CSC373

Weeks 9 & 10:
Approximation Algorithms
& Local Search

NP-Completeness

* NP-complete problems

> Unlikely to have polynomial time algorithms to solve them
> What do we do?

* One idea: approximation
> Instead of solving them exactly, solve them approximately

> Sometimes, we might want to use an approximation algorithm even
when we can compute an exact solution in polynomial time (WHY?)

373F20 - Nisarg Shah 2

Approximation Algorithms

e Decision versus optimization problems

> Decision variant: “Does there exist a solution with objective > k?”

o E.g. “Is there an assighment which satisfies at least k clauses of a
given CNF formula ¢?”

> Optimization variant: “Find a solution maximizing objective”

o E.g. “Find an assignment which satisfies the maximum possible
number of clauses of a given CNF formula ¢.”

> If a decision problem is hard, then its optimization version is hard too

> We'll focus on optimization variants

373F20 - Nisarg Shah 3

Approximation Algorithms

* Objectives

> Maximize (e.g. “profit”) or minimize (e.g. “cost”)

* Given problem instance I:
> ALG (I) = solution returned by our algorithm
> OPT(I) = some optimal solution

> Approximation ratio of ALG oninstance I is

profit(OPT(I)) cost(ALG(D))
profit(ALG(I)) cost(0PT(I))

» Convention: approximation ratio = 1
o “2-approximation” = half the optimal profit / twice the optimal cost

373F20 - Nisarg Shah 4

Approximation Algorithms

* Worst-case approximation ratio

> Worst approximation ratio across all possible problem instances I

> ALG has worst-case c-approximation if for each problem instance I...
1
profit(ALG(I)) > o profit(OPT(I)) or
cost(ALG(D)) < ¢ - cost(OPT (D))

> By default, we will always refer to approximation ratios in the worst
case

> Note: In some textbooks, you might see the approximation ratio
flipped (e.g. 0.5-approximation instead of 2-approximation)

373F20 - Nisarg Shah 5

PTAS and FPTAS

 Arbitrarily close to 1 approximations

* PTAS: Polynomial time approximation scheme

> Forevery € > 0, thereis a (1 + €)-approximation algorithm that
runs in time poly(n) on instances of size n

o Note: Could have exponential dependenceon 1/¢
e FPTAS: Fully polynomial time approximation scheme

> For every € > 0, there is a (1 + €)-approximation algorithm that
runs in time poly(n, 1/€) on instances of size n

373F20 - Nisarg Shah 6

Approximation Landscape

Impossibility of better approximations

> An FPTAS assuming widely held beliefs like P # NP

o E.g. the knapsack problem
> A PTAS but no FPTAS

o E.g. the makespan problem (we’ll see)

» c-approximation for a constant ¢ > 1 but no PTAS
o E.g. vertex cover and JISP (we’ll see)

> O(logn)-approximation but no constant approximation
o E.g. set cover

> No nl~€-approximation for any € > 0

o E.g. graph coloring and maximum independent set

373F20 - Nisarg Shah 7

Approximation Techniques

e Greedy algorithms

> Make decision on one element at a time in a greedy fashion without
considering future decisions

e LP relaxation

> Formulate the problem as an integer linear program (ILP)
> “Relax” it to an LP by allowing variables to take real values

> Find an optimal solution of the LP, “round” it to a feasible solution of
the original ILP, and prove its approximate optimality

* Local search
> Start with an arbitrary solution
> Keep making “local” adjustments to improve the objective

373F20 - Nisarg Shah 8

Greedy Approximation

373F20 - Nisarg Shah 9

Makespan Minimization

373F20 - Nisarg Shah

Makespan

(' Problem h

> Input: m identical machines, n jobs, job j requires processing time t;

> Output: Assign jobs to machines to minimize makespan

_ J

> Let S[i] = set of jobs assigned to machine i in a solution

» Constraints:
o Each job must run contiguously on one machine
o Each machine can process at most one job at a time

> Load on machine i: L; = ey &

> Goal: minimize the maximum load, i.e., makespan L = max L;
l

373F20 - Nisarg Shah

Makespan

* Even the special case of m = 2 machines is already NP-hard by

reduction from PARTITION

~

J

("« PARTITION
> Input: Set S containing n integers
> Question: Does there exist a partition of S into two sets with equal sum?
9 (A partition of S into 51,5, means S; NS, =Pand S; US, = 5)
* Exercise!

