CSC373

Weeks 9 & 10: Approximation Algorithms & Local Search

NP-Completeness

NP-complete problems

- > Unlikely to have polynomial time algorithms to solve them
- What do we do?

One idea: approximation

- > Instead of solving them exactly, solve them approximately
- > Sometimes, we might want to use an approximation algorithm even when we can compute an exact solution in polynomial time (WHY?)

Approximation Algorithms

- Decision versus optimization problems
 - \triangleright Decision variant: "Does there exist a solution with objective $\ge k$?"
 - \circ E.g. "Is there an assignment which satisfies at least k clauses of a given CNF formula φ ?"
 - Optimization variant: "Find a solution maximizing objective"
 - \circ E.g. "Find an assignment which satisfies the maximum possible number of clauses of a given CNF formula φ ."
 - > If a decision problem is hard, then its optimization version is hard too
 - > We'll focus on optimization variants

Approximation Algorithms

- Objectives
 - Maximize (e.g. "profit") or minimize (e.g. "cost")
- Given problem instance *I*:
 - $\rightarrow ALG(I)$ = solution returned by our algorithm
 - $\rightarrow OPT(I)$ = some optimal solution
 - \triangleright Approximation ratio of ALG on instance I is

$$\frac{profit(OPT(I))}{profit(ALG(I))}$$
 or $\frac{cost(ALG(I))}{cost(OPT(I))}$

- ➤ Convention: approximation ratio ≥ 1
 - "2-approximation" = half the optimal profit / twice the optimal cost

Approximation Algorithms

- Worst-case approximation ratio
 - > Worst approximation ratio across all possible problem instances I
 - \triangleright ALG has worst-case c-approximation if for each problem instance I...

$$profit(ALG(I)) \ge \frac{1}{c} \cdot profit(OPT(I)) \text{ or }$$

$$cost(ALG(I)) \le c \cdot cost(OPT(I))$$

- > By default, we will always refer to approximation ratios in the worst case
- > Note: In some textbooks, you might see the approximation ratio flipped (e.g. 0.5-approximation instead of 2-approximation)

PTAS and FPTAS

- Arbitrarily close to 1 approximations
- PTAS: Polynomial time approximation scheme
 - > For every $\epsilon > 0$, there is a $(1 + \epsilon)$ -approximation algorithm that runs in time poly(n) on instances of size n
 - \circ Note: Could have exponential dependence on $1/\epsilon$
- FPTAS: Fully polynomial time approximation scheme
 - > For every $\epsilon > 0$, there is a $(1 + \epsilon)$ -approximation algorithm that runs in time $poly(n, 1/\epsilon)$ on instances of size n

Approximation Landscape

- > An FPTAS
 - E.g. the knapsack problem
- A PTAS but no FPTAS
 - E.g. the makespan problem (we'll see)
- $\succ c$ -approximation for a constant c>1 but no PTAS
 - E.g. vertex cover and JISP (we'll see)
- $> \Theta(\log n)$ -approximation but no constant approximation
 - E.g. set cover
- > No $n^{1-\epsilon}$ -approximation for any $\epsilon > 0$
 - o E.g. graph coloring and maximum independent set

Impossibility of better approximations assuming widely held beliefs like $P \neq NP$

n = parameter of problem at hand

Approximation Techniques

Greedy algorithms

Make decision on one element at a time in a greedy fashion without considering future decisions

LP relaxation

- > Formulate the problem as an integer linear program (ILP)
- > "Relax" it to an LP by allowing variables to take real values
- > Find an optimal solution of the LP, "round" it to a feasible solution of the original ILP, and prove its approximate optimality

Local search

- Start with an arbitrary solution
- > Keep making "local" adjustments to improve the objective

Greedy Approximation

Makespan Minimization

- Problem
 - ightharpoonup Input: m identical machines, n jobs, job j requires processing time t_j
 - Output: Assign jobs to machines to minimize makespan
 - \triangleright Let S[i] =set of jobs assigned to machine i in a solution
 - > Constraints:
 - Each job must run contiguously on one machine
 - Each machine can process at most one job at a time
 - > Load on machine $i: L_i = \sum_{j \in S[i]} t_j$
 - > Goal: minimize the maximum load, i.e., makespan $L = \max_{i} L_{i}$

• Even the special case of m=2 machines is already NP-hard by reduction from PARTITION

PARTITION

- ▶ Input: Set S containing n integers
- ▶ Question: Does there exist a partition of S into two sets with equal sum? (A partition of S into S_1, S_2 means $S_1 \cap S_2 = \emptyset$ and $S_1 \cup S_2 = S$)

Exercise!

