CSC373

Week 11:
 Randomized Algorithms

Randomized Algorithms

Randomized Algorithms

- Running time
> Harder goal: the running time should always be small
- Regardless of both the input and the random coin flips
> Easier goal: the running time should be small in expectation
o Expectation over random coin flips
- But it should still be small for every input (i.e. worst-case)
- Approximation Ratio
> The objective value of the solution returned should, in expectation, be close to the optimum objective value
o Once again, the expectation is over random coin flips
- The approximation ratio should be small for every input

Derandomization

- After coming up with a randomized approximation algorithm, one might ask if it can be "derandomized"
> Informally, the randomized algorithm is making random choices that, in expectation, turn out to be good
> Can we make these "good" choices deterministically?
- For some problems...
> It may be easier to first design a simple randomized approximation algorithm and then de-randomize it...
> Than to try to directly design a deterministic approximation algorithm

Recap: Probability Theory

- Random variable X
> Discrete
- Takes value v_{1} with probability p_{1}, v_{2} w.p. p_{2}, \ldots
- Expected value $E[X]=p_{1} \cdot v_{1}+p_{2} \cdot v_{2}+\cdots$
- Examples: coin toss, the roll of a six-sided die, ...
> Continuous
- Has a probability density function (pdf) f
- Its integral is the cumulative density function (cdf) F
- $F(x)=\operatorname{Pr}[X \leq x]=\int_{-\infty}^{x} f(t) d t$
- Expected value $E[X]=\int_{-\infty}^{\infty} x f(x) d x$
- Examples: normal distribution, exponential distribution, uniform distribution over [0,1], ...

Recap: Probability Theory

- Things you should be aware of...
> Conditional probabilities
> Conditional expectations
> Independence among random variables
> Moments of random variables
> Standard discrete distributions: uniform over a finite set, Bernoulli, binomial, geometric, Poisson, ...
> Standard continuous distributions: uniform over intervals, Gaussian/normal, exponential, ...

Three Pillars

Linearity of Expectation

Union Bound

Chernoff Bound

- Deceptively simple, but incredibly powerful!
- Many many many many probabilistic results are just interesting applications of these three results

Three Pillars

- Linearity of expectation
$>E[X+Y]=E[X]+E[Y]$
> This does not require any independence assumptions about X and Y
> E.g. if you want to find out how many people will attend your party on average, just ask each person the probability with which they will attend and sum up the probabilities
- It does not matter whether some of them are friends and either all will attend together or none will attend

Three Pillars

- Union bound
> For any two events A and $B, \operatorname{Pr}[A \cup B] \leq \operatorname{Pr}[A]+\operatorname{Pr}[B]$
$>$ "Probability that at least one of the n events A_{1}, \ldots, A_{n} will occur is at most $\sum_{i} \operatorname{Pr}\left[A_{i}\right] "$
> Typically, A_{1}, \ldots, A_{n} are "bad events"
- You do not want any of them to occur
- If you can individually bound $\operatorname{Pr}\left[A_{i}\right] \leq 1 / 2 n$ for each i, then probability that at least one them occurs $\leq 1 / 2$
- Thus, with probability $\geq 1 / 2$, none of the bad events will occur
- Chernoff bound \& Hoeffding's inequality
> Read up!

Exact Max-k-SAT

Exact Max- k-SAT

- Problem (recall)
$>$ Input: An exact k-SAT formula $\varphi=C_{1} \wedge C_{2} \wedge \cdots \wedge C_{m}$, where each clause C_{i} has exactly k literals, and a weight $w_{i} \geq 0$ of each clause C_{i}
> Output: A truth assignment τ maximizing the number (or total weight) of clauses satisfied under τ
> Let us denote by $W(\tau)$ the total weight of clauses satisfied under τ

Exact Max- k-SAT

- Recall our local search
> $N_{d}(\tau)=$ set of all truth assignments which can be obtained by changing the value of at most d variables in τ
- Result 1: Neighborhood $N_{1}(\tau) \Rightarrow 2 / 3$-apx for Exact Max-2-SAT.
- Result 2: Neighborhood $N_{1}(\tau) \cup \tau^{c} \Rightarrow 3 / 4$-apx for Exact Max-2-SAT.
- Result 3: Neighborhood $N_{1}(\tau)+$ oblivious local search $\Rightarrow 3 / 4^{-}$ apx for Exact Max-2-SAT.

