
CSC373

Week 2: Greedy Algorithms

373F21 - Nisarg Shah 1

Nisarg Shah

Recap

373F21 - Nisarg Shah 2

• Divide & Conquer

➢ Master theorem

➢ Counting inversions in 𝑂(𝑛 log 𝑛)

➢ Finding closest pair of points in ℝ2 in 𝑂 𝑛 log 𝑛

➢ Fast integer multiplication in 𝑂 𝑛log2 3

➢ Fast matrix multiplication in 𝑂 𝑛log2 7

➢ Finding 𝑘𝑡ℎ smallest element (in particular, median) in 𝑂(𝑛)

Greedy Algorithms

373F21 - Nisarg Shah 3

• Greedy/myopic algorithm outline

➢ Goal: find a solution 𝑥 maximizing/minimizing objective function 𝑓

➢ Challenge: space of possible solutions 𝑥 is too large

➢ Insight: 𝑥 is composed of several parts (e.g., 𝑥 is a set or a sequence)

➢ Approach: Instead of computing 𝑥 directly…

o Compute it one part at a time

o Select the next part “greedily” to get the most immediate
“benefit” (this needs to be defined carefully for each problem)

o Polynomial running time is typically guaranteed

o Need to prove that this will always return an optimal solution
despite having no foresight

Interval Scheduling

373F21 - Nisarg Shah 4

• Problem
➢ Job 𝑗 starts at time 𝑠𝑗 and finishes at time 𝑓𝑗
➢ Two jobs 𝑖 and 𝑗 are compatible if [𝑠𝑖 , 𝑓𝑖) and [𝑠𝑗 , 𝑓𝑗) don’t overlap

o Note: we allow a job to start right when another finishes

➢ Goal: find maximum-size subset of mutually compatible jobs

Interval Scheduling

373F21 - Nisarg Shah 5

• Greedy template
➢ Consider jobs in some “natural” order

➢ Take a job if it’s compatible with the ones already chosen

• What order?

➢ Earliest start time: ascending order of 𝑠𝑗

➢ Earliest finish time: ascending order of 𝑓𝑗

➢ Shortest interval: ascending order of 𝑓𝑗 − 𝑠𝑗

➢ Fewest conflicts: ascending order of 𝑐𝑗, where 𝑐𝑗 is the number of
remaining jobs that conflict with 𝑗

Example

373F21 - Nisarg Shah 6

• Earliest start time: ascending order of 𝑠𝑗

• Earliest finish time: ascending order of 𝑓𝑗

• Shortest interval: ascending order of 𝑓𝑗 − 𝑠𝑗

• Fewest conflicts: ascending order of 𝑐𝑗, where 𝑐𝑗 is the number of
remaining jobs that conflict with 𝑗

Interval Scheduling

373F21 - Nisarg Shah 7

• Does it work?

earliest start time

Counterexamples for

shortest interval

fewest conflicts

Interval Scheduling

373F21 - Nisarg Shah 8

• Implementing greedy with earliest finish time (EFT)

➢ Sort jobs by finish time, say 𝑓1 ≤ 𝑓2 ≤ ⋯ ≤ 𝑓𝑛
o 𝑂 𝑛 log 𝑛

➢ For each job 𝑗, we need to check if it’s compatible with all previously
added jobs

o Naively, this can take 𝑂(𝑛) time per job 𝑗, so 𝑂 𝑛2 total time

o We only need to check if 𝑠𝑗 ≥ 𝑓𝑖∗, where 𝑖∗ is the last added job

• For any jobs 𝑖 added before 𝑖∗, 𝑓𝑖 ≤ 𝑓𝑖∗

• By keeping track of 𝑓𝑖∗, we can check job 𝑗 in 𝑂(1) time

➢ Running time: 𝑂 𝑛 log 𝑛

Interval Scheduling

373F21 - Nisarg Shah 9

• Proof of optimality by contradiction
➢ Suppose for contradiction that greedy is not optimal