- > Show that PARTITION is NP-complete by reduction from SUBSET-SUM
- \succ Show that Makespan with m=2 is NP-complete by reduction from PARTITION

- Greedy list-scheduling algorithm
 - > Consider the *n* jobs in some "nice" sorted order
 - > Assign each job *j* to a machine with the smallest load so far
- Note: Implementable in $O(n \log m)$ using priority queue
- Back to greedy...?
 - > But this time, we can't hope that greedy will be optimal
 - We can still hope that it is approximately optimal
- Which order?

- Theorem [Graham 1966]
 - > Regardless of the order, greedy gives a 2-approximation.
 - > This was one of the first worst-case approximation analyses
- Let optimal makespan = L^*
- To show that makespan under the greedy solution is not much worse than L^* , we need to show that L^* cannot be too low

- Theorem [Graham 1966]
 - > Regardless of the order, greedy gives a 2-approximation.
- Fact 1: $L^* \ge \max_j t_j$
 - > Some machine must process job with highest processing time
- Fact 2: $L^* \ge \frac{1}{m} \sum_j t_j$
 - \succ Total processing time is $\sum_i t_i$
 - > At least one machine must do at least 1/m of this work (the pigeonhole principle)

Theorem [Graham 1966]

> Regardless of the order, greedy gives a 2-approximation.

Proof:

- \triangleright Suppose machine i is the bottleneck under greedy (so $L=L_i$)
- \triangleright Let j^* be the last job scheduled on machine i by greedy
- \triangleright Right before j^* was assigned to i, i had the smallest load
 - Load of the other machines could have only increased from then

$$0 L_i - t_{i^*} \leq L_k, \forall k$$

> Average over all $k: L_i - t_{j^*} \leq \frac{1}{m} \sum_j t_j$

$$> L_i \le t_{j^*} + \frac{1}{m} \sum_j t_j \le L^* + L^* = 2L^*$$

Fact 1

Fact 2

- Theorem [Graham 1966]
 - > Regardless of the order, greedy gives a 2-approximation.
- Is our analysis tight?
 - > Essentially.
 - > By averaging over $k \neq i$ in the previous slide, one can show a slightly better 2-1/m approximation
 - \triangleright There is an example where greedy has approximation as bad as 2-1/m
 - > So 2 1/m is exactly tight.

Tight example:

- > m(m-1) jobs of length 1, followed by one job of length m
- ▶ Greedy evenly distributes unit length jobs on all m machines, and assigning the last heavy job makes makespan m-1+m=2m-1
- ightharpoonup Optimal makespan is m by evenly distributing unit length jobs among m-1 machines and putting the single heavy job on the remaining

• Idea:

- > It seems keeping heavy jobs at the end is bad.
- > So let's just start with them first!

- Greedy LPT (Longest Processing Time First)
 - Run the greedy algorithm but consider jobs in a non-increasing order of their processing time
 - > Suppose $t_1 \ge t_2 \ge \cdots \ge t_n$
- Fact 3: If the bottleneck machine *i* has only one job *j*, then the solution is optimal.
 - > Current solution has $L = L_i = t_j$
 - ightharpoonup We know $L^* \ge t_j$ from Fact 1
- Fact 4: If there are more than m jobs, then $L^* \geq 2 \cdot t_{m+1}$
 - \succ The first m+1 jobs each have processing time at least t_{m+1}
 - > By the pigeonhole principle, the optimal solution must put at least two of them on the same machine

Theorem

Greedy LPT achieves 3/2-approximation

• Proof:

- > Similar to the proof for arbitrary ordering
- \triangleright Consider a bottleneck machine i and the job j^* that was last scheduled on this machine by the greedy algorithm
- > Case 1: Machine i has only one job j^*
 - \circ By Fact 3, greedy is optimal in this case (i.e. 1-approximation)

Theorem

> Greedy LPT achieves 3/2-approximation

• Proof:

- Similar to the proof for arbitrary ordering
- \triangleright Consider a bottleneck machine i and the job j^* that was last scheduled on this machine by the greedy algorithm
- > Case 2: Machine *i* has at least two jobs
 - Job j^* must have $t_{j^*} \le t_{m+1}$
 - o As before, $L = L_i = (L_i t_{j^*}) + t_{j^*} \le 1.5 L^*$

Same as before

$$--- \le L^* \le L^*/2 -$$

 $\overline{t_{j^*}} \leq \overline{t_{m+1}}$ and Fact 4

Theorem

- > Greedy LPT achieves 3/2-approximation
- > Is our analysis tight? No!