Exact Max- k-SAT

- Recall our local search
> $N_{d}(\tau)=$ set of all truth assignments which can be obtained by changing the value of at most d variables in τ
- We claimed that $3 / 4$-apx for Exact Max-2-SAT can be generalized to $\frac{2^{k}-1}{2^{k}}$-apx for Exact Max- k-SAT
> Algorithm becomes slightly more complicated
- What can we do with randomized algorithms?

Exact Max- k-SAT

- Recall:
> We have a formula $\varphi=C_{1} \wedge C_{2} \wedge \cdots \wedge C_{m}$
$>$ Variables $=x_{1}, \ldots, x_{n}$, literals $=$ variables or their negations
> Each clause contains exactly k literals
- The most naïve randomized algorithm
- Set each variable to TRUE with probability $1 / 2$ and to FALSE with probability $1 / 2$
- How good is this?

Exact Max- k-SAT

- Recall:
> We have a formula $\varphi=C_{1} \wedge C_{2} \wedge \cdots \wedge C_{m}$
$>$ Variables $=x_{1}, \ldots, x_{n}$, literals $=$ variables or their negations
> Each clause contains exactly k literals
- Let τ be a random assignment
> For each clause $C_{i}: \operatorname{Pr}\left[C_{i}\right.$ is not satisfied $]=1 / 2^{k}$ (WHY?)
- Hence, $\operatorname{Pr}\left[C_{i}\right.$ is satisfied $]=\left(2^{k}-1\right) / 2^{k}$
$>E[W(\tau)]=\sum_{i=1}^{m} w_{i} \cdot \operatorname{Pr}\left[C_{i}\right.$ is satisfied $]$ (WHY?)
$>E[W(\tau)]=\frac{2^{k}-1}{2^{k}} \cdot \sum_{i=1}^{m} w_{i} \geq \frac{2^{k}-1}{2^{k}} \cdot O P T$

Derandomization

- Can we derandomize this algorithm?
> What are the choices made by the algorithm?
o Setting the values of $x_{1}, x_{2}, \ldots, x_{n}$
> How do we know which set of choices is good?
- Idea:
> Do not think about all the choices at once.
> Think about them one by one.
> Goal: Gradually convert the random assignment τ to a deterministic assignment $\hat{\tau}$ such that $W(\hat{\tau}) \geq E[W(\tau)]$
- Combining with $E[W(\tau)] \geq \frac{2^{k}-1}{2^{k}} \cdot O P T$ will give the desired deterministic approximation ratio

Derandomization

- Start with the random assignment τ and write...

$$
\begin{aligned}
E[W(\tau)] & =\operatorname{Pr}\left[x_{1}=T\right] \cdot E\left[W(\tau) \mid x_{1}=T\right]+\operatorname{Pr}\left[x_{1}=F\right] \cdot E\left[W(\tau) \mid x_{1}=F\right] \\
& =1 / 2 \cdot E\left[W(\tau) \mid x_{1}=T\right]+1 / 2 \cdot E\left[W(\tau) \mid x_{1}=F\right]
\end{aligned}
$$

> Hence, $\max \left(E\left[W(\tau) \mid x_{1}=T\right], E\left[W(\tau) \mid x_{1}=F\right]\right) \geq E[W(\tau)]$

- What is $E\left[W(\tau) \mid x_{1}=T\right]$?
- It is the expected weight when setting $x_{1}=T$ deterministically but still keeping x_{2}, \ldots, x_{n} random
> If we can compute both $E\left[W(\tau) \mid x_{1}=T\right]$ and $E\left[W(\tau) \mid x_{1}=F\right]$, and pick the better one...
- Then we can set x_{1} deterministically without degrading the expected objective value

Derandomization

- After deterministically making the right choice for x_{1} (say T$)$, we can apply the same logic to x_{2}

$$
\begin{aligned}
E\left[W(\tau) \mid x_{1}=T\right]= & 1 / 2 \cdot E\left[W(\tau) \mid x_{1}=T, x_{2}=T\right] \\
& +1 / 2 \cdot E\left[W(\tau) \mid x_{1}=T, x_{2}=F\right]
\end{aligned}
$$

