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Week 2: Greedy Algorithms
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Recap

* Divide & Conquer
» Master theorem
> Counting inversions in O(nlogn)
> Finding closest pair of points in R? in O(nlogn)
> Fast integer multiplication in O(nlogz 3)
> Fast matrix multiplication in O(n!°827)

> Finding k" smallest element (in particular, median) in O (n)
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Greedy Algorithms

* Greedy/myopic algorithm outline
> Goal: find a solution x maximizing/minimizing objective function f
> Challenge: space of possible solutions x is too large
> Insight: x is composed of several parts (e.g., x is a set or a sequence)

> Approach: Instead of computing x directly...
o Compute it one part at a time

o Select the next part “greedily” to get the most immediate
“benefit” (this needs to be defined carefully for each problem)

o Polynomial running time is typically guaranteed

o Need to prove that this will always return an optimal solution
despite having no foresight
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Interval Scheduling
(o Problem A

> Job j starts at time s; and finishes at time f;

> Two jobs i and j are compatible if [s;, f;) and [s;, f;) don’t overlap
o Note: we allow a job to start right when another finishes
\ > Goal: find maximum-size subset of mutually compatible jobs /

B

G

time
0 1 2 3 4 5 6 7 8 g 10 11
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Interval Scheduling

* Greedy template
» Consider jobs in some “natural” order
> Take a job if it’s compatible with the ones already chosen

e What order?

> Earliest start time: ascending order of s;
> Earliest finish time: ascending order of f;
> Shortest interval: ascending order of f; — s;

> Fewest conflicts: ascending order of ¢;, where ¢; is the number of
remaining jobs that conflict with j
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Example

Earliest start time: ascending order of s;

Earliest finish time: ascending order offj

Shortest interval: ascending order of f; — s;

Fewest conflicts: ascending order of ¢;, where ¢; is the number of
remaining jobs that conflict with j

time
0 1 2 3 4 5 [ 7 3 g 10 11
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Interval Scheduling

* Does it work? Counterexamples for
earliest start time

shortest interval

e fewest conflicts
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Interval Scheduling

* Implementing greedy with earliest finish time (EFT)
> Sort jobs by finish time,say f; < f, < - < f,
o O(nlogn)

» For each job j, we need to check if it’s compatible with all previously
added jobs

o Naively, this can take O(n) time per job j, so 0(n?) total time
o We only need to check if s; = f;+, where i" is the last added job
* For any jobs i added before i¥, f; < f;
* By keeping track of f;+, we can check job jin O(1) time

> Running time: O(nlogn)
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Interval Scheduling

* Proof of optimality by contradiction
> Suppose for contradiction that greedy is not optimal
» Say greedy selects jobs iy, i, ..., i sorted by finish time

» Consider an optimal solution j4, j,, ..., J;, (also sorted by finish time)
which matches greedy for as many indices as possible

o Thatis, we want j; = iy, ..., j, = [, for the greatest possible r
» Both i,.,4 and j,.;1 must be compatible with the previous selection
(il = jlr ) iT‘ = ]T’)
job i.., finishes before j..,

}

hy Iz le Iy

Greedy:

»
L

OPT: b i i N BN
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Interval Scheduling

* Proof of optimality by contradiction
» Consider a new solution i1, 15, ..., Iy, Iy i1, Jr42, -0 Jm
o We have replaced j,.,1 by i,-11 in our reference optimal solution
o This is still feasible because f; . < f; . <sj fort =r+2
o This is still optimal because m jobs are selected
o But it matches the greedy solution in v + 1 indices
* This is the desired contradiction

job i.., finishes before j..,

hy Iz le Iy

Greedy:

-
L

OPT: b i i N BN
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Interval Scheduling

* Proof of optimality by induction

> Let S; be the subset of jobs picked by greedy after considering the
first j jobs in the increasing order of finish time

o Define S, = 0

> We call this partial solution promising if there is a way to extend it to
an optimal solution by picking some subset of jobsj + 1, ...,n

odT € {j + 1, ...,n} such that 0; = §; UT is optimal
» Inductive claim: Forall t € {0,1, ..., n}, S; is promising