Theorem [Graham 1966]

- > Greedy LPT achieves $\left(\frac{4}{3} \frac{1}{3m}\right)$ -approximation
- > Is Graham's approximation tight?
 - o Yes.
 - \circ In the upcoming example, greedy LPT is as bad as $\frac{4}{3} \frac{1}{3m}$

- Tight example for Greedy LPT:
 - > 2 jobs each of lengths m, m + 1, ..., 2m 1
 - > One more job of length *m*
 - \triangleright Greedy-LPT has makespan 4m-1 (verify!)
 - \triangleright OPT has makespan 3m (verify!)
 - > Thus, approximation ratio is at least as bad as $\frac{4m-1}{3m} = \frac{4}{3} \frac{1}{3m}$

Weighted Set Packing

Weighted Set Packing

Problem

- > Input: Universe of m elements, sets S_1, \dots, S_n with values $v_1, \dots, v_n \ge 0$
- Output: Pick disjoint sets with maximum total value
 - That is, pick $W \subseteq \{1, ..., n\}$ to maximize $\sum_{i \in W} v_i$ subject to $S_i \cap S_i = \emptyset$ for all $i, j \in W$
- What's known about this problem?
 - It's NP-hard
 - For any constant $\epsilon > 0$, you cannot get $O(m^{1/2} \epsilon)$ approximation in polynomial time unless NP=ZPP (widely believed to be not true)

Greedy Template

 Sort the sets in some order, consider them one-by-one, and take any set that you can along the way.

Greedy Algorithm:

- > Sort the sets in a specific order.
- \triangleright Relabel them as 1,2, ..., n in this order.
- $> W \leftarrow \emptyset$
- > For i = 1, ..., n:
 - If $S_i \cap S_j = \emptyset$ for every $j \in W$, then $W \leftarrow W \cup \{i\}$
- \triangleright Return W.

Greedy Algorithm

- What order should we sort the sets by?
- We want to take sets with high values.
 - $> v_1 \ge v_2 \ge \cdots \ge v_n$? Only m-approximation \odot
- We don't want to exhaust many items too soon.

$$> \frac{v_1}{|S_1|} \ge \frac{v_2}{|S_2|} \ge \cdots \frac{v_n}{|S_n|}$$
? Also *m*-approximation \odot

•
$$\sqrt{m}$$
-approximation : $\frac{v_1}{\sqrt{|S_1|}} \ge \frac{v_2}{\sqrt{|S_2|}} \ge \cdots \frac{v_n}{\sqrt{|S_n|}}$?

[Lehmann et al. 2011]

Proof of Approximation

- Definitions
 - \rightarrow *OPT* = Some optimal solution
 - $\gg W$ = Solution returned by our greedy algorithm
 - \Rightarrow For $i \in W$, $OPT_i = \{j \in OPT : j \ge i, S_i \cap S_j \ne \emptyset\}$
- Claim 1: $OPT \subseteq \bigcup_{i \in W} OPT_i$
- Claim 2: It is enough to show that $\forall i \in W$ $\sqrt{m} \cdot v_i \geq \Sigma_{j \in OPT_i} v_j$
- Observation: For $j \in OPT_i$, $v_j \le v_i \cdot \frac{\sqrt{|S_j|}}{\sqrt{|S_i|}}$

Proof of Approximation

• Summing over all $j \in OPT_i$:

$$\Sigma_{j \in OPT_i} v_j \leq \frac{v_i}{\sqrt{|S_i|}} \cdot \Sigma_{j \in OPT_i} \sqrt{|S_j|}$$

• Using Cauchy-Schwarz $(\Sigma_i x_i y_i \le \sqrt{\Sigma_i x_i^2} \cdot \sqrt{\Sigma_i y_i^2})$

$$\sum_{j \in OPT_i} \sqrt{1. |S_j|} \le \sqrt{|OPT_i|} \cdot \sqrt{\sum_{j \in OPT_i} |S_j|}$$

$$\le \sqrt{|S_i|} \cdot \sqrt{m}$$

- Problem
 - > Input: Undirected graph G = (V, E)
 - > Output: Vertex cover S of minimum cardinality
 - Recall: S is vertex cover if every edge has at least one of its two endpoints in S
 - We already saw that this problem is NP-hard
- Q: What would be a good greedy algorithm for this problem?

