### CSC373

## Week 2: Greedy Algorithms

### **Nisarg Shah**

## Recap

#### • Divide & Conquer

- Master theorem
- > Counting inversions in  $O(n \log n)$
- > Finding closest pair of points in  $\mathbb{R}^2$  in  $O(n \log n)$
- > Fast integer multiplication in  $O(n^{\log_2 3})$
- > Fast matrix multiplication in  $O(n^{\log_2 7})$
- > Finding  $k^{th}$  smallest element (in particular, median) in O(n)

# Greedy Algorithms

- Greedy/myopic algorithm outline
  - ➤ Goal: find a solution x maximizing/minimizing objective function f
  - Challenge: space of possible solutions x is too large
  - Insight: x is composed of several parts (e.g., x is a set or a sequence)
  - > Approach: Instead of computing *x* directly...
    - Compute it one part at a time
    - Select the next part "greedily" to get the most immediate "benefit" (this needs to be defined carefully for each problem)
    - $\,\circ\,$  Polynomial running time is typically guaranteed
    - Need to prove that this will always return an optimal solution despite having no foresight

### Problem

- > Job *j* starts at time  $s_j$  and finishes at time  $f_j$
- Two jobs *i* and *j* are compatible if [s<sub>i</sub>, f<sub>i</sub>) and [s<sub>j</sub>, f<sub>j</sub>) don't overlap
   Note: we allow a job to start right when another finishes
- Goal: find maximum-size subset of mutually compatible jobs



#### • Greedy template

- Consider jobs in some "natural" order
- > Take a job if it's compatible with the ones already chosen

#### • What order?

- > Earliest start time: ascending order of  $s_i$
- > Earliest finish time: ascending order of  $f_i$
- > Shortest interval: ascending order of  $f_j s_j$
- Fewest conflicts: ascending order of c<sub>j</sub>, where c<sub>j</sub> is the number of remaining jobs that conflict with j

### Example

- Earliest start time: ascending order of s<sub>i</sub>
- Earliest finish time: ascending order of  $f_i$
- Shortest interval: ascending order of  $f_j s_j$
- Fewest conflicts: ascending order of  $c_j$ , where  $c_j$  is the number of remaining jobs that conflict with j



• Does it work?

|  |   | - 1 |  |   |  |
|--|---|-----|--|---|--|
|  |   |     |  |   |  |
|  |   |     |  |   |  |
|  |   |     |  |   |  |
|  |   |     |  |   |  |
|  |   |     |  |   |  |
|  | _ |     |  | _ |  |
|  |   |     |  |   |  |
|  |   |     |  |   |  |

Counterexamples for

earliest start time

shortest interval

fewest conflicts

- Implementing greedy with earliest finish time (EFT)
  - Sort jobs by finish time, say  $f_1 ≤ f_2 ≤ \cdots ≤ f_n$   $O(n \log n)$
  - For each job j, we need to check if it's compatible with all previously added jobs
    - $\circ$  Naively, this can take O(n) time per job j, so  $O(n^2)$  total time
    - We only need to check if  $s_j \ge f_{i^*}$ , where  $i^*$  is the *last added job* 
      - For any jobs *i* added before  $i^*$ ,  $f_i \leq f_{i^*}$
      - By keeping track of  $f_{i^*}$ , we can check job j in O(1) time
  - > Running time:  $O(n \log n)$

- Proof of optimality by contradiction
  - Suppose for contradiction that greedy is not optimal
  - > Say greedy selects jobs  $i_1, i_2, \dots, i_k$  sorted by finish time
  - Consider an optimal solution j<sub>1</sub>, j<sub>2</sub>, ..., j<sub>m</sub> (also sorted by finish time) which matches greedy for as many indices as possible

 $\circ$  That is, we want  $j_1 = i_1, \dots, j_r = i_r$  for the greatest possible r

> Both  $i_{r+1}$  and  $j_{r+1}$  must be compatible with the previous selection  $(i_1 = j_1, ..., i_r = j_r)$ 



- Proof of optimality by contradiction
  - > Consider a new solution  $i_1, i_2, \dots, i_r, i_{r+1}, j_{r+2}, \dots, j_m$ 
    - $\circ$  We have replaced  $j_{r+1}$  by  $i_{r+1}$  in our reference optimal solution
    - <u>This is still feasible</u> because  $f_{i_{r+1}} \le f_{j_{r+1}} \le s_{j_t}$  for  $t \ge r+2$
    - $\circ$  This is still optimal because m jobs are selected
    - $\circ$  But it matches the greedy solution in r + 1 indices
      - This is the desired contradiction