➢ Say greedy selects jobs 𝑖1, 𝑖2, … , 𝑖𝑘 sorted by finish time

➢ Consider an optimal solution 𝑗1, 𝑗2, … , 𝑗𝑚 (also sorted by finish time)
which matches greedy for as many indices as possible

o That is, we want 𝑗1 = 𝑖1, … , 𝑗𝑟 = 𝑖𝑟 for the greatest possible 𝑟

➢ Both 𝑖𝑟+1 and 𝑗𝑟+1 must be compatible with the previous selection
(𝑖1 = 𝑗1, … , 𝑖𝑟 = 𝑗𝑟)

Interval Scheduling

373F21 - Nisarg Shah 10

• Proof of optimality by contradiction
➢ Consider a new solution 𝑖1, 𝑖2, … , 𝑖𝑟 , 𝑖𝑟+1, 𝑗𝑟+2, … , 𝑗𝑚
o We have replaced 𝑗𝑟+1 by 𝑖𝑟+1 in our reference optimal solution

o This is still feasible because 𝑓𝑖𝑟+1 ≤ 𝑓𝑗𝑟+1 ≤ 𝑠𝑗𝑡 for 𝑡 ≥ 𝑟 + 2

o This is still optimal because 𝑚 jobs are selected

o But it matches the greedy solution in 𝑟 + 1 indices

• This is the desired contradiction

Interval Scheduling

373F21 - Nisarg Shah 11

• Proof of optimality by induction
➢ Let 𝑆𝑗 be the subset of jobs picked by greedy after considering the

first 𝑗 jobs in the increasing order of finish time

o Define 𝑆0 = ∅

➢ We call this partial solution promising if there is a way to extend it to
an optimal solution by picking some subset of jobs 𝑗 + 1,… , 𝑛

o ∃𝑇 ⊆ {𝑗 + 1,… , 𝑛} such that 𝑂𝑗 = 𝑆𝑗 ∪ 𝑇 is optimal

➢ Inductive claim: For all 𝑡 ∈ {0,1, … , 𝑛}, 𝑆𝑡 is promising

➢ If we prove this, then we are done!

o For 𝑡 = 𝑛, if 𝑆𝑛 is promising, then it must be optimal (Why?)

o We chose 𝑡 = 0 as our base case since it is “trivial”

Interval Scheduling

373F21 - Nisarg Shah 12

• Proof of optimality by induction
➢ 𝑆𝑗 is promising if ∃𝑇 ⊆ {𝑗 + 1,… , 𝑛} such that 𝑂𝑗 = 𝑆𝑗 ∪ 𝑇 is optimal

➢ Inductive claim: For all 𝑡 ∈ {0,1, … , 𝑛}, 𝑆𝑡 is promising

➢ Base case: For 𝑡 = 0, 𝑆0 = ∅ is clearly promising

o Any optimal solution extends it

➢ Induction hypothesis: Suppose the claim holds for 𝑡 = 𝑗 − 1 and
optimal solution 𝑂𝑗−1 extends 𝑆𝑗−1

➢ Induction step: At 𝑡 = 𝑗, we have two possibilities:

1) Greedy did not select job 𝑗, so 𝑆𝑗 = 𝑆𝑗−1
• Job 𝑗 must conflict with some job in 𝑆𝑗−1
• Since 𝑆𝑗−1 ⊆ 𝑂𝑗−1, 𝑂𝑗−1 also cannot include job 𝑗

• 𝑂𝑗 = 𝑂𝑗−1 also extends 𝑆𝑗 = 𝑆𝑗−1

Interval Scheduling

373F21 - Nisarg Shah 13

• Proof of optimality by induction

➢ Induction step: At 𝑡 = 𝑗, we have two possibilities:

2) Greedy selected job 𝑗, so 𝑆𝑗 = 𝑆𝑗−1 ∪ 𝑗

• Consider the earliest job 𝑟 in 𝑂𝑗−1 ∖ 𝑆𝑗−1
• Consider 𝑂𝑗 obtained by replacing 𝑟 with 𝑗 in 𝑂𝑗−1
• Prove that 𝑂𝑗 is still feasible

• 𝑂𝑗 extends 𝑆𝑗, as desired!