- Greedy edge-selection algorithm:
 - \rightarrow Start with $S = \emptyset$
 - While there exists an edge whose both endpoints are not in S, add both its endpoints to S
- Hmm...
 - > Why are we selecting edges rather than vertices?
 - Why are we adding both endpoints?
 - > We'll see..

Greedy-Vertex-Cover(G)

$$S \leftarrow \emptyset$$
.

$$E' \leftarrow E$$
.

WHILE
$$(E' \neq \emptyset)$$

every vertex cover must take at least one of these; we take both

Let $(u, v) \in E'$ be an arbitrary edge.

$$M \leftarrow M \cup \{(u, v)\}. \leftarrow M$$
 is a matching

$$S \leftarrow S \cup \{u\} \cup \{v\}. \leftarrow$$

Delete from E' all edges incident to either u or v.

RETURN S.

Theorem:

Greedy edge-selection algorithm for unweighted vertex cover achieves 2-approximation.

Observation 1:

- > For any vertex cover S^* and any matching M, $|S^*| \ge |M|$, where |M| = number of edges in M
- \triangleright Proof: S^* must contain at least one endpoint of each edge in M

Observation 2:

- \triangleright Greedy algorithm finds a vertex cover of size $|S| = 2 \cdot |M|$
- Hence, $|S| \le 2 \cdot |S^*|$, where S^* = min vertex cover

Corollary:

> If M^* is a maximum matching, and M is a maximal matching, then $|M| \ge \frac{1}{2} |M^*|$

Proof:

- > By design, $|M| = \frac{1}{2}|S|$
- $> |S| \ge |M^*|$ (Observation 1)
- > Hence, $|M| \ge \frac{1}{2} |M^*|$ ■
- This greedy algorithm is also a 2-approximation to the problem of finding a maximum cardinality matching
 - However, the max cardinality matching problem can be solved exactly in polynomial time using a more complex algorithm

- What about a greedy vertex selection algorithm?
 - \rightarrow Start with $S = \emptyset$
 - > While S is not a vertex cover:
 - \circ Choose a vertex v which maximizes the number of uncovered edges incident on it
 - \circ Add v to S
 - > Gives $O(\log d_{\max})$ approximation, where d_{\max} is the maximum degree of any vertex
 - But unlike the edge-selection version, this generalizes to set cover
 - \circ For set cover, $O(\log d_{\max})$ approximation ratio is the best possible in polynomial time unless P=NP

Unweighted Vertex Cover

NOT IN SYLLABUS

- Theorem [Dinur-Safra 2004]:
 - > Unless P = NP, there is no polynomial-time ρ -approximation algorithm for unweighted vertex cover for any constant $\rho < 1.3606$.

On the Hardness of Approximating Minimum Vertex Cover

Irit Dinur* Samuel Safra†
May 26, 2004

Abstract

We prove the Minimum Vertex Cover problem to be NP-hard to approximate to within a factor of 1.3606, extending on previous PCP and hardness of approximation technique. To that end, one needs to develop a new proof framework, and borrow and extend ideas from several fields.

Unweighted Vertex Cover

NOT IN SYLLABUS

- Theorem [Khot-Regev 2008]:
 - > Unless the "unique games conjecture" is violated, there is no polynomial-time ρ -approximation algorithm for unweighted vertex cover for any constant $\rho < 2$.

Vertex Cover Might be Hard to Approximate to within $2-\varepsilon$

Subhash Khot *

Oded Regev †

Abstract

Based on a conjecture regarding the power of unique 2-prover-1-round games presented in [Khot02], we show that vertex cover is hard to approximate within any constant factor better than 2. We actually show a stronger result, namely, based on the same conjecture, vertex cover on k-uniform hypergraphs is hard to approximate within any constant factor better than k.

Unweighted Vertex Cover

- How does one prove a lower bound on the approximation ratio of any polynomial-time algorithm?
 - > We prove that if there is a polynomial-time ρ -approximation algorithm for the problem with ρ < some bound, then some widely believed conjecture is violated
 - > For example, we can prove that given a polynomial time ρ -approximation algorithm to vertex cover for any constant ρ < 1.3606, we can use this algorithm as a subroutine to solve the 3SAT decision problem in polynomial time, implying P=NP
 - Similar technique can be used to reduce from other widely believed conjectures, which may give different (sometimes better) bounds
 - > Beyond the scope of this course

Weighted Vertex Cover

Weighted Vertex Cover

- Problem
 - ▶ Input: Undirected graph G = (V, E), weights $w : V \to R_{\geq 0}$
 - > Output: Vertex cover *S* of minimum total weight
- The same greedy algorithm doesn't work
 - > Gives arbitrarily bad approximation
 - Obvious modifications which try to take weights into account also don't work
 - Need another strategy...

