CSC373

Week 11:
Randomized Algorithms

Randomized Algorithms

Input Deterministic Algorithm Output
Input : :
Randomized Algorithm Output
Randomness

373F20 - Nisarg Shah 2

Randomized Algorithms

* Running time
> Harder goal: the running time should always be small

o Regardless of both the input and the random coin flips

> Easier goal: the running time should be small in expectation
o Expectation over random coin flips
o But it should still be small for every input (i.e. worst-case)

* Approximation Ratio

> The objective value of the solution returned should, in expectation,
be close to the optimum objective value

o Once again, the expectation is over random coin flips
o The approximation ratio should be small for every input

373F20 - Nisarg Shah 3

Derandomization

e After coming up with a randomized approximation
algorithm, one might ask if it can be “derandomized”

> Informally, the randomized algorithm is making random choices that,
in expectation, turn out to be good

» Can we make these “good” choices deterministically?

* For some problems...

> It may be easier to first design a simple randomized approximation
algorithm and then de-randomize it...

> Than to try to directly design a deterministic approximation
algorithm

373F20 - Nisarg Shah 4

Recap: Probability Theory

 Random variable X
» Discrete
o Takes value v, with probability p1, v, w.p. po, ...
o Expected value E[X] =p, vy +py - vy + -+
o Examples: coin toss, the roll of a six-sided die, ...

» Continuous
o Has a probability density function (pdf) f
o Its integral is the cumulative density function (cdf) F

« F(x) =Pr[X <x] = f f(t) dt
o Expected value E[X] = f_ooxf(x) dx

o Examples: normal distribution, exponential distribution, uniform
distribution over [0,1], ...

373F20 - Nisarg Shah 5

Recap: Probability Theory

* Things you should be aware of...
> Conditional probabilities
> Conditional expectations
> Independence among random variables
»> Moments of random variables

> Standard discrete distributions: uniform over a finite set, Bernoulli,
binomial, geometric, Poisson, ...

> Standard continuous distributions: uniform over intervals,
Gaussian/normal, exponential, ...

373F20 - Nisarg Shah 6

Three Pillars

Linearity of Expectation Union Bound Chernoff Bound

* Deceptively simple, but incredibly powerful!

* Many many many many probabilistic results are just
interesting applications of these three results

373F20 - Nisarg Shah 7

Three Pillars

* Linearity of expectation
> E[X +Y] = E[X] + E[Y]

> This does not require any independence assumptions about X and Y

> E.g. if you want to find out how many people will attend your party
on average, just ask each person the probability with which they will

attend and sum up the probabilities
o It does not matter whether some of them are friends and either
all will attend together or none will attend

373F20 - Nisarg Shah 8

Three Pillars

* Union bound
> For any two events A and B, Pr[A U B] < Pr|A] + Pr[B]

> “Probability that at least one of the n events A4, ..., A, will occur is at
most);; Pr[4;]”

> Typically, 44, ..., 4, are “bad events”
o You do not want any of them to occur

o If you can individually bound Pr[4;] < 1/,,, for each i, then
probability that at least one them occurs < 1/2

o Thus, with probability = 1/,, none of the bad events will occur

e Chernoff bound & Hoeffding’s inequality
> Read up!

373F20 - Nisarg Shah 9

Exact Max-k-SAT

373F20 - Nisarg Shah

Exact Max-k-SAT

(Problem (recall))

> Input: An exact k-SAT formula @ = C; ACy A --- A Cyp,

where each clause C; has exactly k literals, and a weight w; = 0 of
each clause (;

> Output: A truth assignment T maximizing the number (or total
\ weight) of clauses satisfied under t /

> Let us denote by W (1) the total weight of clauses satisfied under t

373F20 - Nisarg Shah

Exact Max-k-SAT

Recall our local search

> N;(7) = set of all truth assignments which can be obtained by
changing the value of at most d variablesin t

Result 1: Neighborhood N; (1) = 4/3-apx for Exact Max-2-SAT.

Result 2: Neighborhood N, (1) U 7€ = 3/,-apx for Exact Max-
2-SAT.

Result 3: Neighborhood N; (1) + oblivious local search = 3/,-
apx for Exact Max-2-SAT.

373F20 - Nisarg Shah

Exact Max-k-SAT

e Recall our local search

> N;(7) = set of all truth assignments which can be obtained by
changing the value of at most d variablesin t

* We claimed that 34-apx for Exact Max-2-SAT can be

k_
" L3 px for Exact Max-k-SAT

> Algorithm becomes slightly more complicated

: 2
generalized to

 What can we do with randomized algorithms?