𝑆𝑗−1

𝑆𝑗−1 𝑂𝑗−1 ∖ 𝑆𝑗−1

Greedy selects job 𝑗

𝑗

𝑟

Earliest job in 𝑂𝑗−1 ∖ 𝑆𝑗−1

Contradiction vs Induction

373F21 - Nisarg Shah 14

• Both methods make the same claim
➢ “The greedy solution after 𝑗 iterations can be extended to an optimal

solution, ∀𝑗”

• They also use the same key argument
➢ “If the greedy solution after 𝑗 iterations can be extended to an

optimal solution, then the greedy solution after 𝑗 + 1 iterations can
be extended to an optimal solution as well”

➢ For proof by induction, this is the key induction step

➢ For proof by contradiction, we take the greatest 𝑗 for which the
greedy solution can be extended to an optimal solution, and derive a
contradiction by extending the greedy solution after 𝑗 + 1 iterations

Interval Partitioning

373F21 - Nisarg Shah 15

• Problem
➢ Job 𝑗 starts at time 𝑠𝑗 and finishes at time 𝑓𝑗
➢ Two jobs are compatible if they don’t overlap

➢ Goal: group jobs into fewest partitions such that jobs in the same
partition are compatible

• One idea
➢ Find the maximum compatible set using the previous greedy EFT

algorithm, call it one partition, recurse on the remaining jobs.

➢ Doesn’t work (check by yourselves)

Interval Partitioning

373F21 - Nisarg Shah 16

• Think of scheduling lectures for various courses into as few
classrooms as possible

• This schedule uses 4 classrooms for scheduling 10 lectures

Interval Partitioning

373F21 - Nisarg Shah 17

• Think of scheduling lectures for various courses into as few
classrooms as possible

• This schedule uses 3 classrooms for scheduling 10 lectures

Interval Partitioning

373F21 - Nisarg Shah 18

• Let’s go back to the greedy template!
➢ Go through lectures in some “natural” order

➢ Assign each lecture to an (arbitrary?) compatible classroom, and
create a new classroom if the lecture conflicts with every existing
classroom

• Order of lectures?
➢ Earliest start time: ascending order of 𝑠𝑗
➢ Earliest finish time: ascending order of 𝑓𝑗
➢ Shortest interval: ascending order of 𝑓𝑗 − 𝑠𝑗
➢ Fewest conflicts: ascending order of 𝑐𝑗, where 𝑐𝑗 is the number of

remaining jobs that conflict with 𝑗

Interval Partitioning

373F21 - Nisarg Shah 19

• At least when you
assign each lecture to
an arbitrary compatible
classroom, three of
these heuristics do not
work.

• The fourth one works!
(next slide)

Interval Partitioning

373F21 - Nisarg Shah 20

Interval Partitioning

373F21 - Nisarg Shah 21

• Running time

➢ Key step: check if the next lecture can be scheduled at some
classroom

➢ Store classrooms in a priority queue

o key = latest finish time of any lecture in the classroom

➢ Is lecture 𝑗 compatible with some classroom?

o Same as “Is 𝑠𝑗 at least as large as the minimum key?”

o If yes: add lecture 𝑗 to classroom 𝑘 with minimum key, and
increase its key to 𝑓𝑗

o Otherwise: create a new classroom, add lecture 𝑗, set key to 𝑓𝑗

➢ 𝑂(𝑛) priority queue operations, 𝑂(𝑛 log 𝑛) time

Interval Partitioning

373F21 - Nisarg Shah 22

• Proof of optimality (lower bound)
➢ # classrooms needed ≥ “depth”

o depth = maximum number of lectures running at any time

o Recall, as before, that job 𝑖 runs in 𝑠𝑖 , 𝑓𝑖
➢ Claim: our greedy algorithm uses only these many classrooms!