LP Relaxation

ILP Formulation

- For each vertex v, create a binary variable $x_v \in \{0,1\}$ indicating whether vertex v is chosen in the vertex cover
- > Then, computing min weight vertex cover is equivalent to solving the following integer linear program

$$\min \Sigma_v \ w_v \cdot x_v$$
subject to
$$x_u + x_v \ge 1, \qquad \forall (u, v) \in E$$

$$x_v \in \{0,1\}, \qquad \forall v \in V$$

LP Relaxation

- What if we solve the "LP relaxation" of the original ILP?
 - > Just convert all integer variables to real variables

ILP with binary variables

$$\min \Sigma_v w_v \cdot x_v$$

subject to

$$x_u + x_v \ge 1$$
, $\forall (u, v) \in E$

$$\forall (u,v) \in E$$

$$x_v \in \{0,1\},$$

$$\forall v \in V$$

LP with real variables

$$\min \Sigma_v w_v \cdot x_v$$

subject to

$$x_u + x_v \ge 1, \qquad \forall (u, v) \in E$$

$$\forall (u, v) \in E$$

$$x_v \geq 0$$
,

$$\forall v \in V$$

Rounding LP Solution

- What if we solve the "LP relaxation" of the original ILP?
 - > Let's say we are minimizing objective $c^T x$
 - Since the LP minimizes this over a larger feasible space than the ILP, optimal LP objective value ≤ optimal ILP objective value
 - > Let x_{LP}^* be an optimal LP solution (which we can compute efficiently) and x_{ILP}^* be an optimal ILP solution (which we can't compute efficiently)
 - $\circ c^T x_{LP}^* \le c^T x_{ILP}^*$
 - o But x_{LP}^* may have non-integer values
 - \circ Efficiently round x_{LP}^* to an ILP feasible solution \hat{x} without increasing the objective too much
 - o If we prove $c^T \hat{x} \leq \rho \cdot c^T x_{LP}^*$, then we will also have $c^T \hat{x} \leq \rho \cdot c^T x_{ILP}^*$
 - \circ Thus, our algorithm will achieve ho-approximation

Rounding LP Solution

- What if we solve the "LP relaxation" of the original ILP?
 - > If we are maximizing c^Tx instead of minimizing, then it's reversed:
 - Optimal LP objective value ≥ optimal ILP objective value, i.e., $c^T x_{LP}^* \ge c^T x_{ILP}^*$
 - \circ Efficiently round x_{LP}^* to an ILP feasible solution \hat{x} without decreasing the objective too much
 - o If we prove $c^T \hat{x} \geq (1/\rho) \cdot c^T x_{LP}^*$, then $c^T \hat{x} \geq (1/\rho) \cdot c^T x_{ILP}^*$
 - \circ Thus, our algorithm will achieve ho-approximation

Weighted Vertex Cover

- Consider LP optimal solution x^*
 - > Let $\hat{x}_v = 1$ whenever $x_v^* \ge 0.5$ and $\hat{x}_v = 0$ otherwise
 - ightharpoonup Claim 1: \hat{x} is a feasible solution of ILP (i.e. a vertex cover)
 - o For every edge $(u, v) \in E$, at least one of $\{x_u^*, x_v^*\}$ is at least 0.5
 - So at least one of $\{\hat{x}_u, \hat{x}_v\}$ is 1 ■

ILP with binary variables

$$\begin{aligned} \min \Sigma_v \ w_v \cdot x_v \\ \text{subject to} \\ x_u + x_v &\geq 1, & \forall (u, v) \in E \\ x_v &\in \{0, 1\}, & \forall v \in V \end{aligned}$$

LP with real variables

$$\min \Sigma_{v} w_{v} \cdot x_{v}$$
subject to
$$x_{u} + x_{v} \ge 1, \quad \forall (u, v) \in E$$

$$x_{v} \ge 0, \quad \forall v \in V$$

Rounding LP Solution

- Consider LP optimal solution x^*
 - \triangleright Let $\hat{x}_v = 1$ whenever $x_v^* \ge 0.5$ and $\hat{x}_v = 0$ otherwise
 - ightharpoonup Claim 2: $\sum_{v} w_{v} \cdot \hat{x}_{v} \leq 2 * \sum_{v} w_{v} \cdot x_{v}^{*}$
 - \circ Weight only increases when some $x_v^* \in [0.5,1]$ is rounded up to 1
 - At most doubling the variable, so at least doubling the weight ■