> Show that PARTITION is NP-complete by reduction from SUBSET-SUM

> Show that Makespan with m = 2 is NP-complete by reduction from
PARTITION

373F20 - Nisarg Shah

Makespan

Greedy list-scheduling algorithm
> Consider the n jobs in some “nice” sorted order
» Assign each job j to a machine with the smallest load so far

Note: Implementable in O(nlogm) using priority queue

Back to greedy...?
> But this time, we can’t hope that greedy will be optimal
> We can still hope that it is approximately optimal

Which order?

373F20 - Nisarg Shah

Makespan

* Theorem [Graham 1966]

> Regardless of the order, greedy gives a 2-approximation.
> This was one of the first worst-case approximation analyses

 Let optimal makespan = L*

* To show that makespan under the greedy solution is not much
worse than L*, we need to show that L* cannot be too low

373F20 - Nisarg Shah

Makespan

* Theorem [Graham 1966]

> Regardless of the order, greedy gives a 2-approximation.

* Fact1: L" = maxt;
J
» Some machine must process job with highest processing time

L1
e Fact2: L* > %Z]-tj
> Total processing time is . ; t;

> At least one machine must do at least 1/m of this work (the pigeonhole
principle)

373F20 - Nisarg Shah

Makespan

* Theorem [Graham 1966]

> Regardless of the order, greedy gives a 2-approximation.

* Proof:
> Suppose machine i is the bottleneck under greedy (so L = L;)
> Let j* be the last job scheduled on machine i by greedy
> Right before j* was assigned to i, i had the smallest load
o Load of the other machines could have only increased from then
oL; —tj <L, Vk

1
> Averageoverall k: L; — tj» < Ezj t

e

I

373F20 - Nisarg Shah 16

Makespan

* Theorem [Graham 1966]

> Regardless of the order, greedy gives a 2-approximation.

* |s our analysis tight?
> Essentially.

> By averaging over k # i in the previous slide, one can show a slightly
better 2 — 1/m approximation

> There is an example where greedy has approximationasbadas 2 — 1/m
> So 2 — 1/mis exactly tight.

373F20 - Nisarg Shah

Makespan

* Tight example:
> m(m — 1) jobs of length 1, followed by one job of length m

> Greedy evenly distributes unit length jobs on all m machines, and
assigning the last heavy job makes makespanm —1+m=2m -1

> Optimal makespan is m by evenly distributing unit length jobs among m —
1 machines and putting the single heavy job on the remaining

* |dea:
> It seems keeping heavy jobs at the end is bad.
> So let’s just start with them first!

373F20 - Nisarg Shah

Makespan Revisited

* Greedy LPT (Longest Processing Time First)

> Run the greedy algorithm but consider jobs in a non-increasing order
of their processing time

> Supposety =t, =+ = t,

* Fact 3: If the bottleneck machine i has only one job j, then
the solution is optimal.