Interval Partitioning

373F21 - Nisarg Shah 23

• Proof of optimality (upper bound)
➢ Let 𝑑 = # classrooms used by greedy

➢ Classroom 𝑑 was opened because there was a lecture 𝑗 which was
incompatible with some lectures already scheduled in each of 𝑑 − 1
other classrooms

➢ All these 𝑑 lectures end after 𝑠𝑗

➢ Since we sorted by start time, they all start at/before 𝑠𝑗

➢ So, at time 𝑠𝑗, we have 𝑑 mutually overlapping lectures

➢ Hence, depth ≥ 𝑑 = #classrooms used by greedy ∎

➢ Note: before we proved that #classrooms used by any algorithm
(including greedy) ≥ depth, so greedy uses exactly as many
classrooms as the depth.

Interval Graphs

373F21 - Nisarg Shah 24

• Interval scheduling and interval partitioning can be seen as
graph problems

• Input
➢ Graph 𝐺 = (𝑉, 𝐸)

➢ Vertices 𝑉 = jobs/lectures

➢ Edge 𝑖, 𝑗 ∈ 𝐸 if jobs 𝑖 and 𝑗 are incompatible

• Interval scheduling = maximum independent set (MIS)

• Interval partitioning = graph coloring

NOT IN SYLLABUS

Interval Graphs

373F21 - Nisarg Shah 25

• MIS and graph coloring are NP-hard for general graphs

• But they’re efficiently solvable for “interval graphs”
➢ Graphs which can be obtained from incompatibility of intervals

➢ In fact, this holds even when we are not given an interval
representation of the graph

• Can we extend this result further?
➢ Yes! Chordal graphs

o Every cycle with 4 or more vertices has a chord

NOT IN SYLLABUS

Minimizing Lateness

373F21 - Nisarg Shah 26

• Problem
➢ We have a single machine

➢ Each job 𝑗 requires 𝑡𝑗 units of time and is due by time 𝑑𝑗
➢ If it’s scheduled to start at 𝑠𝑗, it will finish at 𝑓𝑗 = 𝑠𝑗 + 𝑡𝑗

➢ Lateness: ℓ𝑗 = max 0, 𝑓𝑗 − 𝑑𝑗
➢ Goal: minimize the maximum lateness, 𝐿 = max

𝑗
ℓ𝑗

• Contrast with interval scheduling
➢ We can decide the start time

➢ There are soft deadlines

Minimizing Lateness

373F21 - Nisarg Shah 27

• Example

Input

An example schedule

Minimizing Lateness

373F21 - Nisarg Shah 28

• Let’s go back to greedy template
➢ Consider jobs one-by-one in some “natural” order

➢ Schedule jobs in this order (nothing special to do here, since we have
to schedule all jobs and there is only one machine available)

• Natural orders?
➢ Shortest processing time first: ascending order of processing time 𝑡𝑗
➢ Earliest deadline first: ascending order of due time 𝑑𝑗
➢ Smallest slack first: ascending order of 𝑑𝑗 − 𝑡𝑗

Minimizing Lateness

373F21 - Nisarg Shah 29

• Counterexamples

➢ Shortest processing time first

o Ascending order of processing time 𝑡𝑗

➢ Smallest slack first

o Ascending order of 𝑑𝑗 − 𝑡𝑗

Minimizing Lateness

373F21 - Nisarg Shah 30

• By now, you
should know
what’s
coming…

• We’ll prove
that earliest
deadline first
works!