ILP with binary variables

$$\begin{aligned} \min \Sigma_v \ w_v \cdot x_v \\ \text{subject to} \\ x_u + x_v &\geq 1, & \forall (u, v) \in E \\ x_v &\in \{0, 1\}, & \forall v \in V \end{aligned}$$

LP with real variables

$$\min \Sigma_{v} w_{v} \cdot x_{v}$$
subject to
$$x_{u} + x_{v} \ge 1, \quad \forall (u, v) \in E$$

$$x_{v} \ge 0, \quad \forall v \in V$$

Rounding LP Solution

- Consider LP optimal solution x^*
 - > Let $\hat{x}_v = 1$ whenever $x_v^* \ge 0.5$ and $\hat{x}_v = 0$ otherwise
 - > Hence, \hat{x} is a vertex cover with weight at most 2*LP optimal value $\leq 2*LP$ optimal value

ILP with binary variables

$$\begin{aligned} \min \Sigma_v \ w_v \cdot x_v \\ \text{subject to} \\ x_u + x_v &\geq 1, & \forall (u, v) \in E \\ x_v &\in \{0, 1\}, & \forall v \in V \end{aligned}$$

LP with real variables

$$\min \Sigma_{v} w_{v} \cdot x_{v}$$
subject to
$$x_{u} + x_{v} \ge 1, \quad \forall (u, v) \in E$$

$$x_{v} \ge 0, \quad \forall v \in V$$

General LP Relaxation Strategy

- Your NP-complete problem amounts to solving
 - > Max $c^T x$ subject to $Ax \leq b$, $x \in \mathbb{N}$ (need not be binary)
- Instead, solve:
 - \rightarrow Max $c^T x$ subject to $Ax \leq b$, $x \in \mathbb{R}_{\geq 0}$ (LP relaxation)
 - \circ LP optimal value \geq ILP optimal value (for maximization)
 - > x^* = LP optimal solution
 - > Round x^* to \hat{x} such that $c^T \hat{x} \ge \frac{c^T x^*}{\rho} \ge \frac{\text{ILP optimal value}}{\rho}$
 - \succ Gives ρ -approximation
 - \circ Info: Best ρ you can hope to get via this approach for a particular LP-ILP combination is called the *integrality gap*

Local Search Paradigm

Heuristic paradigm

- > Sometimes it might provably return an optimal solution
- > But even if not, it might give a good approximation

Template

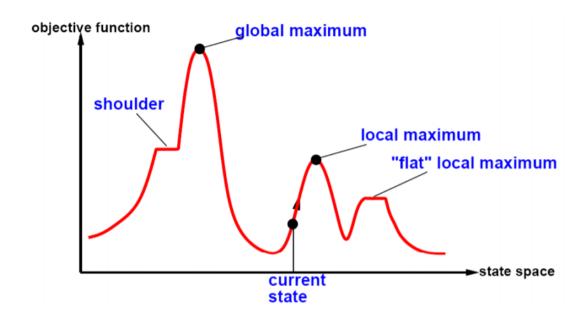
- > Start with some initial feasible solution S
- \triangleright While there is a "better" solution S' in the local neighborhood of S
- Switch to S'

Need to define:

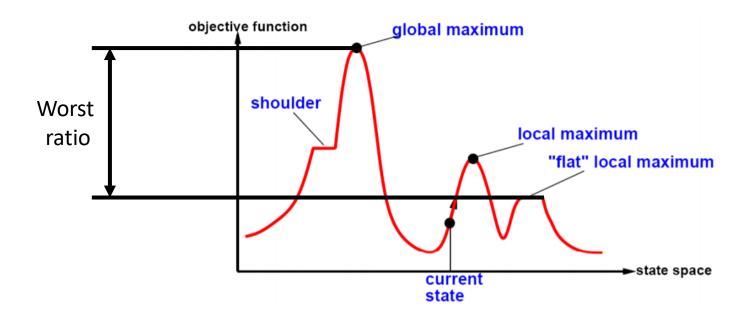
- Which initial feasible solution should we start from?
- What is "better"?
- What is "local neighborhood"?