> Current solution has L = L; = t;
> We know L™ = t; from Fact 1

* Fact 4: If there are more than m jobs, then L™ = 2 - t,;, 11
» The first m + 1 jobs each have processing time at least ¢, 1

> By the pigeonhole principle, the optimal solution must put at least
two of them on the same machine

373F20 - Nisarg Shah

Makespan Revisited

* Theorem
> Greedy LPT achieves 3 /2-approximation

* Proof:
> Similar to the proof for arbitrary ordering

> Consider a bottleneck machine i and the job j* that was last
scheduled on this machine by the greedy algorithm

» Case 1: Machine i has only one job j~*
o By Fact 3, greedy is optimal in this case (i.e. 1-approximation)

373F20 - Nisarg Shah

Makespan Revisited

* Theorem
> Greedy LPT achieves 3 /2-approximation

* Proof:
> Similar to the proof for arbitrary ordering

> Consider a bottleneck machine i and the job j* that was last
scheduled on this machine by the greedy algorithm

> Case 2: Machine i has at least two jobs
o Job j* must have tj+ < t;44
o As before, L = L; = (Ll- — tj*) +t+ <15L°
—

373F20 - Nisarg Shah

Makespan Revisited

* Theorem
> Greedy LPT achieves 3 /2-approximation
> Is our analysis tight? No!

* Theorem [Graham 1966]
> Greedy LPT achieves (g — ﬁ)-approximation

> Is Graham’s approximation tight?

o Yes.

4 1

o In the upcoming example, greedy LPT is as bad as 3 3

373F20 - Nisarg Shah

Makespan Revisited

* Tight example for Greedy LPT:
> 2 jobs each of lengthsm,m + 1, ...,2m —1
> One more job of length m
> Greedy-LPT has makespan 4m — 1 (verify!)

> OPT has makespan 3m (verify!)
4m-1 4 1

> Thus, approximation ratio is at least as bad as
3m 3 3m

373F20 - Nisarg Shah

Weighted Set Packing

Weighted Set Packing
(. Problem A

> Input: Universe of m elements, sets Sy, ..., S;, with values v4, ...,v, = 0
> Output: Pick disjoint sets with maximum total value

o Thatis, pick W € {1, ..., n} to maximize }};c, v; subject to
_ §;NS;=0Qforalli,j e W)

> What’s known about this problem?
o It’s NP-hard

o For any constant € > 0, you cannot get O(ml/z‘e) approximation in
polynomial time unless NP=ZPP (widely believed to be not true)

373F20 - Nisarg Shah

Greedy Template

* Sort the sets in some order, consider them one-by-one, and
take any set that you can along the way.

ﬂ Greedy Algorithm: \

> Sort the sets in a specific order.
> Relabel them as 1,2, ..., n in this order.
> W <0
> Fori =1, ...,n:
o IfS;NS; = @foreveryj € W,thenW « W U {i}

\ > Return W. /

373F20 - Nisarg Shah

Greedy Algorithm

What order should we sort the sets by?

We want to take sets with high values.
> V1 = Vy = -+ 2 1, ? Only m-approximation ®

We don’t want to exhaust many items too soon.

v v v . .
> — >—2 > ... ? Also m-approximation ®
1S~ 152l |Snl

%1 1% Un

> > ...
VISil ISzl |Sn|

373F20 - Nisarg Shah

\/m-approximation :

[Lehmann et al. 2011]

Proof of Approximation

Definitions
»> OPT = Some optimal solution
> W = Solution returned by our greedy algorithm

> Fori €W,0PT; ={j €OPT: j =i, S;nS; + 0}

Claim 1: OPT € U,y OPT;

Claim 2: It is enough to show that Vi € W
Vm - v; 2 Zieopr; Vj

S}l

|S;]

Observation: For j € OPT;, v; < v; -

373F20 - Nisarg Shah

Proof of Approximation

* Summing over all j € OPT; :

Vi
Sicort; Vi < ——=" Zicopr; ||
JEOPT; Y] — JEOPT
l VISil l

* Using Cauchy-Schwarz (X; x;y; < /Zl- x-2 - X yiz)

XicoPT, /1 |S;| < V/I0PT;] \/JEOPT M
< JISil| -

Sjl

373F20 - Nisarg Shah

Unweighted Vertex Cover

373F20 - Nisarg Shah

Unweighted Vertex Cover

4)
 Problem

> Input: Undirected graph ¢ = (V,E)

L » Output: Vertex cover S of minimum cardinality y

> Recall: S is vertex cover if every edge has at least one of its two
endpoints in S

> We already saw that this problem is NP-hard

* Q: What would be a good greedy algorithm for this
problem?