373F20 - Nisarg Shah

Exact Max-k-SAT

* Recall:
> We haveaformulagp = C; ACo A A Cyy
» Variables = x4, ..., xp,, literals = variables or their negations
> Each clause contains exactly k literals

@)
* The most naive randomized algorithm
> Set each variable to TRUE with probability 2 and to FALSE with
probability 12)

 How good is this?

373F20 - Nisarg Shah

Exact Max-k-SAT

* Recall:
> We haveaformulagp = C; ACo A A Cyy
» Variables = x4, ..., xp,, literals = variables or their negations
> Each clause contains exactly k literals

* Let T be a random assignment

> For each clause C;: Pr[(; is not satisfied] = 1/, (WHY?)
k_
o Hence, Pr[(C; is satisfied]| = (2 1)/2k
> E[W(1)] = X%, w; - Pr[C; is satisfied] (WHY?)

2k—1 2k—1
> E[W(T)] =2—k. ﬁlwi ZZ—ROPT

373F20 - Nisarg Shah

Derandomization

e Can we derandomize this algorithm?
»> What are the choices made by the algorithm?

o Setting the values of x4, x5, ..., X,
> How do we know which set of choices is good?

* |dea:
> Do not think about all the choices at once.
> Think about them one by one.
> Goal: Gradually convert the random assignment 7 to a deterministic

assignment 7 such that W (%) = E[W (1)]

ke_
o Combining with E[W (7)] = szl - OPT will give the desired

deterministic approximation ratio

373F20 - Nisarg Shah

Derandomization

 Start with the random assignment 7 and write...

EW (D] = Prlx; = T]- E[W(@)|x; = T] + Pr[x; = F]- E[W()|x; = F]
=1/ EW@®@Ix, =T+ 1/, - EW@)|x, = F]

> Hence, max(E[W (7)|xy = T],E[W (1)|x; = F]) = E[W (7)]
o Whatis E[W (t)|x; =T]?

* Itis the expected weight when setting x; = T deterministically
but still keeping x5, ..., x,, random

> If we can compute both E[W (7)|x; = T] and E[W (7)]|x; = F], and
pick the better one...

o Then we can set x; deterministically without degrading the
expected objective value

373F20 - Nisarg Shah

Derandomization

* After deterministically making the right choice for x4 (say T),
we can apply the same logic to x,

EW@|x, =Tl =1/, - EW@Ixy = T, x, = T]
+ 1/2 CE[W(@)|xy =T,x, = F]

> Pick the better of the two conditional expectations

"+ Derandomized Algorithm:)
> Fori=1,..,n
oletz; =TifE[W(T)|x1 =2, .., Xj_1 = 2Zj_1,x; =T] =
EW(t)|xy = zq, ..., x;_1 = z;_1,x; = F], and z; = F otherwise

_ o Setx; = z; .

373F20 - Nisarg Shah

Derandomization

* This is called the method of conditional expectations

> If we’re happy when making a choice at random, we should be at least
as happy conditioned on at least one of the possible values of that
choice

* Remaining question:
> How do we compute & compare the two conditional expectations:
EW()|xy =2z, ..., Xj—1 = Z;_1,x; = T] and
E[W(T)|x1 = Z1, -, Xj—1 = Zj—1,Xj = F]?

373F20 - Nisarg Shah

Derandomization

¢ E[W(T)|x1 = Z1y ey Xi—1 = Zj—1,X] = T]
> YW, - Pr[C, issatisfied |x; = z1, ..., %1 = z;_1,x; = T|
» Set the values of x4, ..., x;_1, X;

> If C,- resolves to TRUE already, the corresponding probability is 1

» Otherwise, if there are ¥ literals left in C,. after setting x4, ..., X;_1, X;,
'

the corresponding probability is %

* Compute E|W (1)|x; = 241, ..., Xj_1 = Z;_1,x; = F] similarly

373F20 - Nisarg Shah

Max-SAT

e Simple randomized algorithm
2k—
2k
> Max-3-SAT = 7/g
o [Hastad]: This is the best possible assuming P = NP
> Max-2-SAT = 3/, = 0.75

o The best known approximation is 0.9401 using semi-definite
programming and randomized rounding

> Max-SAT = 1/,
o Max-SAT = no restriction on the number of literals in each clause

o The best known approximation is 0.7968, also using semi-definite
programming and randomized rounding