- For some problems, local search provably returns an optimal solution
- Example: network flow
 - > Initial solution: zero flow
 - Local neighborhood: all flows that can be obtained by augmenting the current flow along a path in the residual graph
 - Better: Higher flow value
- Example: LP via simplex
 - Initial solution: a vertex of the polytope
 - Local neighborhood: neighboring vertices
 - > Better: better objective value

 But sometimes it doesn't return an optimal solution, and "gets stuck" in a local maxima



• In that case, we want to bound the worst-case ratio between the global optimum and the worst local optimum (the worst solution that local search might return)



- Problem
 - > Input: An undirected graph G = (V, E)
 - **> Output:** A partition (A, B) of V that maximizes the number of edges going across the cut, i.e., maximizes |E'| where $E' = \{(u, v) \in E \mid u \in A, v \in B\}$
 - > This is also known to be an NP-hard problem
 - > What is a natural local search algorithm for this problem?
 - O Given a current partition, what small change can you do to improve the objective value?

- Local Search
 - \triangleright Initialize (A, B) arbitrarily.
 - \triangleright While there is a vertex u such that moving u to the other side improves the objective value:
 - \circ Move u to the other side.

- When does moving u, say from A to B, improve the objective value?
 - > When u has more incident edges going within the cut than across the cut, i.e., when $|\{(u,v) \in E \mid v \in A\}| > |\{(u,v) \in E \mid v \in B\}|$

- Local Search
 - \triangleright Initialize (A, B) arbitrarily.
 - \triangleright While there is a vertex u such that moving u to the other side improves the objective value:
 - Move u to the other side.

- Why does the algorithm stop?
 - \triangleright Every iteration increases the number of edges across the cut by at least 1, so the algorithm must stop in at most |E| iterations

Local Search

- \triangleright Initialize (A, B) arbitrarily.
- \triangleright While there is a vertex u such that moving u to the other side improves the objective value:
 - Move u to the other side.

- Approximation ratio?
 - At the end, every vertex has at least as many edges going across the cut as within the cut
 - > Hence, at least half of all edges must be going across the cut
 - Exercise: Prove this formally by writing equations.

Variant

- > Now we're given integral edge weights $w: E \to \mathbb{N}$
- > The goal is to maximize the total weight of edges going across the cut

Algorithm

- > The same algorithm works...
- \succ But we move u to the other side if the total weight of its incident edges going within the cut is greater than the total weight of its incident edges going across the cut

- Number of iterations?
 - ▶ Unweighted case: #edges going across the cut must increase by at least 1, so it takes at most |E| iterations
 - Weighted case: total weight of edges going across the cut must increase by at least 1, but this could take up to $\sum_{e \in E} w_e$ iterations, which can be exponential in the input length
 - There are examples where the local search actually takes exponentially many steps
 - Fun exercise: Design an example where the number of iterations is exponential in the input length.

Number of iterations?

- > But we can find a $2+\epsilon$ approximation in time polynomial in the input length and $\frac{1}{\epsilon}$
- > The idea is to only move vertices when it "sufficiently improves" the objective value

- Better approximations?
 - > Theorem [Goemans-Williamson 1995]:

There exists a polynomial time algorithm for max-cut with approximation ratio $\frac{2}{\pi} \cdot \min_{0 \le \theta \le \pi} \frac{\theta}{1-\cos\theta} \approx 0.878$

- Uses "semidefinite programming" and "randomized rounding"
- \circ Note: The literature from here on uses approximation ratios ≤ 1 , so we will follow that convention in the remaining slides.
- Assuming the unique games conjecture, this approximation ratio is tight

Problem

- ▶ Input: An exact k-SAT formula $\varphi = C_1 \land C_2 \land \cdots \land C_m$, where each clause C_i has exactly k literals, and a weight $w_i \ge 0$ of each clause C_i
- ightharpoonup Output: A truth assignment au maximizing the total weight of clauses satisfied under au
- \succ Let us denote by $W(\tau)$ the total weight of clauses satisfied under τ
- What is a good definition of "local neighborhood"?

- Local neighborhood:
 - > $N_d(\tau)$ = set of all truth assignments τ' which differ from τ in the values of at most d variables
- Theorem: The local search with d=1 gives a $^2/_3$ approximation to Exact Max-2-SAT.

• Theorem: The local search with d=1 gives a $^2/_3$ approximation to Exact Max-2-SAT.