Minimizing Lateness

373F21 - Nisarg Shah 31

• Observation 1
➢ There is an optimal schedule with no idle time

Minimizing Lateness

373F21 - Nisarg Shah 32

• Observation 2
➢ Earliest deadline first has no idle time

• Let us define an “inversion”
➢ 𝑖, 𝑗 such that 𝑑𝑖 < 𝑑𝑗 but 𝑗 is scheduled before 𝑖

• Observation 3
➢ By definition, earliest deadline first has no inversions

• Observation 4
➢ If a schedule with no idle time has at least one inversion, it has a pair

of inverted jobs scheduled consecutively

Minimizing Lateness

373F21 - Nisarg Shah 33

• Observation 5
➢ Swapping adjacently scheduled inverted jobs doesn’t increase lateness

but reduces #inversions by one

• Proof
➢ Check that swapping an adjacent inverted pair reduces the total

#inversions by one

Minimizing Lateness

373F21 - Nisarg Shah 34

• Observation 5
➢ Swapping adjacently scheduled inverted jobs doesn’t increase

lateness but reduces #inversions by one

• Proof
➢ Let ℓ𝑘 and ℓ𝑘

′ denote the lateness of job 𝑘 before & after swap

➢ Let 𝐿 = max
𝑘

ℓ𝑘 and 𝐿′ = max
𝑘

ℓ𝑘
′

➢ 1) ℓ𝑘 = ℓ𝑘
′ for all 𝑘 ≠ 𝑖, 𝑗 (no change in their finish time)

➢ 2) ℓ𝑖
′ ≤ ℓ𝑖 (𝑖 is moved early)

Minimizing Lateness

373F21 - Nisarg Shah 35

• Observation 5
➢ Swapping adjacently scheduled inverted jobs doesn’t increase lateness

but reduces #inversions by one

• Proof
➢ 3) ℓ𝑗

′ = 𝑓𝑗
′ − 𝑑𝑗 = 𝑓𝑖 − 𝑑𝑗 ≤ 𝑓𝑖 − 𝑑𝑖 = ℓ𝑖

o This uses the fact that, due to the inversion, 𝑑𝑗 ≥ 𝑑𝑖

➢ 𝐿′ = max ℓ𝑖
′ , ℓ𝑗

′, max
𝑘≠𝑖,𝑗

ℓ𝑘
′ ≤ max ℓ𝑖 , ℓ𝑖 , max

𝑘≠𝑖,𝑗
ℓ𝑘 ≤ 𝐿

Minimizing Lateness

373F21 - Nisarg Shah 36

• Observations 4+5 are the key!

• Recall the proof of optimality of the greedy algorithm for
interval scheduling:
➢ Took an optimal solution matching greedy for 𝑟 steps, and produced

another optimal solution matching greedy for 𝑟 + 1 steps

➢ “Wrapped” this in a proof by contradiction or a proof by induction

➢ Observations 4+5 provide something similar

o If optimal solution doesn’t fully match greedy (#inversions ≥ 1), we can
swap an adjacent inverted pair and reduce #inversions by one

Minimizing Lateness

373F21 - Nisarg Shah 37

• Proof of optimality by contradiction
➢ Suppose for contradiction that the greedy EDF solution is not optimal

➢ Consider an optimal schedule 𝑆∗ with the fewest inversions

o Without loss of generality, suppose it has no idle time

➢ Because EDF is not optimal, 𝑆∗ has at least one inversion

➢ By Observation 4, it has an adjacent inversion (𝑖, 𝑗)

➢ By Observation 5, swapping the adjacent pair keeps the schedule optimal
but reduces the #inversions by 1

➢ Contradiction! ∎

Minimizing Lateness

373F21 - Nisarg Shah 38

• Proof of optimality by (reverse) induction
➢ Claim: For each 𝑟 ∈ 0,1, … , 𝑛

2
, there is an optimal schedule with at

most 𝑟 inversions

➢ Base case of 𝑟 = 𝑛
2

: trivial, any optimal schedule works

➢ Induction hypothesis: Suppose the claim holds for 𝑟 = 𝑡 + 1

➢ Induction step: Take an optimal schedule with at most 𝑡 + 1 inversions

o If it has at most 𝑡 inversions, we’re done!

o If it has exactly 𝑡 + 1 ≥ 1 inversions…

• Assume no idle time WLOG

• Find and swap an adjacent inverted pair (Observations 4 & 5)

• #inversions reduces by one to 𝑡, so we’re done!