373F20 - Nisarg Shah

Unweighted Vertex Cover

* Greedy edge-selection algorithm:
> Start withS =0

> While there exists an edge whose both endpoints are not in S, add
both its endpoints to S

* Hmm...
> Why are we selecting edges rather than vertices?
> Why are we adding both endpoints?
> We'll see..

373F20 - Nisarg Shah

Unweighted Vertex Cover

GREEDY-VERTEX-COVER(G)

S <« .
E' < E.

p every vertex cover must take
WHILE (E # @) at least one of these:; we take both

Let (u,v) € E' be an arbitrary edge.
M« MU {(H, V)} <«<—— M is a matching
S < SU{u} U{v}. <

Delete from E’ all edges incident to either u or v.

RETURN S.

373F20 - Nisarg Shah

Unweighted Vertex Cover

e Theorem:

> Greedy edge-selection algorithm for unweighted vertex cover
achieves 2-approximation.

e Observation 1:

> For any vertex cover S* and any matching M, |S*| = |M|, where
|[M| = number of edges in M

> Proof: S™ must contain at least one endpoint of each edge in M

* Observation 2:
> Greedy algorithm finds a vertex cover of size |S| = 2 - |[M|

* Hence, |S| < 2 - |S*|, where S$* = min vertex cover

373F20 - Nisarg Shah

Unweighted Vertex Cover

e Corollary:

> If M™ is a maximum matching, and M is a maximal matching, then
1 *
R

* Proof:
> By design, |[M| = %|S|
> |S| = |M*| (Observation 1)
> Hence, |M| Z%IM*l n

* This greedy algorithm is also a 2-approximation to the
problem of finding a maximum cardinality matching

> However, the max cardinality matching problem can be solved
exactly in polynomial time using a more complex algorithm

373F20 - Nisarg Shah

Unweighted Vertex Cover

 What about a greedy vertex selection algorithm?
> Start withS =0
> While S is not a vertex cover:

o Choose a vertex v which maximizes the number of uncovered
edges incident on it

oAddvtoS

> Gives O(log d,4x) approximation, where d .« is the maximum
degree of any vertex

o But unlike the edge-selection version, this generalizes to set cover

o For set cover, O(log d,,,x) approximation ratio is the best possible
in polynomial time unless P=NP

373F20 - Nisarg Shah

Unweighted Vertex Cover RRiEEE

 Theorem [Dinur-Safra 2004]:

» Unless P = NP, there is no polynomial-time p-approximation
algorithm for unweighted vertex cover for any constant p < 1.3606.

On the Hardness of Approximating Minimum Vertex Cover

Irit Dinur* Samuel Safral

May 26, 2004

Abstract

We prove the Minimum Vertex Cover problem to be NP-hard to approximate to within
a factor of 1.3606, extending on previous PCP and hardness of approximation technique. To
that end, one needs to develop a new proof framework, and borrow and extend ideas from
several fields.

373F20 - Nisarg Shah

Unweighted Vertex Cover RRiEEE

e Theorem [Khot-Regev 2008]:

> Unless the “unique games conjecture” is violated, there is no

polynomial-time p-approximation algorithm for unweighted vertex
cover for any constant p < 2.

Vertex Cover Might be Hard to Approximate to
within 2 — ¢

Subhash Khot * Oded Regev 1

Abstract

Based on a conjecture regarding the power of unique 2-prover-1-round games presented in
[Khot(2], we show that vertex cover is hard to approximate within any constant factor better
than 2. We actually show a stronger result. namely, based on the same conjecture, vertex cover
on k-uniform hypergraphs is hard to approximate within any constant factor better than k.

373F20 - Nisarg Shah

Unweighted Vertex Cover

* How does one prove a lower bound on the approximation
ratio of any polynomial-time algorithm?