> If we prove this, then we are done!
o Fort =mn, if §,, is promising, then it must be optimal (Why?)
o We chose t = 0 as our base case since it is “trivial”
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Interval Scheduling

* Proof of optimality by induction
> S;is promising if 3T < {j + 1, ...,n} such that 0; = §; U T is optimal

» Inductive claim: Forall t € {0,1, ...,n}, S; is promising

» Base case: Fort = 0, Sy = @ is clearly promising
o Any optimal solution extends it

> Induction hypothesis: Suppose the claim holds fort =j — 1 and
optimal solution 0;_; extends S;_;
> Induction step: At t = j, we have two possibilities:
1) Greedy did not select job j,s0 §; = §;_4
* Job j must conflict with some job in S;_;
* Since Sj_; € 0j_41, 0;_1 also cannot include job j
* 0; = 0j_; also extends §; = §;_;
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Interval Scheduling

* Proof of optimality by induction

> Induction step: At t = j, we have two possibilities:
2) Greedy selected job j,s0S; = S;_; U{j }
* Consider the earliest job rin 0;_; \ Sj_1
* Consider O; obtained by replacing r with j in 0;_4
* Prove that 0; is still feasible
* O; extends §j, as desired!

Greedy selects job j

)
Greedy: [ Si—l ] ] o
opT: | Sj—1 ] [/T 0j-1\ Sj-1 l

Earliest job in 0j_4 \ Sj_4
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Contradiction vs Induction

e Both methods make the same claim

> “The greedy solution after j iterations can be extended to an optimal
solution, Vj”

* They also use the same key argument

> “If the greedy solution after j iterations can be extended to an
optimal solution, then the greedy solution after j + 1 iterations can
be extended to an optimal solution as well”

» For proof by induction, this is the key induction step

» For proof by contradiction, we take the greatest j for which the
greedy solution can be extended to an optimal solution, and derive a
contradiction by extending the greedy solution after j + 1 iterations
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Interval Partitioning
(. Problem A

> Job j starts at time s; and finishes at time f;

» Two jobs are compatible if they don’t overlap

> Goal: group jobs into fewest partitions such that jobs in the same
\ partition are compatible /

* Oneidea

> Find the maximum compatible set using the previous greedy EFT
algorithm, call it one partition, recurse on the remaining jobs.

> Doesn’t work (check by yourselves)
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Interval Partitioning

* Think of scheduling lectures for various courses into as few
classrooms as possible

* This schedule uses 4 classrooms for scheduling 10 lectures

4 e ]
3 C d g
2 b h
1 a f i
9 930 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30 3 3:30 4 4:30 time
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Interval Partitioning

* Think of scheduling lectures for various courses into as few
classrooms as possible

* This schedule uses 3 classrooms for scheduling 10 lectures

9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30 3 3:30 4 4:30 time
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Interval Partitioning

* Let’s go back to the greedy template!
III

» Go through lectures in some “natural” order

> Assign each lecture to an (arbitrary?) compatible classroom, and
create a new classroom if the lecture conflicts with every existing
classroom

* Order of lectures?
> Earliest start time: ascending order of s;
> Earliest finish time: ascending order of f;
> Shortest interval: ascending order of f; — s;

> Fewest conflicts: ascending order of ¢;, where ¢; is the number of
remaining jobs that conflict with j
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Interval Partitioning

counterexample for earliest finish time

e At least when you
. assign each lecture to
T an arbitrary compatible
classroom, three of
counterexample for shortest interval these heuristics do not

3 work.
2

[ e The fourth one works!

