CSC373

Review

BUT FIRST...

Course Evaluation

Low response rate

Complete your course evaluations...

Check your e-mail for a link to your evaluations, or log-in to www.portal.utoronto.ca and click the Course Evals tab!

CENTRE FOR TEACHING SUPPORT \& INNOVATION

Should I expect drumrolls?

Course Evaluation

New response rate

Topics

- Divide and conquer
- Greedy algorithms
- Dynamic programming
- Network flow
- Linear programming
- Complexity
- Approximation algorithms \& local search
- Randomized algorithms

Greedy Algorithms

- Greedy algorithm outline
> We want to find the optimal solution maximizing some objective f over a large space of feasible solutions
> Solution x is composed of several parts (e.g. a set)
> Instead of directly computing x...
- Consider one element at a time in some greedy ordering
- Make a decision about that element before moving on to future elements (and without knowing what will happen for the future elements)

Greedy Algorithms

- Proof of optimality outline
> Strategy 1:
- $G_{i}=$ greedy solution after i steps
- Show that $\forall i$, there is some optimal solution $O P T_{i}$ s.t. $G_{i} \subseteq O P T_{i}$
- "Greedy solution is promising"
- By induction
- Then the final solution returned by greedy must be optimal
> Strategy 2:
- Same as strategy 1, but more direct
- Consider OPT that matches greedy solution for as many steps as possible
- If it doesn't match in all steps, find another $O P T$ which matches for one more step (contradiction)

Dynamic Programming

- Key steps in designing a DP algorithm
> "Generalize" the problem first
- E.g. instead of computing edit distance between strings $X=$ x_{1}, \ldots, x_{m} and $Y=y_{1}, \ldots, y_{n}$, we compute $E[i, j]=$ edit distance between i-prefix of X and j-prefix of Y for all (i, j)
- The right generalization is often obtained by looking at the structure of the "subproblem" which must be solved optimally to get an optimal solution to the overall problem
> Remember the difference between DP and divide-and-conquer
> Sometimes you can save quite a bit of space by only storing solutions to those subproblems that you need in the future

Dynamic Programming

- Dynamic programming applies well to problems that have optimal substructure property
> Optimal solution to a problem contains (or can be computed easily given) optimal solution to subproblems.
- Recall: divide-and-conquer also uses this property
> You can think of divide-and-conquer as a special case of dynamic programming, where the two (or more) subproblems you need to solve don't "overlap"
> So there's no need for memoization
> In dynamic programming, one of the subproblems may in turn require solution to the other subproblem...

Dynamic Programming

- Top-Down may be preferred...
> ...when not all sub-solutions need to be computed on some inputs
> ...because one does not need to think of the "right order" in which to compute sub-solutions
- Bottom-Up may be preferred...
> ...when all sub-solutions will anyway need to be computed
> ...because it is sometimes faster as it prevents recursive call overheads and unnecessary random memory accesses

Network Flow

- Input
> A directed graph $G=(V, E)$
> Edge capacities $c: E \rightarrow \mathbb{R}_{\geq 0}$
> Source node s, target node t
- Output
> Maximum "flow" from s to t

Ford-Fulkerson Algorithm

MaxFlow (G):
// initialize:
Set $f(e)=0$ for all e in G
// while there is an $s-t$ path in G_{f} :
While $P=$ FindPath(s, t,Residual $(G, f))!=$ None:
$f=\operatorname{Augment}(f, P)$
UpdateResidual(G, f)
EndWhile
Return f

Max Flow - Min Cut

- Theorem: In any graph, the value of the maximum flow is equal to the capacity of the minimum cut.
- Ford-Fulkerson can be used to find the min cut
> Find the max flow f^{*}
> Let $A^{*}=$ set of all nodes reachable from s in residual graph $G_{f^{*}}$
- Easy to compute using BFS
$>$ Then ($A^{*}, V \backslash A^{*}$) is min cut

LP, Standard Formulation

- Input: $c, a_{1}, a_{2}, \ldots, a_{m} \in \mathbb{R}^{n}, b \in \mathbb{R}^{m}$
> There are n variables and m constraints
- Goal:

LP, Standard Matrix Form

- Input: $c, a_{1}, a_{2}, \ldots, a_{m} \in \mathbb{R}^{n}, b \in \mathbb{R}^{m}$
> There are n variables and m constraints
- Goal:

Convert to Standard Form

- What if the LP is not in standard form?
> Constraints that use \geq
○ $a^{T} x \geq b \Leftrightarrow-a^{T} x \leq-b$
> Constraints that use equality
○ $a^{T} x=b \Leftrightarrow a^{T} x \leq b, \quad a^{T} x \geq b$
$>$ Objective function is a minimization
- Minimize $c^{T} x \Leftrightarrow$ Maximize $-c^{T} x$
> Variable is unconstrained
$\circ x$ with no constraint \Leftrightarrow Replace x by two variables x^{\prime} and $x^{\prime \prime}$, replace every occurrence of x with $x^{\prime}-x^{\prime \prime}$, and add constraints $x^{\prime} \geq 0, x^{\prime \prime} \geq 0$

Duality

Primal LP

$$
\begin{gathered}
\max \mathbf{c}^{T} \mathbf{x} \\
\mathbf{A x} \leq \mathbf{b} \\
\mathbf{x} \geq 0
\end{gathered}
$$