» We prove that if there is a polynomial-time p-approximation
algorithm for the problem with p < some bound, then some widely
believed conjecture is violated

» For example, we can prove that given a polynomial time p-
approximation algorithm to vertex cover for any constant p <
1.3606, we can use this algorithm as a subroutine to solve the 3SAT
decision problem in polynomial time, implying P=NP

> Similar technique can be used to reduce from other widely believed
conjectures, which may give different (sometimes better) bounds

> Beyond the scope of this course

373F20 - Nisarg Shah

Weighted Vertex Cover

373F20 - Nisarg Shah

Weighted Vertex Cover

4)
 Problem

> Input: Undirected graph ¢ = (V,E), weightsw : V = R,

L > Output: Vertex cover S of minimum total weight y

* The same greedy algorithm doesn’t work
> Gives arbitrarily bad approximation

> Obvious modifications which try to take weights into account also
don’t work

> Need another strategy...

373F20 - Nisarg Shah

LP Relaxation

373F20 - Nisarg Shah

[ILP Formulation

> For each vertex v, create a binary variable x,, € {0,1} indicating
whether vertex v is chosen in the vertex cover

» Then, computing min weight vertex cover is equivalent to solving the
following integer linear program

min X, wy, - x,,
subject to
Xy +x, =1, V(u,v) €EE

x, € {0,1}, VveV

373F20 - Nisarg Shah

LLP Relaxation

 What if we solve the “LP relaxation” of the original ILP?
> Just convert all integer variables to real variables

ILP with binary variables LP with real variables

min X, Wy, © Xy, min X, Wy, * Xy,

subject to subject to

Xy +x, 21, V(u,v) €EE

x, € {0,1}, Vv eV

373F20 - Nisarg Shah

Rounding LP Solution

 What if we solve the “LP relaxation” of the original ILP?

T

> Let’s say we are minimizing objective ¢” x

> Since the LP minimizes this over a larger feasible space than the ILP,
optimal LP objective value < optimal ILP objective value

> Let x;p be an optimal LP solution (which we can compute efficiently) and
x;.p be an optimal ILP solution (which we can’t compute efficiently)

oclxip < cTxfyp

o But x;p may have non-integer values

o Efficiently round x;p to an ILP feasible solution X without increasing
the objective too much

o Ifwe prove cT £ < p - c¢Tx/p, then we will also have ¢ £ < p - cTx};p

o Thus, our algorithm will achieve p-approximation

373F20 - Nisarg Shah

Rounding LP Solution

 What if we solve the “LP relaxation” of the original ILP?

> If we are maximizing c” x instead of minimizing, then it’s reversed:

o Optimal LP objective value = optimal ILP objective value, i.e.,

T .. T .. %
C'X;p=C Xqp

o Efficiently round x;p to an ILP feasible solution X without decreasing
the objective too much

o If we prove c" £ = (X/p) - c"xjp, thenc” 2 = (/) - c"x[p

o Thus, our algorithm will achieve p-approximation

373F20 - Nisarg Shah

Weighted Vertex Cover

* Consider LP optimal solution x*
> Let X, = 1 whenever x;, = 0.5 and X, = 0 otherwise

> Claim 1: X is a feasible solution of ILP (i.e. a vertex cover)
o For every edge (u,v) € E, at least one of {x;;, x;;} is at least 0.5
o So at least one of {X,,, X,}is1 m

ILP with binary variables LP with real variables
min X, w,, © Xy, min X, Wy, * Xy,
subject to subject to

Xy +x, =1, V(u,v) EE Xy + Xy =1, V(u,v) EE
x, € {0,1}, VveV x, = 0, VvEeV

373F20 - Nisarg Shah

Rounding LP Solution

* Consider LP optimal solution x*
> Let X, = 1 whenever x;, = 0.5 and X, = 0 otherwise

