of processing time t_{j}
> Earliest deadline first: ascending order of due time d_{j}
> Smallest slack first: ascending order of $d_{j}-t_{j}$

Minimizing Lateness

- Counterexamples
> Shortest processing time first
- Ascending order of processing time t_{j}
> Smallest slack first
\circ Ascending order of $d_{j}-t_{j}$

Minimizing Lateness

- By now, you should know what's coming...
- We'll prove that earliest deadline first works!

EarliestDeadinaFirst $\left(n, t_{1}, t_{2}, \ldots, t_{n}, d_{1}, d_{2}, \ldots, d_{n}\right)$

SORT n jobs so that $d_{1} \leq d_{2} \leq \ldots \leq d_{n}$.
$t \leftarrow 0$
FOR $j=1$ TO n
Assign job j to interval $\left[t, t+t_{j}\right]$.
$s_{j} \leftarrow t ; f_{j} \leftarrow t+t_{j}$
$t \leftarrow t+t_{j}$
RETURN intervals $\left[s_{1}, f_{1}\right],\left[s_{2}, f_{2}\right], \ldots,\left[s_{n}, f_{n}\right]$.

Minimizing Lateness

- Observation 1
> There is an optimal schedule with no idle time

Minimizing Lateness

- Observation 2
> Earliest deadline first has no idle time
- Let us define an "inversion"
> (i, j) such that $d_{i}<d_{j}$ but j is scheduled before i
- Observation 3
> By definition, earliest deadline first has no inversions
- Observation 4
> If a schedule with no idle time has at least one inversion, it has a pair of inverted jobs scheduled consecutively

Minimizing Lateness

- Observation 5
> Swapping adjacently scheduled inverted jobs doesn't increase lateness but reduces \#inversions by one
- Proof
> Check that swapping an adjacent inverted pair reduces the total \#inversions by one

Minimizing Lateness

- Observation 5
> Swapping adjacently scheduled inverted jobs doesn't increase lateness but reduces \#inversions by one
- Proof
> Let ℓ_{k} and ℓ_{k}^{\prime} denote the lateness of job k before \& after swap
$>$ Let $L=\max _{k} \ell_{k}$ and $L^{\prime}=\max _{k} \ell_{k}^{\prime}$
> 1) $\ell_{k}=\ell_{k}^{\prime}$ for all $k \neq i, j \quad$ (no change in their finish time)
>2) $\ell_{i}^{\prime} \leq \ell_{i} \quad$ (i is moved early)

Minimizing Lateness

- Observation 5
> Swapping adjacently scheduled inverted jobs doesn't increase lateness but reduces \#inversions by one
- Proof
> 3) $\ell_{j}^{\prime}=f_{j}^{\prime}-d_{j}=f_{i}-d_{j} \leq f_{i}-d_{i}=\ell_{i}$
- This uses the fact that, due to the inversion, $d_{j} \geq d_{i}$
$>L^{\prime}=\max \left\{\ell_{i}^{\prime}, \ell_{j}^{\prime}, \max _{k \neq i, j} \ell_{k}^{\prime}\right\} \leq \max \left\{\ell_{i}, \ell_{i}, \max _{k \neq i, j} \ell_{k}\right\} \leq L$

Minimizing Lateness

- Observations 4+5 are the key!
- Recall the proof of optimality of the greedy algorithm for interval scheduling:
> Took an optimal solution matching greedy for r steps, and produced another optimal solution matching greedy for $r+1$ steps
> "Wrapped" this in a proof by contradiction or a proof by induction
> Observations 4+5 provide something similar
- If optimal solution doesn't fully match greedy (\#inversions ≥ 1), we can swap an adjacent inverted pair and reduce \#inversions by one

Minimizing Lateness

- Proof of optimality by contradiction
> Suppose for contradiction that the greedy EDF solution is not optimal
> Consider an optimal schedule S^{*} with the fewest inversions
- Without loss of generality, suppose it has no idle time
> Because EDF is not optimal, S^{*} has at least one inversion
> By Observation 4, it has an adjacent inversion (i, j)
> By Observation 5, swapping the adjacent pair keeps the schedule optimal but reduces the \#inversions by 1
> Contradiction! ■

Minimizing Lateness

- Proof of optimality by (reverse) induction
> Claim: For each $r \in\left\{0,1, \ldots,\binom{n}{2}\right\}$, there is an optimal schedule with at most r inversions
> Base case of $r=\binom{n}{2}$: trivial, any optimal schedule works
> Induction hypothesis: Suppose the claim holds for $r=t+1$
$>$ Induction step: Take an optimal schedule with at most $t+1$ inversions - If it has at most t inversions, we're done!
- If it has exactly $t+1 \geq 1$ inversions...
- Assume no idle time WLOG
- Find and swap an adjacent inverted pair (Observations 4 \& 5)
- \#inversions reduces by one to t, so we're done!
> QED!
> Claim for $r=0$ shows optimality of EDF

Contradiction vs Induction

- Choose the method that feels natural to you
- It may be the case that...
> For some problems, a proof by contradiction feels more natural
> But for other problems, a proof by induction feels more natural
> No need to stick to one method
- As we saw for interval partitioning, sometimes you may require an entirely different kind of proof

Lossless Compression

- Problem
> We have a document that is written using n distinct labels
> Naïve encoding: represent each label using $\log n$ bits
> If the document has length m, this uses $m \log n$ bits
> English document with no punctuations etc.
> $n=26$, so we can use 5 bits
- $a=00000$
- $b=00001$
- $c=00010$
$\circ d=00011$
○ ...