(next slide)

counterexample for fewest conflicts
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Interval Partitioning

EARLIESTSTARTTIMEFIRST(7, $1, $2, ..., $n, f1, f2, ..., fu)

SORT lectures by start time so thats; < 52 < ... < s
d «<— (0 <= number of allocated classrooms
FOR j=1TO n
IF lecture j 1s compatible with some classroom
Schedule lecture j 1in any such classroom £.
ELSE
Allocate a new classroom d + 1.
Schedule lecture j in classroom d + 1.
d—d +1

RETURN schedule.
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Interval Partitioning

* Running time

> Key step: check if the next lecture can be scheduled at some
classroom

> Store classrooms in a priority queue
o key = latest finish time of any lecture in the classroom

> Is lecture j compatible with some classroom?
o Same as “Is s; at least as large as the minimum key?”

o If yes: add lecture j to classroom k with minimum key, and
increase its key to f;

o Otherwise: create a new classroom, add lecture j, set key to fJ

> 0(n) priority queue operations, O(nlogn) time
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Interval Partitioning

* Proof of optimality (lower bound)
> # classrooms needed = “depth”
o depth = maximum number of lectures running at any time
o Recall, as before, that job i runs in [s;, f;)
> Claim: our greedy algorithm uses only these many classrooms!

depth = 3

9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30 3 3:30 4 4:30 time
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Interval Partitioning

* Proof of optimality (upper bound)
> Let d = # classrooms used by greedy

» Classroom d was opened because there was a lecture j which was
incompatible with some lectures already scheduled in each of d — 1
other classrooms

> All these d lectures end after Sj

> Since we sorted by start time, they all start at/before s;

> So, at time s;, we have d mutually overlapping lectures
> Hence, depth = d = #classrooms used by greedy =

> Note: before we proved that #classrooms used by any algorithm
(including greedy) = depth, so greedy uses exactly as many
classrooms as the depth.
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NOT IN SYLLABUS

* Interval scheduling and interval partitioning can be seen as
graph problems

Interval Graphs

* Input
> Graph ¢ = (V,E)
> Vertices V = jobs/lectures
> Edge (i,j) € E if jobs i and j are incompatible

* Interval scheduling = maximum independent set (MIS)

* Interval partitioning = graph coloring
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NOT IN SYLLABUS

 MIS and graph coloring are NP-hard for general graphs

Interval Graphs

* But they’re efficiently solvable for “interval graphs”
> Graphs which can be obtained from incompatibility of intervals

> In fact, this holds even when we are not given an interval
representation of the graph

e Can we extend this result further?
> Yes! Chordal graphs
o Every cycle with 4 or more vertices has a chord /
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Minimizing Lateness

KProbIem

> We have a single machine

> Each job j requires t; units of time and is due by time d;
> If it’s scheduled to start at s, it will finish at f] = sj + ¢t
> Lateness: £ = max{O,fj — dj}

\> Goal: minimize the maximum lateness, L = max ¢;
J

* Contrast with interval scheduling
> We can decide the start time
> There are soft deadlines
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Minimizing Lateness

 Example

Input

1203456
3 2 | 4 3 2
n 6 8 9 9 14 15

An example schedule

lateness = 2 lateness = 0 max lateness = 6
d3=9 d2=8 d5=|5 CI]=6 d5=]4 d4=9
>
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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Minimizing Lateness

* Let’s go back to greedy template
» Consider jobs one-by-one in some “natural” order

> Schedule jobs in this order (nothing special to do here, since we have
to schedule all jobs and there is only one machine available)

|”

* Natural orders?
> Shortest processing time first: ascending order of processing time t;
> Earliest deadline first: ascending order of due time d;
> Smallest slack first: ascending order of d; — ¢;
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Minimizing Lateness

e Counterexamples

o KIE
> Shortest processing time first
o Ascending order of processing time ¢; - 10

> Smallest slack first

II

o Ascending order of d; — t;
10

2 10
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Minimizing Lateness

* By now, you EARLIESTDEADLINEFIRST(n, 11, t2, ..., tn, d1, d2, ..., dn)
should know
what’s
coming... SORT n jobs sothatdy < db < ... < dh.
f<—0
« We'll prove FOR j=1TO n
that earliest Assign job j to interval [7, 1 +4].
deadline first S 1 f it
works!
[ — 1+