> Claim 2: Y, wy, - X, < 2%), Wy, - Xy,
o Weight only increases when some x;, € [0.5,1] is rounded up to 1
o At most doubling the variable, so at least doubling the weight =

ILP with binary variables LP with real variables
min X, w,, © Xy, min X, Wy, * Xy,
subject to subject to

Xy +x, =1, V(u,v) EE Xy + Xy =1, V(u,v) EE
x, € {0,1}, VveV x, = 0, VvEeV

373F20 - Nisarg Shah

Rounding LP Solution

* Consider LP optimal solution x*
> Let X, = 1 whenever x;, = 0.5 and X, = 0 otherwise

> Hence, X is a vertex cover with weight at most 2 * LP optimal value < 2 *
ILP optimal value

ILP with binary variables LP with real variables
min X, w,, © Xy, min X, Wy, * Xy,
subject to subject to

Xy +x, =1, V(u,v) EE Xy + Xy =1, V(u,v) EE
x, € {0,1}, VveV x, = 0, VvEeV

373F20 - Nisarg Shah

General LP Relaxation Strategy

* Your NP-complete problem amounts to solving
> Max cTx subject to Ax < b,x € N (need not be binary)

* Instead, solve:
> Max ¢’ x subject to Ax < b, x € Ry (LP relaxation)
o LP optimal value = ILP optimal value (for maximization)
> x* = LP optimal solution

T ,.* ;
~ ~ c'x ILP optimal value
> Round x* to X such that ¢cTx > > P

p p

> Gives p-approximation

o Info: Best p you can hope to get via this approach for a particular
LP-ILP combination is called the integrality gap

373F20 - Nisarg Shah

Local Search Paradigm

373F20 - Nisarg Shah

LLocal Search

* Heuristic paradigm
> Sometimes it might provably return an optimal solution
> But even if not, it might give a good approximation

* Template
> Start with some initial feasible solution S
> While there is a “better” solution S’ in the local neighborhood of S
> Switch to §’

* Need to define:

> Which initial feasible solution should we start from?
> What is “better”?
> What is “local neighborhood”?

373F20 - Nisarg Shah

LLocal Search

* For some problems, local search provably returns an
optimal solution

e Example: network flow
> |Initial solution: zero flow

> Local neighborhood: all flows that can be obtained by augmenting
the current flow along a path in the residual graph

> Better: Higher flow value

* Example: LP via simplex
> Initial solution: a vertex of the polytope
> Local neighborhood: neighboring vertices
> Better: better objective value

373F20 - Nisarg Shah

LLocal Search

* But sometimes it doesn’t return an optimal solution, and
“gets stuck” in a local maxima

objective function
A

lobal maximum

shoulder

N\

local maximum
"flat" local maximum

»State space
current

state

373F20 - Nisarg Shah

LLocal Search

* In that case, we want to bound the worst-case ratio
between the global optimum and the worst local optimum
(the worst solution that local search might return)

objecti\rke function lobal maximum
A
Worst shoulder
ratio \ local maximum
/T "flat" local maximum
A 4

< S VL

current
state

»state space

373F20 - Nisarg Shah

Max-Cut

373F20 - Nisarg Shah

Max-Cut
A

\

Problem
> Input: An undirected graph G = (V, E)

> Output: A partition (4, B) of VV that maximizes the number of edges
going across the cut, i.e., maximizes |E’| where E' = {(u,v) €

\ ElUEA,UEB} /

> This is also known to be an NP-hard problem

> What is a natural local search algorithm for this problem?

o Given a current partition, what small change can you do to
improve the objective value?

373F20 - Nisarg Shah

Max-Cut

@ Local Search A
> Initialize (4, B) arbitrarily.

> While there is a vertex u such that moving u to the other side
improves the objective value:

\ o Move u to the other side. /

* When does moving u, say from A to B, improve the
objective value?