> Pick the better of the two conditional expectations

- Derandomized Algorithm:
> For $i=1, \ldots, n$
- Let $z_{i}=T$ if $E\left[W(\tau) \mid x_{1}=z_{1}, \ldots, x_{i-1}=z_{i-1}, x_{i}=T\right] \geq$ $E\left[W(\tau) \mid x_{1}=z_{1}, \ldots, x_{i-1}=z_{i-1}, x_{i}=F\right]$, and $z_{i}=F$ otherwise
- Set $x_{i}=z_{i}$

Derandomization

- This is called the method of conditional expectations
> If we're happy when making a choice at random, we should be at least as happy conditioned on at least one of the possible values of that choice
- Remaining question:
> How do we compute \& compare the two conditional expectations: $E\left[W(\tau) \mid x_{1}=z_{1}, \ldots, x_{i-1}=z_{i-1}, x_{i}=T\right]$ and $E\left[W(\tau) \mid x_{1}=z_{1}, \ldots, x_{i-1}=z_{i-1}, x_{i}=F\right]$?

Derandomization

- $E\left[W(\tau) \mid x_{1}=z_{1}, \ldots, x_{i-1}=z_{i-1}, x_{i}=T\right]$
$>\sum_{r} w_{r} \cdot \operatorname{Pr}\left[C_{r}\right.$ is satisfied $\left.\mid x_{1}=z_{1}, \ldots, x_{i-1}=z_{i-1}, x_{i}=T\right]$
> Set the values of $x_{1}, \ldots, x_{i-1}, x_{i}$
$>$ If C_{r} resolves to TRUE already, the corresponding probability is 1
> Otherwise, if there are ℓ literals left in C_{r} after setting $x_{1}, \ldots, x_{i-1}, x_{i}$, the corresponding probability is $\frac{2^{\ell}-1}{2^{l}}$
- Compute $E\left[W(\tau) \mid x_{1}=z_{1}, \ldots, x_{i-1}=z_{i-1}, x_{i}=F\right]$ similarly

Max-SAT

- Simple randomized algorithm
$>\frac{2^{k}-1}{2^{k}}$-approximation for Max- k-SAT
> Max-3-SAT $\Rightarrow{ }^{7} / 8$
- [Håstad]: This is the best possible assuming $P \neq N P$
> Max-2-SAT $\Rightarrow 3 / 4=0.75$
- The best known approximation is 0.9401 using semi-definite programming and randomized rounding
> Max-SAT $\Rightarrow 1 / 2$
- Max-SAT = no restriction on the number of literals in each clause
- The best known approximation is 0.7968 , also using semi-definite programming and randomized rounding

Max-SAT

- Better approximations for Max-SAT
> Semi-definite programming is out of the scope
> But we will see the simpler "LP relaxation + randomized rounding" approach that gives $1-1 / e \approx 0.6321$ approximation
- Max-SAT:
> Input: $\varphi=C_{1} \wedge C_{2} \wedge \cdots \wedge C_{m}$, where each clause C_{i} has weight $w_{i} \geq$ 0 (and can have any number of literals)
> Output: Truth assignment that approximately maximizes the weight of clauses satisfied

LP Formulation of Max-SAT

- First, IP formulation:
> Variables:
- $y_{1}, \ldots, y_{n} \in\{0,1\}$
- $y_{i}=1$ iff variable $x_{i}=$ TRUE in Max-SAT
$\circ z_{1}, \ldots, z_{m} \in\{0,1\}$
- $z_{j}=1$ iff clause C_{j} is satisfied in Max-SAT
- Program:

Maximize $\Sigma_{j} w_{j} \cdot z_{j}$
s.t.
$\begin{array}{ll}\Sigma_{x_{i} \in C_{j}} y_{i}+\Sigma_{\bar{x}_{i} \in C_{j}}\left(1-y_{i}\right) \geq z_{j} & \forall j \in\{1, \ldots, m\} \\ y_{i}, z_{j} \in\{0,1\} & \forall i \in\{1, \ldots, n\}, j \in\{1, \ldots, m\}\end{array}$

LP Formulation of Max-SAT

- LP relaxation:
> Variables:
- $y_{1}, \ldots, y_{n} \in[0,1]$
- $y_{i}=1$ iff variable $x_{i}=$ TRUE in Max-SAT
$\circ z_{1}, \ldots, z_{m} \in[0,1]$
- $z_{j}=1$ iff clause C_{j} is satisfied in Max-SAT
- Program:

