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BUT	FIRST…
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Course Evaluation

Low response rate

https://course-evals.utoronto.ca/blue/tl-eng.aspx?lang=eng&pid=fe530398-e671-4e97-900f-58132c492a4c&uid=481172b953e091f8a781d025df798d13&tk=SVM&regl=en-US


Complete your course evaluations…

Check your e-mail for a link to your evaluations, or log-in to 
www.portal.utoronto.ca and click the Course Evals tab!
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http://www.portal.utoronto.ca/


Should	I	expect	drumrolls?
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Course Evaluation

New response rate

https://course-evals.utoronto.ca/blue/tl-eng.aspx?lang=eng&pid=fe530398-e671-4e97-900f-58132c492a4c&uid=481172b953e091f8a781d025df798d13&tk=SVM&regl=en-US


Topics
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• Divide and conquer
• Greedy algorithms
• Dynamic programming
• Network flow
• Linear programming
• Complexity
• Approximation algorithms & local search
• Randomized algorithms



Greedy	Algorithms
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• Greedy algorithm outline
Ø We want to find the optimal solution maximizing some objective 𝑓

over a large space of feasible solutions

Ø Solution 𝑥 is composed of several parts (e.g. a set)

Ø Instead of directly computing 𝑥…
o Consider one element at a time in some greedy ordering
o Make a decision about that element before moving on to future 

elements (and without knowing what will happen for the future 
elements)



Greedy	Algorithms
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• Proof of optimality outline
Ø Strategy 1: 
o 𝐺! = greedy solution after 𝑖 steps
o Show that ∀𝑖, there is some optimal solution 𝑂𝑃𝑇! s.t. 𝐺! ⊆ 𝑂𝑃𝑇!
• “Greedy solution is promising”

o By induction
o Then the final solution returned by greedy must be optimal

Ø Strategy 2:
o Same as strategy 1, but more direct
o Consider 𝑂𝑃𝑇 that matches greedy solution for as many steps as 

possible
o If it doesn’t match in all steps, find another 𝑂𝑃𝑇 which matches 

for one more step (contradiction)



Dynamic	Programming
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• Key steps in designing a DP algorithm
Ø “Generalize” the problem first
o E.g. instead of computing edit distance between strings 𝑋 =
𝑥", … , 𝑥# and 𝑌 = 𝑦", … , 𝑦$, we compute 𝐸[𝑖, 𝑗] = edit distance 
between 𝑖-prefix of 𝑋 and 𝑗-prefix of 𝑌 for all (𝑖, 𝑗)

o The right generalization is often obtained by looking at the 
structure of the “subproblem” which must be solved optimally to 
get an optimal solution to the overall problem

Ø Remember the difference between DP and divide-and-conquer
Ø Sometimes you can save quite a bit of space by only storing solutions 

to those subproblems that you need in the future



Dynamic	Programming
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• Dynamic programming applies well to problems that have 
optimal substructure property
Ø Optimal solution to a problem contains (or can be computed easily 

given) optimal solution to subproblems.

• Recall: divide-and-conquer also uses this property
Ø You can think of divide-and-conquer as a special case of dynamic 

programming, where the two (or more) subproblems you need to 
solve don’t “overlap”

Ø So there’s no need for memoization
Ø In dynamic programming, one of the subproblems may in turn 

require solution to the other subproblem…



Dynamic	Programming
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• Top-Down may be preferred…
Ø …when not all sub-solutions need to be computed on some inputs
Ø …because one does not need to think of the “right order” in which to 

compute sub-solutions

• Bottom-Up may be preferred…
Ø …when all sub-solutions will anyway need to be computed
Ø …because it is sometimes faster as it prevents recursive call 

overheads and unnecessary random memory accesses



Network	Flow
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• Input
Ø A directed graph 𝐺 = (𝑉, 𝐸)
Ø Edge capacities 𝑐 ∶ 𝐸 → ℝ%&
Ø Source node 𝑠, target node 𝑡

• Output
Ø Maximum “flow” from 𝑠 to 𝑡



Ford-Fulkerson	Algorithm
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MaxFlow(𝐺):
// initialize:
Set 𝑓 𝑒 = 0 for all 𝑒 in 𝐺

// while there is an 𝑠-𝑡 path in 𝐺':
While 𝑃 = FindPath(s, t,Residual(𝐺, 𝑓))!=None:
𝑓 = Augment(𝑓, 𝑃)
UpdateResidual(𝐺,𝑓)

EndWhile
Return 𝑓



Max	Flow	- Min	Cut

373F21 - Nisarg Shah 13

• Theorem: In any graph, the value of the maximum flow is 
equal to the capacity of the minimum cut.