- Proof of optimality by induction
  - Let S<sub>j</sub> be the subset of jobs picked by greedy after considering the first j jobs in the increasing order of finish time
     Define S<sub>0</sub> = Ø
  - We call this partial solution *promising* if there is a way to extend it to an optimal solution by picking some subset of jobs *j* + 1, ..., *n* ∃*T* ⊆ {*j* + 1, ..., *n*} such that O<sub>j</sub> = S<sub>j</sub> ∪ *T* is optimal
  - > Inductive claim: For all  $t \in \{0, 1, ..., n\}$ ,  $S_t$  is promising
  - If we prove this, then we are done!
     For t = n, if S<sub>n</sub> is promising, then it must be optimal (Why?)
     We chose t = 0 as our base case since it is "trivial"

- Proof of optimality by induction
  - >  $S_j$  is *promising* if ∃ $T \subseteq \{j + 1, ..., n\}$  such that  $O_j = S_j \cup T$  is optimal
  - > Inductive claim: For all  $t \in \{0, 1, ..., n\}$ ,  $S_t$  is promising
  - Base case: For t = 0,  $S_0 = \emptyset$  is clearly promising
    Any optimal solution extends it
  - > Induction hypothesis: Suppose the claim holds for t = j 1 and optimal solution  $O_{j-1}$  extends  $S_{j-1}$
  - > Induction step: At t = j, we have two possibilities:
    - 1) Greedy did not select job *j*, so  $S_j = S_{j-1}$ 
      - Job *j* must conflict with some job in  $S_{j-1}$
      - Since  $S_{j-1} \subseteq O_{j-1}$ ,  $O_{j-1}$  also cannot include job j
      - $O_j = O_{j-1}$  also extends  $S_j = S_{j-1}$

- Proof of optimality by induction
  - > Induction step: At t = j, we have two possibilities:
    - 2) Greedy selected job j, so  $S_j = S_{j-1} \cup \{ j \}$ 
      - Consider the earliest job r in  $O_{j-1} \setminus S_{j-1}$
      - Consider  $O_j$  obtained by replacing r with j in  $O_{j-1}$
      - Prove that  $O_i$  is still feasible
      - O<sub>j</sub> extends S<sub>j</sub>, as desired!



### **Contradiction vs Induction**

- Both methods make the same claim
  - "The greedy solution after *j* iterations can be extended to an optimal solution, ∀*j*"
- They also use the same key argument
  - "If the greedy solution after j iterations can be extended to an optimal solution, then the greedy solution after j + 1 iterations can be extended to an optimal solution as well"
  - > For proof by induction, this is the key induction step
  - For proof by contradiction, we take the greatest j for which the greedy solution can be extended to an optimal solution, and derive a contradiction by extending the greedy solution after j + 1 iterations

### Problem

- > Job *j* starts at time  $s_j$  and finishes at time  $f_j$
- > Two jobs are compatible if they don't overlap
- Goal: group jobs into fewest partitions such that jobs in the same partition are compatible

#### • One idea

- Find the maximum compatible set using the previous greedy EFT algorithm, call it one partition, recurse on the remaining jobs.
- > Doesn't work (check by yourselves)

- Think of scheduling lectures for various courses into as few classrooms as possible
- This schedule uses 4 classrooms for scheduling 10 lectures



- Think of scheduling lectures for various courses into as few classrooms as possible
- This schedule uses 3 classrooms for scheduling 10 lectures



- Let's go back to the greedy template!
  - Go through lectures in some "natural" order
  - > Assign each lecture to an (arbitrary?) compatible classroom, and create a new classroom if the lecture conflicts with every existing classroom
- Order of lectures?
  - > Earliest start time: ascending order of  $s_i$
  - > Earliest finish time: ascending order of  $f_j$
  - > Shortest interval: ascending order of  $f_j s_j$
  - Fewest conflicts: ascending order of c<sub>j</sub>, where c<sub>j</sub> is the number of remaining jobs that conflict with j



- At least when you assign each lecture to an arbitrary compatible classroom, three of these heuristics do not work.
- The fourth one works! (next slide)

EARLIESTSTARTTIMEFIRST( $n, s_1, s_2, \ldots, s_n, f_1, f_2, \ldots, f_n$ )

SORT lectures by start time so that  $s_1 \leq s_2 \leq \ldots \leq s_n$ .

 $d \leftarrow 0 \quad \longleftarrow \quad \text{number of allocated classrooms}$ 

For j = 1 to n

IF lecture *j* is compatible with some classroomSchedule lecture *j* in any such classroom *k*.ELSE

Allocate a new classroom d + 1.