Lossless Compression

- Is this optimal?
> What if a, e, r, s are much more frequent in the document than x, q, z ?
> Can we assign shorter codes to more frequent letters?
- Say we assign...
> $a=0, b=1, c=01, \ldots$
$>$ See a problem?
- What if we observe the encoding ' 01 ’?
- Is it 'ab'? Or is it ' c '?

Lossless Compression

- To avoid conflicts, we need a prefix-free encoding
> Map each label x to a bit-string $c(x)$ such that for all distinct labels x and $y, c(x)$ is not a prefix of $c(y)$
> Then it's impossible to have a scenario like this

> Now, we can read left to right
- Whenever the part to the left becomes a valid encoding, greedily decode it, and continue with the rest

Lossless Compression

- Formal problem
> Given n symbols and their frequencies $\left(w_{1}, \ldots, w_{n}\right)$, find a prefix-free encoding with lengths $\left(\ell_{1}, \ldots, \ell_{n}\right)$ assigned to the symbols which minimizes $\sum_{i=1}^{n} w_{i} \cdot \ell_{i}$
- Note that $\sum_{i=1}^{n} w_{i} \cdot \ell_{i}$ is the length of the compressed document
- Example
$>\left(w_{a}, w_{b}, w_{c}, w_{d}, w_{e}, w_{f}\right)=(42,20,5,10,11,12)$
$>$ No need to remember the numbers $)$

Lossless Compression

- Observation: prefix-free encoding = tree

Lossless Compression

- Huffman Coding
> Build a priority queue by adding $\left(x, w_{x}\right)$ for each symbol x
> While |queue $\mid \geq 2$
- Take the two symbols with the lowest weight $\left(x, w_{x}\right)$ and $\left(y, w_{y}\right)$
- Merge them into one symbol with weight $w_{x}+w_{y}$
- Let's see this on the previous example

Lossless Compression

| $c: 5$ | $d: 10$ | $e: 11$ | $f: 12$ | $b: 20$ | $a: 42$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Lossless Compression

Lossless Compression

$$
a: 42
$$

Lossless Compression

Lossless Compression

Lossless Compression

- Final Outcome

Lossless Compression

- Running time
> $O(n \log n)$
> Can be made $O(n)$ if the labels are given to you sorted by their frequencies
- Exercise! Think of using two queues...
- Proof of optimality
> Induction on the number of symbols n
> Base case: For $n=2$, both encodings which assign 1 bit to each symbol are optimal
> Hypothesis: Assume it returns an optimal encoding with $n-1$ symbols

Lossless Compression

- Proof of optimality
> Consider the case of n symbols
> Lemma 1: If $w_{x}<w_{y}$, then $\ell_{x} \geq \ell_{y}$ in any optimal tree.
> Proof:
- Suppose for contradiction that $w_{x}<w_{y}$ and $\ell_{x}<\ell_{y}$.
- Swapping x and y strictly reduces the overall length as $w_{x} \cdot \ell_{y}+w_{y} \cdot \ell_{x}<w_{x} \cdot \ell_{x}+w_{y} \cdot \ell_{y}$ (check!)
- QED!

Lossless Compression

- Proof of optimality
> Consider the two symbols x and y with lowest frequency which Huffman combines in the first step
> Lemma 2: \exists optimal tree T in which x and y are siblings (i.e., for some p, they are assigned encodings $p 0$ and $p 1$).
> Proof:

1. Take any optimal tree
2. Let x be the label with the lowest frequency.
3. If x doesn't have the longest encoding, swap it with one that has
4. Due to optimality, x must have a sibling (check!)
5. If it's not y, swap it with y
6. Check that Steps 3 and 5 do not change the overall length.

Lossless Compression

- Proof of optimality
> Let x and y be the two least frequency symbols that Huffman combines in the first step into " $x y$ "
> Let H be the Huffman tree produced
> Let T be an optimal tree in which x and y are siblings
> Let H^{\prime} and T^{\prime} be obtained from H and T by treating $x y$ as one symbol with frequency $w_{x}+w_{y}$
$>$ Induction hypothesis: $\operatorname{Length}\left(H^{\prime}\right) \leq \operatorname{Length}\left(T^{\prime}\right)$
$>\operatorname{Length}(H)=\operatorname{Length}\left(H^{\prime}\right)+\left(w_{x}+w_{y}\right) \cdot 1$
$>\operatorname{Length}(T)=\operatorname{Length}\left(T^{\prime}\right)+\left(w_{x}+w_{y}\right) \cdot 1$
$>$ So Length $(H) \leq \operatorname{Length}(T)$

Other Greedy Algorithms

- If you aren't familiar with the following algorithms, spend some time checking them out!
> Dijkstra's shortest path algorithm
> Kruskal and Prim's minimum spanning tree algorithms