> —approximation for Max-k-SAT

373F20 - Nisarg Shah

Max-SAT

e Better approximations for Max-SAT
> Semi-definite programming is out of the scope

> But we will see the simpler “LP relaxation + randomized rounding”
approach that gives 1 — 1/, =~ 0.6321 approximation

('« Max-SAT:)
> Input: @ = C; A Cy A -+ A Gy, Wwhere each clause C; has weight w; >
0 (and can have any number of literals)

> Output: Truth assignment that approximately maximizes the weight
of clauses satisfied

J

373F20 - Nisarg Shah

LP Formulation of Max-SAT

e First, IP formulation:
> Variables:

o V1, -, Vn € {0,1}
* y; = 1iff variable x; = TRUE in Max-SAT

O Z1, ., Zm € {0,1}
* Zj = 1 iff clause Cj is satisfied in Max-SAT

o Program:

Maximize Zj Wj « Z;

S.t.
inECj yi+zfiECj (1_yl) 2Z] v] € {1,,771}
vi, Z; € {0,1} vie{l,..,n}j€e{l,.., m}

373F20 - Nisarg Shah

LP Formulation of Max-SAT

* LP relaxation:
» Variables:

O V1, -, Vn € 10,1]
* y; = 1iff variable x; = TRUE in Max-SAT

O Z1, ., Zm € [0,1]
* Zj = 1 iff clause Cj is satisfied in Max-SAT

o Program:

Maximize Zj Wj « Z;

s.t.
inECj yi+zfiECj (1_yl) 2Z] v] € {1,,771}
Vi, Zj € [0,1] vie{l,..,n}je{l, .., m}

373F20 - Nisarg Shah

Randomized Rounding

* Randomized rounding
> Find the optimal solution (y*, z*) of the LP
> Compute a random IP solution y such that
o Each 9; = 1 with probability y; and 0 with probability 1 — y;
o Independently of other y;’s
o The output of the algorithm is the corresponding truth assignment

> What is Pr[(; is satisfied] if C; has k literals?

1- xlEC (1- yl) l_[xlEC] (yl)
(XEC; (1-y;)+ leec] (%)) (k — Z}‘)k
>1-— >1 -

k k

\ J \ J
| |

AM-GM inequality LP constraint

373F20 - Nisarg Shah

Randomized Rounding

e Claim

> 1—(1—2)1{2(1—(1—%)k)-zforallze [0,1] and k € N

* Assuming the claim:

Pr[C; is satisfied] > 1 — (k_—kz’)k > (1 —(1- %)k) 72 (1-2). 7

* Hence, Standard inequality
E[#weight of clauses satisfied] > (1 — %) Zj w; - Zj‘ > (1 — %) - OPT

| J
I

Optimal LP objective = optimal ILP objective

373F20 - Nisarg Shah 26

Randomized Rounding

e Claim
k k
> 1-(1-32) 2(1—(1—%))-Zforallze [0,1] and k € N

* Proof of claim:
> True at z = 0 and z = 1 (same quantity on both sides)
> For0<z < 1
o LHS is a convex function Value
o RHS is a linear function 06

o Hence, LHS > RHS = 0.5}
0.4} — LHS

0.3} RHS
0.2}

0.1

k=100

373F20 - Nisarg Shah

Improving Max-SAT Apx

e Best of both worlds:

> Run both “LP relaxation + randomized rounding” and “naive
randomized algorithm”

> Return the best of the two solutions

> Claim without proof: This achieves a 3/, = 0.75 approximation!
o This algorithm can be derandomized.

> Recall:

o “naive randomized” = independently set each variable to
TRUE/FALSE with probability 0.5 each, which only gives 1/, = 0.5
approximation by itself

373F20 - Nisarg Shah

NOT IN SYLLABUS

Randomization for
Sublinear Running Time

373F20 - Nisarg Shah

Sublinear Running Time

* Given an input of length n, we want an algorithm that runs
intime o(n)
0999 _ 1

> o(n) examples: logn,v/n,n Togn’

> The algorithm doesn’t even get to read the full input!

* There are four possibilities:

> Exact vs inexact: whether the algorithm always returns the
correct/optimal solution or only does so with high probability (or
gives some approximation)

> Worst-case versus expected running time: whether the algorithm

always takes o(n) time or only does so in expectation (but still on
every instance)

373F20 - Nisarg Shah

NOT IN SYLLABUS

Exact algorithmes,
expected sublinear time

373F20 - Nisarg Shah

Searching in Sorted List

* Input: A sorted doubly linked list with n elements.
> Imagine you have an array A with O(1) access to A[i]
> Ali] is a tuple (x;, p;, n;)
o Value, index of previous element, index of next element.