Schedule lecture *j* in classroom d + 1.

 $d \leftarrow d \ +1$ 

RETURN schedule.

#### • Running time

- Key step: check if the next lecture can be scheduled at some classroom
- Store classrooms in a priority queue
  - $\circ$  key = latest finish time of any lecture in the classroom
- > Is lecture *j* compatible with some classroom?
  - $\circ$  Same as "Is  $s_i$  at least as large as the minimum key?"
  - If yes: add lecture j to classroom k with minimum key, and increase its key to  $f_j$
  - $\circ$  Otherwise: create a new classroom, add lecture *j*, set key to  $f_i$
- > O(n) priority queue operations,  $O(n \log n)$  time

- Proof of optimality (lower bound)
  - > # classrooms needed  $\geq$  "depth"
    - depth = maximum number of lectures running at any time • Recall, as before, that job *i* runs in  $[s_i, f_i]$
  - > Claim: our greedy algorithm uses only these many classrooms!



- Proof of optimality (upper bound)
  - Let d = # classrooms used by greedy
  - > Classroom d was opened because there was a lecture j which was incompatible with some lectures already scheduled in each of d-1 other classrooms
  - > All these d lectures end after  $s_i$
  - > <u>Since we sorted by start time</u>, they all start at/before  $s_i$
  - > So, at time  $s_i$ , we have d mutually overlapping lectures
  - > Hence, depth ≥ d =#classrooms used by greedy ■
  - ➤ Note: before we proved that #classrooms used by any algorithm (including greedy) ≥ depth, so greedy uses exactly as many classrooms as the depth.

### Interval Graphs

 Interval scheduling and interval partitioning can be seen as graph problems

#### Input

- > Graph G = (V, E)
- Vertices V = jobs/lectures
- > Edge  $(i, j) \in E$  if jobs *i* and *j* are incompatible
- Interval scheduling = maximum independent set (MIS)
- Interval partitioning = graph coloring

### Interval Graphs

#### NOT IN SYLLABUS

- MIS and graph coloring are NP-hard for general graphs
- But they're efficiently solvable for "interval graphs"
  - Graphs which can be obtained from incompatibility of intervals
  - In fact, this holds even when we are not given an interval representation of the graph
- Can we extend this result further?
  - Yes! Chordal graphs
    - $\,\circ\,$  Every cycle with 4 or more vertices has a chord



### Problem

- > We have a single machine
- > Each job j requires  $t_j$  units of time and is due by time  $d_j$
- > If it's scheduled to start at  $s_j$ , it will finish at  $f_j = s_j + t_j$
- > Lateness:  $\ell_j = \max\{0, f_j d_j\}$

> Goal: minimize the maximum lateness,  $L = \max_{i} \ell_{i}$ 

- Contrast with interval scheduling
  - > We can decide the start time
  - > There are soft deadlines

#### • Example

|       |    | 1 | 2 | 3 | 4 | 5  | 6  |
|-------|----|---|---|---|---|----|----|
| Input | tj | 3 | 2 | 1 | 4 | 3  | 2  |
|       | dj | 6 | 8 | 9 | 9 | 14 | 15 |

#### An example schedule

|           |   |           |   |                   |   |      |   | laten | ess = 2 |        | lat | eness = | 0  |                    | max la | teness | = 6 |
|-----------|---|-----------|---|-------------------|---|------|---|-------|---------|--------|-----|---------|----|--------------------|--------|--------|-----|
|           |   |           |   |                   |   |      |   | 4     |         |        |     | 4       |    |                    |        | 4      |     |
| $d_3 = 9$ |   | $d_2 = 8$ | d | <sub>6</sub> = 15 |   | d1 = | 6 |       | d       | ; = 14 | ŀ   |         |    | d <sub>4</sub> = 9 |        |        |     |
| 0         | 1 | 2         | 3 | 4                 | 5 | 6    | 7 | 8     | ; 9     | 1      | 0   | 11      | 12 | 13                 | 14     | 15     | -   |

- Let's go back to greedy template
  - Consider jobs one-by-one in some "natural" order
  - Schedule jobs in this order (nothing special to do here, since we have to schedule all jobs and there is only one machine available)
- Natural orders?
  - > Shortest processing time first: ascending order of processing time  $t_i$
  - > Earliest deadline first: ascending order of due time  $d_i$
  - > Smallest slack first: ascending order of  $d_j t_j$

- Counterexamples
  - Shortest processing time first
     Ascending order of processing time t<sub>j</sub>

≻ Smallest slack first
 ○ Ascending order of d<sub>j</sub> − t<sub>j</sub>

|    | 1   | 2       |
|----|-----|---------|
| tj | 1   | 10      |
| dj | 100 | 10      |
|    |     |         |
|    | 1   | 2       |
|    | 1   | 2       |
| tj | 1   | 2<br>10 |

 By now, you should know what's coming...