Proof:

- \triangleright Let τ be a local optimum
 - \circ S_0 = set of clauses not satisfied under τ
 - \circ S_1 = set of clauses from which exactly one literal is true under τ
 - \circ S_2 = set of clauses from which both literals are true under τ
 - $\circ W(S_0), W(S_1), W(S_2)$ be the corresponding total weights
 - o Goal: $W(S_1) + W(S_2) \ge \frac{2}{3} \cdot (W(S_0) + W(S_1) + W(S_2))$
 - Equivalently, $W(S_0) \le \frac{1}{3} \cdot (W(S_0) + W(S_1) + W(S_2))$

- Theorem: The local search with d=1 gives a $^2/_3$ approximation to Exact Max-2-SAT.
- Proof:
 - \succ We say that clause C "involves" variable j if it contains x_j or $\overline{x_j}$
 - $A_j =$ set of clauses in S_0 involving variable j
 - \circ Let $W(A_i)$ be the total weight of such clauses
 - > B_j = set of clauses in S_1 involving variable j such that it is the literal of variable j that is true under τ
 - \circ Let $W(B_i)$ be the total weight of such clauses

- Theorem: The local search with d=1 gives a $^2/_3$ approximation to Exact Max-2-SAT.
- Proof:
 - $> 2 W(S_0) = \sum_j W(A_j)$
 - \circ Every clause in S_0 is counted twice on the RHS
 - $> W(S_1) = \sum_j W(B_j)$
 - \circ Every clause in S_1 is only counted once on the RHS for the variable whose literal was true under au
 - \succ For each $j:W(A_j) \leq W(B_j)$
 - \circ From local optimality of τ , since otherwise flipping the truth value of variable j would have increased the total weight

- Theorem: The local search with d=1 gives a $^2/_3$ approximation to Exact Max-2-SAT.
- Proof:
 - $> 2 W(S_0) \le W(S_1)$
 - \circ Summing the third equation on the last slide over all j, and then using the first two equations on the last slide
 - > Hence:
 - $0.3 W(S_0) \le W(S_0) + W(S_1) \le W(S_0) + W(S_1) + W(S_2)$
 - Precisely the condition we wanted to prove...
 - o QED!

• Higher *d*?

- > Searches over a larger neighborhood
- May get a better approximation ratio, but increases the running time as we now need to check if any neighbor in a large neighborhood provides a better objective
- > The bound is still 2/3 for d = o(n)
- \succ For $d=\Omega(n)$, the neighborhood size is exponential
- But the approximation ratio is...
 - \circ At most 4/5 with d < n/2
 - \circ 1 (i.e. optimal solution is always reached) with $d={}^{n}/_{2}$

Better approximation ratio?

- > We can learn something from our proof
- > Note that we did not use anything about $W(S_2)$, and simply added it at the end
- > If we could also guarantee that $W(S_0) \leq W(S_2)...$
 - Then we would get $4W(S_0) \le W(S_0) + W(S_1) + W(S_2)$, which would give a $^3/_4$ approximation
- > Result (without proof):
 - This can be done by including just one more assignment in the neighborhood: $N(\tau) = N_1(\tau) \cup \{\tau^c\}$, where τ^c = complement of τ

- What if we do not want to modify the neighborhood?
 - > A slightly different tweak also works
 - We want to weigh clauses in $W(S_2)$ more because when we get a clause through S_2 , we get more robustness (it can withstand changes in single variables)

Modified local search:

- \gt Start at arbitrary au
- > While there is an assignment in $N_1(\tau)$ that improves the potential $1.5~W(S_1) + 2~W(S_2)$
 - Switch to that assignment

Modified local search:

- \gt Start at arbitrary au
- > While there is an assignment in $N_1(\tau)$ that improves the potential $1.5~W(S_1) + 2~W(S_2)$
 - Switch to that assignment

Note:

- > This is the first time that we're using a definition of "better" in local search paradigm that does not quite align with the ultimate objective we want to maximize
- > This is called "non-oblivious local search"

Modified local search:

- \gt Start at arbitrary au
- > While there is an assignment in $N_1(\tau)$ that improves the potential $1.5~W(S_1) + 2~W(S_2)$
 - Switch to that assignment
- Result (without proof):
 - \rightarrow Modified local search gives $^3/_4$ -approximation to Exact Max-2-SAT

- More generally:
 - \triangleright The same technique works for higher values of k
 - > Gives $\frac{2^k-1}{2^k}$ approximation for Exact Max-k-SAT
 - In the next lecture, we will achieve the same approximation ratio much more easily through a different technique
- Note: This ratio is $\frac{7}{8}$ for Exact Max-3-SAT
 - ▶ Theorem [Håstad]: Achieving $^{7}/_{8} + \epsilon$ approximation where $\epsilon > 0$ is NP-hard.
 - Uses PCP (probabilistically checkable proofs) technique