• Ford-Fulkerson can be used to find the min cut
Ø Find the max flow 𝑓∗

Ø Let 𝐴∗ = set of all nodes reachable from 𝑠 in residual graph 𝐺'∗
o Easy to compute using BFS

Ø Then (𝐴∗, 𝑉 ∖ 𝐴∗) is min cut



LP,	Standard	Formulation
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• Input: 𝑐, 𝑎!, 𝑎", … , 𝑎# ∈ ℝ$, 𝑏 ∈ ℝ#
Ø There are 𝑛 variables and 𝑚 constraints

• Goal:



LP,	Standard	Matrix	Form
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• Input: 𝑐, 𝑎!, 𝑎", … , 𝑎# ∈ ℝ$, 𝑏 ∈ ℝ#
Ø There are 𝑛 variables and 𝑚 constraints

• Goal:



Convert	to	Standard	Form
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• What if the LP is not in standard form?
Ø Constraints that use ≥
o 𝑎)𝑥 ≥ 𝑏 ⇔ −𝑎)𝑥 ≤ −𝑏

Ø Constraints that use equality
o 𝑎)𝑥 = 𝑏 ⇔ 𝑎)𝑥 ≤ 𝑏, 𝑎)𝑥 ≥ 𝑏

Ø Objective function is a minimization
o Minimize 𝑐)𝑥 ⇔ Maximize −𝑐)𝑥

Ø Variable is unconstrained
o 𝑥 with no constraint  ⇔ Replace 𝑥 by two variables 𝑥*and 𝑥**, 

replace every occurrence of 𝑥 with 𝑥* − 𝑥**, and add constraints 
𝑥* ≥ 0, 𝑥** ≥ 0



Duality
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• Weak duality theorem:
Ø For any primal feasible 𝑥 and dual feasible 𝑦, 𝑐)𝑥 ≤ 𝑦)𝑏

• Strong duality theorem:
Ø For any primal optimal 𝑥∗ and dual optimal 𝑦∗, 𝑐)𝑥∗ = 𝑦∗ )𝑏

Primal LP Dual LP



P
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• P (polynomial time)
Ø The class of all decision problems computable by a TM in polynomial 

time



NP
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• NP (nondeterministic polynomial time)
Ø The class of all decision problems for which a YES answer can be 

verified by a TM in polynomial time given polynomial length “advice” 
or “witness”.

Ø There is a polynomial-time verifier TM 𝑉 and another polynomial 𝑝
such that 
o For all YES inputs 𝑥, there exists 𝑦 with 𝑦 = 𝑝 𝑥 on which 
𝑉(𝑥, 𝑦) returns YES

o For all NO inputs 𝑥, 𝑉(𝑥, 𝑦) returns NO for every 𝑦

Ø Informally: “Whenever the answer is YES, there’s a short proof of it.”



co-NP
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• co-NP
Ø Same as NP, except whenever the answer is NO, we want there to be 

a short proof of it



Reductions
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• Problem 𝐴 is p-reducible to problem 𝐵 if an “oracle” 
(subrouting) for 𝐵 can be used to efficiently solve 𝐴
Ø You can solve 𝐴 by making polynomially many calls to the oracle and 

doing additional polynomial computation



NP-completeness
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• NP-completeness
Ø A problem 𝐵 is NP-complete if it is in NP and every problem 𝐴 in NP 

is p-reducible to 𝐵
Ø Hardest problems in NP
Ø If one of them can be solved efficiently, every problem in NP can be 

solved efficiently, implying P=NP

• Observation:
Ø If 𝐴 is in NP, and some NP-complete problem 𝐵 is p-reducible to 𝐴, 

then 𝐴 is NP-complete too
o “If I could solve A, then I could solve B, then I could solve any 

problem in NP”