 We'll prove that earliest deadline first works! EARLIEST DEADLINEFIRST  $(n, t_1, t_2, \ldots, t_n, d_1, d_2, \ldots, d_n)$ SORT *n* jobs so that  $d_1 \leq d_2 \leq \ldots \leq d_n$ .  $t \leftarrow 0$ FOR j = 1 TO n Assign job *j* to interval  $[t, t+t_i]$ .  $s_j \leftarrow t; f_j \leftarrow t + t_j$  $t \leftarrow t + t_i$ RETURN intervals  $[s_1, f_1]$ ,  $[s_2, f_2]$ , ...,  $[s_n, f_n]$ .

#### Observation 1

> There is an optimal schedule with no idle time



#### Observation 2

- > Earliest deadline first has no idle time
- Let us define an "inversion"
  - > (i, j) such that  $d_i < d_j$  but j is scheduled before i

#### • Observation 3

> By definition, earliest deadline first has no inversions

#### • Observation 4

If a schedule with no idle time has at least one inversion, it has a pair of inverted jobs scheduled consecutively

### Observation 5

Swapping adjacently scheduled inverted jobs doesn't increase lateness but reduces #inversions by one

#### • Proof

 Check that swapping an adjacent inverted pair reduces the total #inversions by one



#### Observation 5

Swapping adjacently scheduled inverted jobs doesn't increase lateness but reduces #inversions by one

#### • Proof

 $\succ$  Let  $\ell_k$  and  $\ell'_k$  denote the lateness of job k before & after swap

> 2) 
$$\ell'_i \leq \ell_i$$
 (*i* is moved early)



#### • Observation 5

Swapping adjacently scheduled inverted jobs doesn't increase lateness but reduces #inversions by one

#### • Proof

> 3) 
$$\ell'_j = f'_j - d_j = f_i - d_j \le f_i - d_i = \ell_i$$

 $\circ$  This uses the fact that, due to the inversion,  $d_i \geq d_i$ 

$$\succ L' = \max\left\{\ell'_i, \ell'_j, \max_{k \neq i, j} \ell'_k\right\} \le \max\left\{\ell_i, \ell_i, \max_{k \neq i, j} \ell_k\right\} \le L$$



- Observations 4+5 are the key!
- Recall the proof of optimality of the greedy algorithm for interval scheduling:
  - > Took an optimal solution matching greedy for r steps, and produced another optimal solution matching greedy for r + 1 steps
  - "Wrapped" this in a proof by contradiction or a proof by induction
  - > Observations 4+5 provide something similar
    - $\circ$  If optimal solution doesn't fully match greedy (#inversions ≥ 1), we can swap an adjacent inverted pair and reduce #inversions by one

- Proof of optimality by contradiction
  - > Suppose for contradiction that the greedy EDF solution is not optimal
  - Consider an optimal schedule S\* with the fewest inversions
     O Without loss of generality, suppose it has no idle time
  - > Because EDF is not optimal,  $S^*$  has at least one inversion
  - > By Observation 4, it has an adjacent inversion (i, j)
  - By Observation 5, swapping the adjacent pair keeps the schedule optimal but reduces the #inversions by 1
  - ➤ Contradiction! ■

- Proof of optimality by (reverse) induction
  - ▶ Claim: For each  $r \in \{0, 1, ..., \binom{n}{2}\}$ , there is an optimal schedule with *at* most *r* inversions
  - > Base case of  $r = \binom{n}{2}$ : trivial, any optimal schedule works
  - > Induction hypothesis: Suppose the claim holds for r = t + 1
  - Induction step: Take an optimal schedule with at most t + 1 inversions
     If it has at most t inversions, we're done!
    - If it has exactly t + 1 ≥ 1 inversions...
      - Assume no idle time WLOG
      - Find and swap an adjacent inverted pair (Observations 4 & 5)
      - #inversions reduces by one to t, so we're done!
  - ➢ QED!
  - > Claim for r = 0 shows optimality of EDF

### **Contradiction vs Induction**

- Choose the method that feels natural to you
- It may be the case that...
  - > For some problems, a proof by contradiction feels more natural
  - > But for other problems, a proof by induction feels more natural
  - > No need to stick to one method
- As we saw for interval partitioning, sometimes you may require an entirely different kind of proof

#### • Problem

- > We have a document that is written using *n* distinct labels
- > Naïve encoding: represent each label using log n bits
- > If the document has length m, this uses  $m \log n$  bits
- > English document with no punctuations etc.
- > n = 26, so we can use 5 bits
  - o a = 00000
  - o b = 00001
  - $\circ c = 00010$
  - o d = 00011
  - 0 ...