➢ QED!

➢ Claim for 𝑟 = 0 shows optimality of EDF

Contradiction vs Induction

373F21 - Nisarg Shah 39

• Choose the method that feels natural to you

• It may be the case that…
➢ For some problems, a proof by contradiction feels more natural

➢ But for other problems, a proof by induction feels more natural

➢ No need to stick to one method

• As we saw for interval partitioning, sometimes you may
require an entirely different kind of proof

Lossless Compression

373F21 - Nisarg Shah 40

• Problem
➢ We have a document that is written using 𝑛 distinct labels

➢ Naïve encoding: represent each label using log 𝑛 bits

➢ If the document has length 𝑚, this uses 𝑚 log 𝑛 bits

➢ English document with no punctuations etc.

➢ 𝑛 = 26, so we can use 5 bits

o 𝑎 = 00000

o 𝑏 = 00001

o 𝑐 = 00010

o 𝑑 = 00011

o …

Lossless Compression

373F21 - Nisarg Shah 41

• Is this optimal?
➢ What if 𝑎, 𝑒, 𝑟, 𝑠 are much more frequent in the document than
𝑥, 𝑞, 𝑧?

➢ Can we assign shorter codes to more frequent letters?

• Say we assign…
➢ 𝑎 = 0, 𝑏 = 1, 𝑐 = 01, …

➢ See a problem?

o What if we observe the encoding ‘01’?

o Is it ‘ab’? Or is it ‘c’?

Lossless Compression

373F21 - Nisarg Shah 42

• To avoid conflicts, we need a prefix-free encoding
➢ Map each label 𝑥 to a bit-string 𝑐(𝑥) such that for all distinct labels 𝑥

and 𝑦, 𝑐(𝑥) is not a prefix of 𝑐 𝑦

➢ Then it’s impossible to have a scenario like this
………………………..

➢ Now, we can read left to right

o Whenever the part to the left becomes a valid encoding, greedily
decode it, and continue with the rest

𝑐(𝑥)

𝑐(𝑦)

Lossless Compression

373F21 - Nisarg Shah 43

• Formal problem
➢ Given 𝑛 symbols and their frequencies (𝑤1, … , 𝑤𝑛), find a prefix-free

encoding with lengths (ℓ1, … , ℓ𝑛) assigned to the symbols which
minimizes σ𝑖=1

𝑛 𝑤𝑖 ⋅ ℓ𝑖
o Note that σ𝑖=1

𝑛 𝑤𝑖 ⋅ ℓ𝑖 is the length of the compressed document

• Example
➢ (𝑤𝑎, 𝑤𝑏 , 𝑤𝑐 , 𝑤𝑑 , 𝑤𝑒 , 𝑤𝑓) = (42,20,5,10,11,12)

➢ No need to remember the numbers ☺

Lossless Compression

373F21 - Nisarg Shah 44

• Observation: prefix-free encoding = tree

𝑎 → 0, 𝑒 → 100,
𝑓 → 101, 𝑐 → 1100,
𝑑 → 1101, 𝑏 → 111

Lossless Compression

373F21 - Nisarg Shah 45

• Huffman Coding
➢ Build a priority queue by adding 𝑥, 𝑤𝑥 for each symbol 𝑥

➢ While |queue|≥ 2

o Take the two symbols with the lowest weight (𝑥, 𝑤𝑥) and (𝑦, 𝑤𝑦)

o Merge them into one symbol with weight 𝑤𝑥 + 𝑤𝑦

• Let’s see this on the previous example

Lossless Compression

373F21 - Nisarg Shah 46

Lossless Compression

373F21 - Nisarg Shah 47

Lossless Compression

373F21 - Nisarg Shah 48

Lossless Compression

373F21 - Nisarg Shah 49

Lossless Compression

373F21 - Nisarg Shah 50

Lossless Compression

373F21 - Nisarg Shah 51

• Final Outcome

𝑎 → 0, 𝑒 → 100,
𝑓 → 101, 𝑐 → 1100,
𝑑 → 1101, 𝑏 → 111

Lossless Compression

373F21 - Nisarg Shah 52

• Running time
➢ 𝑂(𝑛 log 𝑛)