Maximize $\Sigma_{j} w_{j} \cdot z_{j}$
s.t.
$\Sigma_{x_{i} \in C_{j}} y_{i}+\Sigma_{\bar{x}_{i} \in C_{j}}\left(1-y_{i}\right) \geq z_{j} \quad \forall j \in\{1, \ldots, m\}$
$y_{i}, z_{j} \in[0,1]$
$\forall i \in\{1, \ldots, n\}, j \in\{1, \ldots, m\}$

Randomized Rounding

- Randomized rounding
> Find the optimal solution $\left(y^{*}, z^{*}\right)$ of the LP
> Compute a random IP solution \hat{y} such that
- Each $\hat{y}_{i}=1$ with probability y_{i}^{*} and 0 with probability $1-y_{i}^{*}$
- Independently of other \hat{y}_{i} 's
- The output of the algorithm is the corresponding truth assignment
> What is $\operatorname{Pr}\left[C_{j}\right.$ is satisfied $]$ if C_{j} has k literals?

$$
\begin{aligned}
& 1-\Pi_{x_{i} \in C_{j}}\left(1-y_{i}^{*}\right) \cdot \Pi_{\bar{x}_{i} \in C_{j}}\left(y_{i}^{*}\right) \\
& \geq 1-\left(\frac{\sum_{x_{i} \in C_{j}}\left(1-y_{i}^{*}\right)+\Sigma_{\bar{x}_{i} \in C_{j}}\left(y_{i}^{*}\right)}{k}\right)^{k} \underbrace{k}_{\text {AM-GM inequality }} \geq 1-\left(\frac{k-z_{j}^{*}}{k}\right)^{k}
\end{aligned}
$$

Randomized Rounding

- Claim
$>1-\left(1-\frac{z}{k}\right)^{k} \geq\left(1-\left(1-\frac{1}{k}\right)^{k}\right) \cdot z$ for all $z \in[0,1]$ and $k \in \mathbb{N}$
- Assuming the claim:

$$
\operatorname{Pr}\left[C_{j} \text { is satisfied }\right] \geq 1-\left(\frac{k-z_{j}^{*}}{k}\right)^{k} \geq\left(1-\left(1-\frac{1}{k}\right)^{k}\right) \cdot z_{j}^{*} \geq\left(1-\frac{1}{e}\right) \cdot z_{j}^{*}
$$

- Hence,

Standard inequality

Optimal LP objective \geq optimal ILP objective

Randomized Rounding

- Claim
$>1-\left(1-\frac{z}{k}\right)^{k} \geq\left(1-\left(1-\frac{1}{k}\right)^{k}\right) \cdot z$ for all $z \in[0,1]$ and $k \in \mathbb{N}$
- Proof of claim:
> True at $z=0$ and $z=1$ (same quantity on both sides)
> For $0 \leq z \leq 1$:
- LHS is a convex function
- RHS is a linear function
o Hence, LHS \geq RHS ■

Improving Max-SAT Apx

- Best of both worlds:
> Run both "LP relaxation + randomized rounding" and "naïve randomized algorithm"
> Return the best of the two solutions
>Claim without proof: This achieves a $3 / 4=0.75$ approximation!
- This algorithm can be derandomized.
> Recall:
○ "naïve randomized" = independently set each variable to TRUE/FALSE with probability 0.5 each, which only gives $1 / 2=0.5$ approximation by itself

Randomization for Sublinear Running Time

Sublinear Running Time

- Given an input of length n, we want an algorithm that runs in time $o(n)$
> $o(n)$ examples: $\log n, \sqrt{n}, n^{0.999}, \frac{n}{\log n}, \ldots$
> The algorithm doesn't even get to read the full input!
- There are four possibilities:
> Exact vs inexact: whether the algorithm always returns the correct/optimal solution or only does so with high probability (or gives some approximation)
> Worst-case versus expected running time: whether the algorithm always takes $o(n)$ time or only does so in expectation (but still on every instance)

Exact algorithms, expected sublinear time

Searching in Sorted List

- Input: A sorted doubly linked list with n elements.
> Imagine you have an array A with $O(1)$ access to $A[i]$
$>A[i]$ is a tuple $\left(x_{i}, p_{i}, n_{i}\right)$
- Value, index of previous element, index of next element.
> Sorted: $x_{p_{i}} \leq x_{i} \leq x_{n_{i}}$
- Task: Given x, check if there exists i s.t. $x=x_{i}$
- Goal: We will give a randomized + exact algorithm with expected running time $O(\sqrt{n})$!