RETURN intervals [s1, fi], [s2, 2], ..., [$n fu].
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Minimizing Lateness

e Observation 1
> There is an optimal schedule with no idle time

d=4 d=6 d=12
0 | 2 3 4 5 6 7 8 9 10 11 >
0 | 2 3 4 5 6 7 8 9 10 11 J
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Minimizing Lateness

Observation 2
> Earliest deadline first has no idle time

Let us define an “inversion”
> (i,) such that d; < d; but j is scheduled before i

Observation 3
> By definition, earliest deadline first has no inversions

Observation 4

> If a schedule with no idle time has at least one inversion, it has a pair
of inverted jobs scheduled consecutively
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Minimizing Lateness

e Observation 5
» Swapping adjacently scheduled inverted jobs doesn’t increase lateness
but reduces #inversions by one
* Proof

> Check that swapping an adjacent inverted pair reduces the total
#inversions by one

inversion

; |

7

J

J;
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Minimizing Lateness

 Observation 5

» Swapping adjacently scheduled inverted jobs doesn’t increase
lateness but reduces #inversions by one

 Proof

> Let £, and ¥}, denote the lateness of job k before & after swap
> Let L = max ¥ and L' = max ¥},

k k
> 1), =) forallk #1i,j (no change in their finish time)
> 2)4; < ¥; (i is moved early)

l inversion i f

be

J
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Minimizing Lateness

 Observation 5

» Swapping adjacently scheduled inverted jobs doesn’t increase lateness
but reduces #inversions by one

* Proof
o This uses the fact that, due to the inversion, dj > d;
/ — l !/ < . <
> L' = max {fl,f irqltaluju”k} < max{{’l,{’l,rr;alu](fk} L

inversion

S

: |

S

J
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Minimizing Lateness

* Observations 4+5 are the key!

* Recall the proof of optimality of the greedy algorithm for
interval scheduling:

> Took an optimal solution matching greedy for r steps, and produced
another optimal solution matching greedy for r 4+ 1 steps

> “Wrapped” this in a proof by contradiction or a proof by induction
> Observations 4+5 provide something similar

o If optimal solution doesn’t fully match greedy (#inversions = 1), we can
swap an adjacent inverted pair and reduce #inversions by one
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Minimizing Lateness

* Proof of optimality by contradiction
> Suppose for contradiction that the greedy EDF solution is not optimal

> Consider an optimal schedule S* with the fewest inversions
o Without loss of generality, suppose it has no idle time

> Because EDF is not optimal, S* has at least one inversion
> By Observation 4, it has an adjacent inversion (i, j)

> By Observation 5, swapping the adjacent pair keeps the schedule optimal
but reduces the #inversions by 1

» Contradiction! m
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Minimizing Lateness

e Proof of optimality by (reverse) induction

> Claim: Foreachr € {0,1, e (’21)}, there is an optimal schedule with at
most r inversions

> Base case of r = (g) trivial, any optimal schedule works
> Induction hypothesis: Suppose the claim holdsforr =t + 1
> Induction step: Take an optimal schedule with at most £ + 1 inversions
o If it has at most t inversions, we’re done!
o Ifithasexactlyt + 1 = 1 inversions...
* Assume no idle time WLOG
* Find and swap an adjacent inverted pair (Observations 4 & 5)
» #tinversions reduces by one to t, so we’re done!
> QED!
> Claim for r = 0 shows optimality of EDF
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Contradiction vs Induction

* Choose the method that feels natural to you

* It may be the case that...
> For some problems, a proof by contradiction feels more natural
> But for other problems, a proof by induction feels more natural
> No need to stick to one method

* As we saw for interval partitioning, sometimes you may
require an entirely different kind of proof
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Lossless Compression

* Problem A
> We have a document that is written using n distinct labels
> Naive encoding: represent each label using log n bits
\_ > If the document has length m, this uses m log n bits .