➢ Can be made 𝑂(𝑛) if the labels are given to you sorted by their
frequencies

o Exercise! Think of using two queues…

• Proof of optimality
➢ Induction on the number of symbols 𝑛

➢ Base case: For 𝑛 = 2, both encodings which assign 1 bit to each
symbol are optimal

➢ Hypothesis: Assume it returns an optimal encoding with 𝑛 − 1
symbols

Lossless Compression

373F21 - Nisarg Shah 53

• Proof of optimality
➢ Consider the case of 𝑛 symbols

➢ Lemma 1: If 𝑤𝑥 < 𝑤𝑦, then ℓ𝑥 ≥ ℓ𝑦 in any optimal tree.

➢ Proof:

o Suppose for contradiction that 𝑤𝑥 < 𝑤𝑦 and ℓ𝑥 < ℓ𝑦.

o Swapping 𝑥 and 𝑦 strictly reduces the overall length as
𝑤𝑥 ⋅ ℓ𝑦 + 𝑤𝑦 ⋅ ℓ𝑥 < 𝑤𝑥 ⋅ ℓ𝑥 + 𝑤𝑦 ⋅ ℓ𝑦 (check!)

o QED!

Lossless Compression

373F21 - Nisarg Shah 54

• Proof of optimality
➢ Consider the two symbols 𝑥 and 𝑦 with lowest frequency which

Huffman combines in the first step

➢ Lemma 2: ∃ optimal tree 𝑇 in which 𝑥 and 𝑦 are siblings (i.e., for
some 𝑝, they are assigned encodings 𝑝0 and 𝑝1).

➢ Proof:

1. Take any optimal tree

2. Let 𝑥 be the label with the lowest frequency.

3. If 𝑥 doesn’t have the longest encoding, swap it with one that has

4. Due to optimality, 𝑥 must have a sibling (check!)

5. If it’s not 𝑦, swap it with 𝑦

6. Check that Steps 3 and 5 do not change the overall length. ∎

Lossless Compression

373F21 - Nisarg Shah 55

• Proof of optimality
➢ Let 𝑥 and 𝑦 be the two least frequency symbols that Huffman

combines in the first step into “𝑥𝑦”

➢ Let 𝐻 be the Huffman tree produced

➢ Let 𝑇 be an optimal tree in which 𝑥 and 𝑦 are siblings

➢ Let 𝐻′ and 𝑇′ be obtained from 𝐻 and 𝑇 by treating 𝑥𝑦 as one
symbol with frequency 𝑤𝑥 + 𝑤𝑦

➢ Induction hypothesis: 𝐿𝑒𝑛𝑔𝑡ℎ 𝐻′ ≤ 𝐿𝑒𝑛𝑔𝑡ℎ(𝑇′)

➢ 𝐿𝑒𝑛𝑔𝑡ℎ 𝐻 = 𝐿𝑒𝑛𝑔𝑡ℎ 𝐻′ + 𝑤𝑥 + 𝑤𝑦 ⋅ 1

➢ 𝐿𝑒𝑛𝑔𝑡ℎ 𝑇 = 𝐿𝑒𝑛𝑔𝑡ℎ 𝑇′ + 𝑤𝑥 +𝑤𝑦 ⋅ 1

➢ So 𝐿𝑒𝑛𝑔𝑡ℎ 𝐻 ≤ 𝐿𝑒𝑛𝑔𝑡ℎ(𝑇) ∎

Other Greedy Algorithms

373F21 - Nisarg Shah 56

• If you aren’t familiar with the following algorithms, spend
some time checking them out!
➢ Dijkstra’s shortest path algorithm

➢ Kruskal and Prim’s minimum spanning tree algorithms