Dual LP

$$
\begin{gathered}
\min \mathbf{y}^{T} \mathbf{b} \\
\mathbf{y}^{T} \mathbf{A} \geq \mathbf{c}^{T} \\
\mathbf{y} \geq 0
\end{gathered}
$$

- Weak duality theorem:
> For any primal feasible x and dual feasible $y, c^{T} x \leq y^{T} b$
- Strong duality theorem:
> For any primal optimal x^{*} and dual optimal $y^{*}, c^{T} x^{*}=\left(y^{*}\right)^{T} b$

P

- P (polynomial time)
> The class of all decision problems computable by a TM in polynomial time

NP

- NP (nondeterministic polynomial time)
> The class of all decision problems for which a YES answer can be verified by a TM in polynomial time given polynomial length "advice" or "witness".
> There is a polynomial-time verifier TM V and another polynomial p such that
- For all YES inputs x, there exists y with $|y|=p(|x|)$ on which $V(x, y)$ returns YES
- For all NO inputs $x, V(x, y)$ returns NO for every y
> Informally: "Whenever the answer is YES, there's a short proof of it."

co-NP

- co-NP
> Same as NP, except whenever the answer is NO, we want there to be a short proof of it

Reductions

- Problem A is p-reducible to problem B if an "oracle" (subrouting) for B can be used to efficiently solve A
> You can solve A by making polynomially many calls to the oracle and doing additional polynomial computation

NP-completeness

- NP-completeness
> A problem B is NP-complete if it is in NP and every problem A in NP is p -reducible to B
> Hardest problems in NP
> If one of them can be solved efficiently, every problem in NP can be solved efficiently, implying $\mathrm{P}=\mathrm{NP}$
- Observation:
> If A is in NP, and some NP-complete problem B is p-reducible to A, then A is NP-complete too
- "If I could solve A, then I could solve B, then I could solve any problem in NP"

Review of Reductions

- If you want to show that problem B is NP-complete
- Step 1: Show that B is in NP
> Some polynomial-size advice should be sufficient to verify a YES instance in polynomial time
> No advice should work for a NO instance
> Usually, the solution of the "search version" of the problem works
- But sometimes, the advice can be non-trivial
- For example, to check LP optimality, one possible advice is the values of both primal and dual variables, as we saw in the last lecture

Review of Reductions

- If you want to show that problem B is NP-complete
- Step 2: Find a known NP-complete problem A and reduce it to B (i.e. show $\mathrm{A} \leq_{p} \mathrm{~B}$)
> This means taking an arbitrary instance of A, and solving it in polynomial time using an oracle for B
- Caution 1: Remember the direction. You are "reducing known NPcomplete problem to your current problem".
- Caution 2: The size of the B-instance you construct should be polynomial in the size of the original A-instance
> This would show that if B can be solved in polynomial time, then A can be as well
> Some reductions are trivial, some are notoriously tricky...

Approximation Algorithms

- We focus on optimization problems
> Decision problem: "Is there...where... $\geq k$?"
- E.g. "Is there an assignment which satisfies at least k clauses of a given formula φ ?"
> Optimization problem: "Find...which maximizes..."
- E.g. "Find an assignment which satisfies the maximum possible number of clauses from a given formula φ."
$>$ Recall that if the decision problem is hard, then the optimization problem is hard too

Approximation Algorithms

- There is a function Profit we want to maximize or a function Cost we want to minimize
- Given input instance I...
> Our algorithm returns a solution $\operatorname{ALG}(I)$
> An optimal solution maximizing Profit or minimizing Cost is OPT(I)
> Then, the approximation ratio of $A L G$ on instance I is

$$
\frac{\operatorname{Profit}(O P T(I))}{\operatorname{Profit}(A L G(I))} \text { or } \frac{\operatorname{Cost}(A L G(I))}{\operatorname{Cost}(O P T(I))}
$$

Approximation Algorithms

- Approximation ratio of $A L G$ on instance I is

$$
\frac{\operatorname{Profit}(\operatorname{OPT}(I))}{\operatorname{Profit}(A L G(I))} \text { or } \frac{\operatorname{Cost}(A L G(I))}{\operatorname{Cost}(O P T(I))}
$$

> Note: These are defined to be ≥ 1 in each case.

- 2-approximation = half the optimal profit / twice the optimal cost
- $A L G$ has worst-case c-approximation if for each instance I...

$$
\begin{gathered}
\operatorname{Profit}(A L G(I)) \geq \frac{1}{c} \cdot \operatorname{Profit}(\text { OPT }(I)) \text { or } \\
\operatorname{Cost}(A L G(I)) \leq c \cdot \operatorname{Cost}(\text { OPT }(I))
\end{gathered}
$$

Techniques

- Greedy algorithms
- Local search
- LP relaxation => rounding

Randomized Algorithms

Randomized Algorithms

- Running time
> Sometimes, we want the algorithm to always take a small amount of time
- Regardless of both the input and the random coin flips
- Sometimes, we want the algorithm to take a small amount of time in expectation
- Expectation over random coin flips
- Still regardless of the input

Randomized Algorithms

- Efficiency
> We want the algorithm to return a solution that is, in expectation, close to the optimum according to the objective under consideration
- Once again, the expectation is over random coin flips
- We want this to hold for every input

Derandomization

- For some problems, it is easy to come up with a very simple randomized approximation algorithm
- Later, one can ask whether this algorithm can be "derandomized"
> Informally, the randomized algorithm is making some random choices, and sometimes they turn out to be good
> Can we make these "good" choices deterministically?