- Is this optimal?
  - What if a, e, r, s are much more frequent in the document than x, q, z?
  - > Can we assign shorter codes to more frequent letters?
- Say we assign...
  - > a = 0, b = 1, c = 01, ...
  - See a problem?
    - What if we observe the encoding '01'?
    - Is it 'ab'? Or is it 'c'?

- To avoid conflicts, we need a *prefix-free encoding* 
  - Map each label x to a bit-string c(x) such that for all distinct labels x and y, c(x) is not a prefix of c(y)
  - > Then it's impossible to have a scenario like this



- > Now, we can read left to right
  - Whenever the part to the left becomes a valid encoding, greedily decode it, and continue with the rest

#### Formal problem

Solution  $rac{n}{n}$  Symbols and their frequencies  $(w_1, \dots, w_n)$ , find a prefix-free encoding with lengths  $(\ell_1, \dots, \ell_n)$  assigned to the symbols which minimizes  $\sum_{i=1}^n w_i \cdot \ell_i$ 

• Note that  $\sum_{i=1}^{n} w_i \cdot \ell_i$  is the length of the compressed document

#### • Example

>  $(w_a, w_b, w_c, w_d, w_e, w_f) = (42, 20, 5, 10, 11, 12)$ 

 $\succ$  No need to remember the numbers  $\bigcirc$ 

• **Observation:** prefix-free encoding = tree



- Huffman Coding
  - > Build a priority queue by adding  $(x, w_x)$  for each symbol x
  - ▹ While |queue| ≥ 2
    - Take the two symbols with the lowest weight  $(x, w_x)$  and  $(y, w_y)$
    - $\circ$  Merge them into one symbol with weight  $w_x + w_y$
- Let's see this on the previous example











373F21 - Nisarg Shah





• Final Outcome



#### • Running time

- $\succ O(n \log n)$
- Can be made O(n) if the labels are given to you sorted by their frequencies

• Exercise! Think of using two queues...

#### • Proof of optimality

- > Induction on the number of symbols *n*
- Base case: For n = 2, both encodings which assign 1 bit to each symbol are optimal
- ➤ Hypothesis: Assume it returns an optimal encoding with n 1 symbols

- Proof of optimality
  - Consider the case of n symbols
  - > Lemma 1: If  $w_x < w_y$ , then  $\ell_x \ge \ell_y$  in any optimal tree.

#### > Proof:

- $\circ$  Suppose for contradiction that  $w_x < w_y$  and  $\ell_x < \ell_y$ .
- Swapping x and y strictly reduces the overall length as w<sub>x</sub> · ℓ<sub>y</sub> + w<sub>y</sub> · ℓ<sub>x</sub> < w<sub>x</sub> · ℓ<sub>x</sub> + w<sub>y</sub> · ℓ<sub>y</sub> (check!)
   O QED!

#### • Proof of optimality

- Consider the two symbols x and y with lowest frequency which Huffman combines in the first step
- Lemma 2: ∃ optimal tree T in which x and y are siblings (i.e., for some p, they are assigned encodings p0 and p1).
- > Proof:
  - 1. Take any optimal tree
  - 2. Let *x* be the label with the lowest frequency.
  - 3. If x doesn't have the longest encoding, swap it with one that has
  - 4. Due to optimality, x must have a sibling (check!)
  - 5. If it's not y, swap it with y
  - 6. Check that Steps 3 and 5 do not change the overall length. ■

#### • Proof of optimality

- Let x and y be the two least frequency symbols that Huffman combines in the first step into "xy"
- > Let *H* be the Huffman tree produced
- > Let T be an optimal tree in which x and y are siblings
- > Let H' and T' be obtained from H and T by treating xy as one symbol with frequency  $w_x + w_y$
- > Induction hypothesis:  $Length(H') \leq Length(T')$
- >  $Length(H) = Length(H') + (w_x + w_y) \cdot 1$
- >  $Length(T) = Length(T') + (w_x + w_y) \cdot 1$
- > So  $Length(H) \le Length(T)$

# Other Greedy Algorithms

- If you aren't familiar with the following algorithms, spend some time checking them out!
  - > Dijkstra's shortest path algorithm
  - Kruskal and Prim's minimum spanning tree algorithms