> When u has more incident edges going within the cut than across
the cut, i.e., when |{(u,v) € E |v € A} > |{(u,v) € E | v € B}|

373F20 - Nisarg Shah

Max-Cut

@ Local Search A
> Initialize (4, B) arbitrarily.

> While there is a vertex u such that moving u to the other side
improves the objective value:

\ o Move u to the other side. /

 Why does the algorithm stop?

> Every iteration increases the number of edges across the cut by at
least 1, so the algorithm must stop in at most |E| iterations

373F20 - Nisarg Shah

Max-Cut

@ Local Search A
> Initialize (4, B) arbitrarily.

> While there is a vertex u such that moving u to the other side
improves the objective value:

\ o Move u to the other side. /

e Approximation ratio?

> At the end, every vertex has at least as many edges going across the
cut as within the cut

> Hence, at least half of all edges must be going across the cut
o Exercise: Prove this formally by writing equations.

373F20 - Nisarg Shah

Weighted Max-Cut

e Variant

> Now we’re given integral edge weights w: E - N
> The goal is to maximize the total weight of edges going across the cut

e Algorithm
» The same algorithm works...

> But we move u to the other side if the total weight of its incident
edges going within the cut is greater than the total weight of its
incident edges going across the cut

373F20 - Nisarg Shah

Weighted Max-Cut

e Number of iterations?

> Unweighted case: #edges going across the cut must increase by at
least 1, so it takes at most |E| iterations

> Weighted case: total weight of edges going across the cut must
increase by at least 1, but this could take up to }.,cg W, iterations,
which can be exponential in the input length
o There are examples where the local search actually takes
exponentially many steps
o Fun exercise: Design an example where the number of iterations is
exponential in the input length.

373F20 - Nisarg Shah

Weighted Max-Cut

 Number of iterations?
» But we can find a 2 + € approximation in time polynomial in the
input length andi

> The idea is to only move vertices when it “sufficiently improves” the
objective value

373F20 - Nisarg Shah

Weighted Max-Cut

* Better approximations?
> Theorem [Goemans-Williamson 1995]:

There exists a polynomial time algorithm for max-cut with

L. .2 . 6
approximation ratio —- min ~ 0.878
T 0<O<m 1—cosBO

o Uses “semidefinite programming” and “randomized rounding”

o Note: The literature from here on uses approximation ratios < 1,
so we will follow that convention in the remaining slides.

» Assuming the unique games conjecture, this approximation ratio is
tight

373F20 - Nisarg Shah

Exact Max-k-SAT

373F20 - Nisarg Shah

Exact Max-k-SAT
(Problem)

> Input: An exact k-SAT formula @ = C; AC, A - A Cypy,
where each clause C; has exactly k literals, and a weight w; = 0 of
each clause (;

> Output: A truth assignment T maximizing the total weight of clauses

\ satisfied under t /

> Let us denote by W (1) the total weight of clauses satisfied under t

> What is a good definition of “local neighborhood”?

373F20 - Nisarg Shah

Exact Max-k-SAT

* Local neighborhood:

> N4 (1) = set of all truth assignments 7" which differ from 7 in the
values of at most d variables

* Theorem: The local search with d = 1 gives a %/3
approximation to Exact Max-2-SAT.

373F20 - Nisarg Shah

Exact Max-k-SAT

* Theorem: The local search with d = 1 gives a %/;
approximation to Exact Max-2-SAT.

* Proof:
> Let T be alocal optimum
o So = set of clauses not satisfied under t
o S, = set of clauses from which exactly one literal is true under

o S, =set of clauses from which both literals are true under
o W(Sy), W(S,),W(S,) be the corresponding total weights

o Goal: W(Sy) + W(S,) = 2/5- (W(Sp) + W(S1) + W(S,))
» Equivalently, W(Sy) < /5 - (W(Sy) + W(Sy) + W(S,))

373F20 - Nisarg Shah

Exact Max-k-SAT

* Theorem: The local search with d = 1 gives a %/;
approximation to Exact Max-2-SAT.