> English document with no punctuations etc.
> n = 26, so we can use 5 bits

oa = 00000
o b =00001
oc = 00010
od=00011
O ..
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Lossless Compression

* |s this optimal?
> What if a, e, r, s are much more frequent in the document than
X,q,Z?
> Can we assign shorter codes to more frequent letters?

* Say we assign...
>»>a=0,b=1,c=01, ..
> See a problem?
o What if we observe the encoding ‘01’?
o Isit‘ab’? Orisit ‘c’?
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Lossless Compression

* To avoid conflicts, we need a prefix-free encoding

> Map each label x to a bit-string c(x) such that for all distinct labels x
and y, c(x) is not a prefix of c(y)

> Then it’s impossible to have a scenario like this

Y
c(y)
> Now, we can read left to right

o Whenever the part to the left becomes a valid encoding, greedily
decode it, and continue with the rest
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Lossless Compression

@ Formal problem A

> Given n symbols and their frequencies (wy, ..., w,,), find a prefix-free
encoding with lengths (£, ..., £;,) assigned to the symbols which
minimizes Yi= w; - ¥;
o Note that )7, w; - ¥; is the length of the compressed document

\_

e Example
> (Wg, Wy, W, Wd,We,Wf) = (42,20,5,10,11,12)
> No need to remember the numbers ©

J
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Lossless Compression

* Observation: prefix-free encoding = tree

a—0,e— 100,
f — 101, c - 1100,
d—> 1101, b - 111
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Lossless Compression

* Huffman Coding
> Build a priority queue by adding (x, w,.) for each symbol x
> While |queue|> 2
o Take the two symbols with the lowest weight (x, wy) and (y, wy,)
o Merge them into one symbol with weight w, + w,,

* Let’s see this on the previous example
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Lossless Compression

o5 Jaof e J oz foofaie
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Lossless Compression
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Lossless Compression

TPty
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Lossless Compression
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Lossless Compression
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Lossless Compression

 Final OQutcome

a—0,e— 100,
f — 101, c - 1100,
d—> 1101, b - 111
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Lossless Compression

* Running time
> O(nlogn)
> Can be made O (n) if the labels are given to you sorted by their
frequencies
o Exercise! Think of using two queues...

* Proof of optimality
> Induction on the number of symbols n

> Base case: Forn = 2, both encodings which assign 1 bit to each
symbol are optimal

> Hypothesis: Assume it returns an optimal encoding withn — 1
symbols
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Lossless Compression

* Proof of optimality
> Consider the case of n symbols

> Lemma 1: If w, < wy, then £, = £, in any optimal tree.

> Proof:
o Suppose for contradiction that w, < w,, and £, < ¥,,.

o Swapping x and y strictly reduces the overall length as
Wy £y +wy - £y <wy - £y +wy, - £, (check!)
o QED!
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Lossless Compression

* Proof of optimality

» Consider the two symbols x and y with lowest frequency which
Huffman combines in the first step

> Lemma 2: 3 optimal tree T in which x and y are siblings (i.e., for
some p, they are assigned encodings p0 and p1).

> Proof:

. Take any optimal tree

Let x be the label with the lowest frequency.

If x doesn’t have the longest encoding, swap it with one that has
Due to optimality, x must have a sibling (check!)

If it’s not y, swap it with y

Check that Steps 3 and 5 do not change the overall length. =

o Uk wnNeE
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Lossless Compression

* Proof of optimality

» Let x and y be the two least frequency symbols that Huffman
combines in the first step into “xy”

> Let H be the Huffman tree produced
> Let T be an optimal tree in which x and y are siblings

> Let H and T' be obtained from H and T by treating xy as one
symbol with frequency w, + w,,

> Induction hypothesis: Length(H') < Length(T")
> Length(H) = Length(H') + (Wx + Wy) -1

> Length(T) = Length(T') + (Wx + Wy) -1

> So Length(H) < Length(T) m

373F21 - Nisarg Shah




Other Greedy Algorithms

* If you aren’t familiar with the following algorithms, spend
some time checking them out!
> Dijkstra’s shortest path algorithm
> Kruskal and Prim’s minimum spanning tree algorithms
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