> Sorted: xp,, < Xx; < Xy,
* Task: Given x, check if there exists i s.t. x = x;

* Goal: We will give a randomized + exact algorithm with
expected running time 0(y/n)!

373F20 - Nisarg Shah

Searching in Sorted List

* Motivation:

» Often we deal with large datasets that are stored in a large file on
disk, or possibly broken into multiple files

> Creating a new, sorted version of the dataset is expensive

> It is often preferred to “implicitly sort” the data by simply adding
previous-next pointers along with each element

> Would like algorithms that can operate on such implicitly sorted
versions and yet achieve sublinear running time

o Just like binary search achieves for an explicitly sorted array

373F20 - Nisarg Shah

Searching in Sorted List
/Algorithm: \

> Select \/n random indices R
> Access x; for each j € R

)

» Find “accessed Xj nearest to x in either direction’
o either the largest among all x; < x...
o or the smallest among all x; = x

> If you take the largest x; < x, start from there and keep going “next”
until you find x or go past its value

If you take the smallest x; = x, start from there and keep going

>
\ “previous” until you find x or go past its value /

373F20 - Nisarg Shah

Searching in Sorted List

* Analysis sketch:
> Suppose you find the largest x; < x and keep going “next”

> Let x; be smallest value = x
» Algorithm stops when it hits x;
> Algorithm throws y/n random “darts” on the sorted list

> Chernoff bound:
o Expected distance of x; to the closest dart to its left is 0 (\/n)
o We'll assume this without proof!

> Hence, the algorithm only does “next” 0(1/n) times in expectation

373F20 - Nisarg Shah

Searching in Sorted List

* Note:

> We don’t really require the list to be doubly linked. Just “next”
pointer suffices if we have a pointer to the first element of the list
(a.k.a. “anchored list”).

* This algorithm is optimall!

* Theorem: No algorithm that always returns the correct
answer can run in o(y/n) expected time.
> Can be proved using “Yao’s minimax principle”

> Beyond the scope of the course, but this is a fundamental result with
wide-ranging applications

373F20 - Nisarg Shah

Sublinear Geometric Algo

* Chazelle, Liu, and Magen [2003] proved the ©(y/n) bound
for searching in a sorted linked list

> Their main focus was to generalize these ideas to come up with
sublinear algorithms for geometric problems

> Polygon intersection: Given two convex polyhedra, check if they
intersect.

> Point location: Given a Delaunay triangulation (or Voronoi diagram)
and a point, find the cell in which the point lies.

> They provided optimal O(y/n) algorithms for both these problems.

373F20 - Nisarg Shah

NOT IN SYLLABUS

Inexact algorithmes,
expected sublinear time

373F20 - Nisarg Shah

Estimating Avg Degree in

* Input:
> Undirected graph G with n vertices
> 0(1) access to the degree of any queried vertex
* Output:
> Estimate the average degree of all vertices
> More precisely, we want to find a (2 + €)-approximation in expected
time 0(e °Wy/n)
* Wait!
> Isn’t this equivalent to “given an array of n numbers between 1 and
n — 1, estimate their average”?
> No! That requires (0(n) time for any constant approximation!

o Consider an instance with constantly many n — 1’s, and all other
1’s: you may not discover any n — 1 until you query Q(n) numbers

373F20 - Nisarg Shah

Estimating Avg Degree in

 Why are degree sequences more special?

e Erdds—Gallai theorem:

> dq = -+ = d,, is a degree sequence iff their sum is even and
K odi<k(k—1D+3¥",..d;

* Intuitively, we will sample O (y/n) vertices

> We may not discover the few high degree vertices but we’ll find their
neighbors and thus account for their edges anyway!

373F20 - Nisarg Shah

Estimating Avg Degree in

(. Algorithm: A
N

> Take 8/c random subsets S; € V with |S;| = 0 (?)

> Compute the average degree dg, in each S;.

> Return d = min; dg,

* Analysis beyond the scope of this course
> This gets the approximation right with probability at Ieast%

> By repeating the experiment Q(logn) times and reporting the
median answer, we can get the approximation right with probability
atleast 1 — 1/0(n) and a bad approximation with the other 1/0(n)
probability cannot hurt much

373F20 - Nisarg Shah