* Proof:
> We say that clause C “involves” variable j if it contains x; or X;

> Aj = set of clauses in S involving variable j
o Let W(Aj) be the total weight of such clauses

> Bj = set of clauses in §; involving variable j such that it is the literal
of variable j that is true under

o Let W(Bj) be the total weight of such clauses

373F20 - Nisarg Shah

Exact Max-k-SAT

* Theorem: The local search with d = 1 gives a %/;
approximation to Exact Max-2-SAT.

* Proof:
> 2W(So) =X W(4))
o Every clause in §; is counted twice on the RHS
> W(S) =X, W(By)

o Every clause in S5 is only counted once on the RHS for the variable
whose literal was true under 7

> For each j: W(Aj) < W(Bj)
o From local optimality of 7, since otherwise flipping the truth value
of variable j would have increased the total weight

373F20 - Nisarg Shah

Exact Max-k-SAT

* Theorem: The local search with d = 1 gives a %/;
approximation to Exact Max-2-SAT.

* Proof:
> 2W(S,) < W(S;y)

o Summing the third equation on the last slide over all j, and then
using the first two equations on the last slide

» Hence:
o Precisely the condition we wanted to prove...
o QED!

373F20 - Nisarg Shah

Exact Max-k-SAT

* Higher d?
> Searches over a larger neighborhood

> May get a better approximation ratio, but increases the running time
as we now need to check if any neighbor in a large neighborhood
provides a better objective

> The bound is still 2/3 ford = o(n)
> For d = Q(n), the neighborhood size is exponential
> But the approximation ratio is...
o At most 4/5 withd </,
o 1 (i.e. optimal solution is always reached) with d ="/,

373F20 - Nisarg Shah

Exact Max-k-SAT

* Better approximation ratio?
> We can learn something from our proof

> Note that we did not use anything about W (S,), and simply added it
at the end

> If we could also guarantee that W (S,) < W(S,)...

o Then we would get 4 W(S,y) < W(Sy) + W(S;) + W(S,), which
would give a 3/, approximation

> Result (without proof):

o This can be done by including just one more assignment in the
neighborhood: N(7) = N;(7) U {t¢}, where 7€ = complement of T

373F20 - Nisarg Shah

Exact Max-k-SAT

* What if we do not want to modify the neighborhood?
> A slightly different tweak also works

> We want to weigh clauses in W (S,) more because when we get a
clause through S,, we get more robustness (it can withstand changes
in single variables)

e Modified local search:

> Start at arbitrary 1

> While there is an assignment in N; (7) that improves the potential
1.5W(S) +2W(S,)

o Switch to that assignment

373F20 - Nisarg Shah

Exact Max-k-SAT

* Modified local search:
> Start at arbitrary 7

> While there is an assignment in N; (7) that improves the potential
1.5 W(Sy) + 2 W(S,)

o Switch to that assignment

* Note:

> This is the first time that we’re using a definition of “better” in local
search paradigm that does not quite align with the ultimate objective
we want to maximize

> This is called “non-oblivious local search”

373F20 - Nisarg Shah

Exact Max-k-SAT

* Modified local search:
> Start at arbitrary 7

> While there is an assignment in N; (7) that improves the potential
1.5 W(Sy) + 2 W(S,)

o Switch to that assignment

e Result (without proof):
> Modified local search gives 3/,-approximation to Exact Max-2-SAT

373F20 - Nisarg Shah

Exact Max-k-SAT

* More generally:

> The same technique works for higher values of k
2k—1
2k
o In the next lecture, we will achieve the same approximation ratio
much more easily through a different technique

> Gives approximation for Exact Max-k-SAT

* Note: This ratio is 7/g for Exact Max-3-SAT

> Theorem [Hastad]: Achieving 7/ + € approximation where € > 0 is
NP-hard.

o Uses PCP (probabilistically checkable proofs) technique

373F20 - Nisarg Shah