Searching in Sorted List

- Motivation:
> Often we deal with large datasets that are stored in a large file on disk, or possibly broken into multiple files
> Creating a new, sorted version of the dataset is expensive
> It is often preferred to "implicitly sort" the data by simply adding previous-next pointers along with each element
> Would like algorithms that can operate on such implicitly sorted versions and yet achieve sublinear running time
o Just like binary search achieves for an explicitly sorted array

Searching in Sorted List

Algorithm:

> Select \sqrt{n} random indices R
\Rightarrow Access x_{j} for each $j \in R$
> Find "accessed x_{j} nearest to x in either direction"
o either the largest among all $x_{j} \leq x \ldots$
o or the smallest among all $x_{j} \geq x$
> If you take the largest $x_{j} \leq x$, start from there and keep going "next" until you find x or go past its value
> If you take the smallest $x_{j} \geq x$, start from there and keep going "previous" until you find x or go past its value

Searching in Sorted List

- Analysis sketch:
> Suppose you find the largest $x_{j} \leq x$ and keep going "next"
> Let x_{i} be smallest value $\geq x$
$>$ Algorithm stops when it hits x_{i}
> Algorithm throws \sqrt{n} random "darts" on the sorted list
> Chernoff bound:
- Expected distance of x_{i} to the closest dart to its left is $O(\sqrt{n})$
- We'll assume this without proof!
> Hence, the algorithm only does "next" $O(\sqrt{n})$ times in expectation

Searching in Sorted List

- Note:
> We don't really require the list to be doubly linked. Just "next" pointer suffices if we have a pointer to the first element of the list (a.k.a. "anchored list").
- This algorithm is optimal!
- Theorem: No algorithm that always returns the correct answer can run in $o(\sqrt{n})$ expected time.
> Can be proved using "Yao's minimax principle"
> Beyond the scope of the course, but this is a fundamental result with wide-ranging applications

Sublinear Geometric Algo

- Chazelle, Liu, and Magen [2003] proved the $\Theta(\sqrt{n})$ bound for searching in a sorted linked list
> Their main focus was to generalize these ideas to come up with sublinear algorithms for geometric problems
> Polygon intersection: Given two convex polyhedra, check if they intersect.
> Point location: Given a Delaunay triangulation (or Voronoi diagram) and a point, find the cell in which the point lies.
> They provided optimal $O(\sqrt{n})$ algorithms for both these problems.

Inexact algorithms, expected sublinear time

Estimating Avg Degree in

- Input:
> Undirected graph G with n vertices
$>O(1)$ access to the degree of any queried vertex
- Output:
> Estimate the average degree of all vertices
> More precisely, we want to find a $(2+\epsilon)$-approximation in expected time $O\left(\epsilon^{-O(1)} \sqrt{n}\right)$
- Wait!
> Isn't this equivalent to "given an array of n numbers between 1 and $n-1$, estimate their average"?
> No! That requires $\Omega(n)$ time for any constant approximation!
- Consider an instance with constantly many $n-1$'s, and all other 1 's: you may not discover any $n-1$ until you query $\Omega(n)$ numbers

Estimating Avg Degree in

-Why are degree sequences more special?

- Erdős-Gallai theorem:
> $d_{1} \geq \cdots \geq d_{n}$ is a degree sequence iff their sum is even and
$\sum_{i=1}^{k} d_{i} \leq k(k-1)+\sum_{i=k+1}^{n} d_{i}$
- Intuitively, we will sample $O(\sqrt{n})$ vertices
> We may not discover the few high degree vertices but we'll find their neighbors and thus account for their edges anyway!

Estimating Avg Degree in

- Algorithm:

> Take $8 / \epsilon$ random subsets $S_{i} \subseteq V$ with $\left|S_{i}\right|=O\left(\frac{\sqrt{n}}{\epsilon}\right)$
> Compute the average degree $d_{S_{i}}$ in each S_{i}.
$>$ Return $\widehat{d}=\min _{i} d_{S_{i}}$

- Analysis beyond the scope of this course
> This gets the approximation right with probability at least $\frac{5}{6}$
> By repeating the experiment $\Omega(\log n)$ times and reporting the median answer, we can get the approximation right with probability at least $1-1 / O(n)$ and a bad approximation with the other $1 / O(n)$ probability cannot hurt much