Review	of	Reductions
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• If you want to show that problem B is NP-complete
• Step 1: Show that B is in NP

Ø Some polynomial-size advice should be sufficient to verify a YES 
instance in polynomial time 

Ø No advice should work for a NO instance

Ø Usually, the solution of the “search version” of the problem works
o But sometimes, the advice can be non-trivial
o For example, to check LP optimality, one possible advice is the 

values of both primal and dual variables, as we saw in the last 
lecture



Review	of	Reductions
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• If you want to show that problem B is NP-complete
• Step 2: Find a known NP-complete problem A and reduce it 

to B (i.e. show A ≤% B)
Ø This means taking an arbitrary instance of A, and solving it in 

polynomial time using an oracle for B
o Caution 1: Remember the direction. You are “reducing known NP-

complete problem to your current problem”.
o Caution 2: The size of the B-instance you construct should be 

polynomial in the size of the original A-instance
Ø This would show that if B can be solved in polynomial time, then A 

can be as well
Ø Some reductions are trivial, some are notoriously tricky…



Approximation	Algorithms
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• We focus on optimization problems

Ø Decision problem: “Is there…where…≥ 𝑘?”
o E.g. “Is there an assignment which satisfies at least 𝑘 clauses of a 

given formula 𝜑?”

Ø Optimization problem: “Find…which maximizes…”
o E.g. “Find an assignment which satisfies the maximum possible 

number of clauses from a given formula 𝜑.”

Ø Recall that if the decision problem is hard, then the optimization 
problem is hard too



Approximation	Algorithms

373F21 - Nisarg Shah 26

• There is a function 𝑃𝑟𝑜𝑓𝑖𝑡 we want to maximize or a function 
𝐶𝑜𝑠𝑡 we want to minimize

• Given input instance 𝐼…
Ø Our algorithm returns a solution 𝐴𝐿𝐺(𝐼)
Ø An optimal solution maximizing 𝑃𝑟𝑜𝑓𝑖𝑡 or minimizing 𝐶𝑜𝑠𝑡 is 𝑂𝑃𝑇(𝐼)
Ø Then, the approximation ratio of 𝐴𝐿𝐺 on instance 𝐼 is

+,-'!. /+) 0
+,-'!. 123 0

or   4-5. 123 0
4-5. /+) 0



Approximation	Algorithms
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• Approximation ratio of 𝐴𝐿𝐺 on instance 𝐼 is
&'()*+ ,&- .
&'()*+ /01 . or   2(3+ /01 .

2(3+ ,&- .

Ø Note: These are defined to be ≥ 1 in each case.
o 2-approximation = half the optimal profit / twice the optimal cost

• 𝐴𝐿𝐺 has worst-case 𝑐-approximation if for each instance 𝐼… 

𝑃𝑟𝑜𝑓𝑖𝑡 𝐴𝐿𝐺 𝐼 ≥
1
𝑐
⋅ 𝑃𝑟𝑜𝑓𝑖𝑡 𝑂𝑃𝑇 𝐼 𝑜𝑟

𝐶𝑜𝑠𝑡 𝐴𝐿𝐺 𝐼 ≤ 𝑐 ⋅ 𝐶𝑜𝑠𝑡 𝑂𝑃𝑇 𝐼



Techniques
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• Greedy algorithms
• Local search
• LP relaxation => rounding



Randomized	Algorithms
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Deterministic AlgorithmInput Output

Randomized Algorithm
Input

Output
Randomness



Randomized	Algorithms
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• Running time

Ø Sometimes, we want the algorithm to always take a small amount of 
time
o Regardless of both the input and the random coin flips

Ø Sometimes, we want the algorithm to take a small amount of time in 
expectation
o Expectation over random coin flips
o Still regardless of the input



Randomized	Algorithms
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• Efficiency

Ø We want the algorithm to return a solution that is, in expectation,
close to the optimum according to the objective under consideration
o Once again, the expectation is over random coin flips
o We want this to hold for every input



Derandomization
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• For some problems, it is easy to come up with a very simple 
randomized approximation algorithm

• Later, one can ask whether this algorithm can be 
“derandomized”
Ø Informally, the randomized algorithm is making some random 

choices, and sometimes they turn out to be good
Ø Can we make these “good” choices deterministically?


