
CSC373

Weeks 7 & 8:
Complexity

373F20 - Nisarg Shah 1

Recap

373F20 - Nisarg Shah 2

• Linear Programming

➢ Standard formulation

➢ Slack formulation

➢ Simplex

➢ Duality

➢ Formulating given problems as LPs

This & Next Week

373F20 - Nisarg Shah 3

• Applications of linear programming

➢ Shortest path

➢ Network flow

• A note about integer programming

• Complexity

➢ Turing machines, computability, efficient computation

➢ P, NP, and NP-completeness

➢ Reductions

➢ Idea behind NP-completeness of SAT and 3SAT

➢ NP vs co-NP

➢ Other complexity classes

Network Flow via LP

373F20 - Nisarg Shah 4

• Problem
➢ Input: directed graph 𝐺 = (𝑉, 𝐸), edge capacities

𝑐: 𝐸 → ℝ≥0

➢ Output: Value 𝑣 𝑓∗ of a maximum flow 𝑓∗

• Flow 𝑓 is valid if:
➢ Capacity constraints: ∀ 𝑢, 𝑣 ∈ 𝐸: 0 ≤ 𝑓 𝑢, 𝑣 ≤ 𝑐(𝑢, 𝑣)

➢ Flow conservation: ∀𝑢: σ 𝑢,𝑣 ∈𝐸 𝑓 𝑢, 𝑣 = σ 𝑣,𝑢 ∈𝐸 𝑓 𝑣, 𝑢

• Maximize 𝑣 𝑓 = σ 𝑠,𝑣 ∈𝐸 𝑓 𝑠, 𝑣

Linear objective!

Linear constraints

Network Flow via LP

373F20 - Nisarg Shah 5

(𝑠,𝑣)∈𝐸

𝑓𝑠𝑣

0 ≤ 𝑓𝑢𝑣 ≤ 𝑐 𝑢, 𝑣

(𝑢,𝑣)∈𝐸

𝑓𝑢𝑣 =

(𝑣,𝑤)∈𝐸

𝑓𝑣,𝑤

for all (𝑢, 𝑣) ∈ 𝐸

for all 𝑣 ∈ 𝑉\{𝑠, 𝑡}

maximize

Exercise: Write the dual of this LP.
What is the dual trying to find?

Shortest Path via LP

• Problem
➢ Input: directed graph 𝐺 = 𝑉, 𝐸 , edge weights

𝑤: 𝐸 → ℝ≥0, source vertex 𝑠, target vertex 𝑡

➢ Output: weight of the shortest-weight path from 𝑠 to 𝑡

• Variables: for each vertex 𝑣, we have variable 𝑑𝑣

Why max?

If objective was min., then we
could set all variables 𝑑𝑣 to 0.

Exercise: prove formally
that this works!

373F20 - Nisarg Shah 6

But…but…

373F20 - Nisarg Shah 7

• For these problems, we have different combinatorial
algorithms that are much faster and run in strongly
polynomial time

• Why would we use LP?

• For some problems, we don’t have faster algorithms than
solving them via LP

Multicommodity-Flow

373F20 - Nisarg Shah 8

• Problem:
➢ Input: directed graph 𝐺 = (𝑉, 𝐸), edge capacities 𝑐: 𝐸 → ℝ≥0,

𝑘 commodities (𝑠𝑖 , 𝑡𝑖 , 𝑑𝑖), where 𝑠𝑖 is source of commodity 𝑖, 𝑡𝑖 is
sink, and 𝑑𝑖 is demand.

➢ Output: valid multicommodity flow 𝑓1, 𝑓2, … , 𝑓𝑘 , where 𝑓𝑖 has value
𝑑𝑖 and all 𝑓𝑖 jointly satisfy the constraints

The only known polynomial
time algorithm for this problem

is based on solving LP!

Integer Linear Programming

373F20 - Nisarg Shah 9

• Variable values are restricted to be integers

• Example:
➢ Input: 𝑐 ∈ ℝ𝑛, 𝑏 ∈ ℝ𝑚, 𝐴 ∈ ℝ𝑚×𝑛

➢ Goal:

Maximize 𝑐𝑇𝑥

Subject to 𝐴𝑥 ≤ 𝑏

𝒙 ∈ {𝟎, 𝟏}𝒏

• Does this make the problem easier or harder?
➢ Harder. We’ll prove that this is “NP-complete”.

LPs are everywhere…

373F20 - Nisarg Shah 10

➢ Microeconomics

➢ Manufacturing

➢ VLSI (very large scale integration) design

➢ Logistics/transportation

➢ Portfolio optimization

➢ Bioengineering (flux balance analysis)

➢ Operations research more broadly: maximize profits or minimize
costs, use linear models for simplicity

➢ Design of approximation algorithms

➢ Proving theorems, as a proof technique

➢ …

Introduction to Complexity

373F20 - Nisarg Shah 11

• You have a problem at hand

• You try every technique known to humankind for finding a
polynomial time algorithm, but fail.

• You try every technique known to humankind for proving
that there cannot exist a polynomial time algorithm for your
problem, but fail.

• What do you do?
➢ Prove that it is NP-complete, of course!

Turing Machines

373F20 - Nisarg Shah 12

• “Which problems can a computer (not) solve in a certain
amount of time?”
➢ How do we mathematically define what a computer is?

• Alan Turing (“Father of Computer Science”), 1936
➢ Introduced a mathematical model

➢ “Turing machine”

➢ All present-day computers can be simulated by a Turing machine

➢ Fun fact: So can all the quantum computers

o But TM might take longer to solve the same problem

Turing Machines

373F20 - Nisarg Shah 13

• We won’t formally introduce…but at a high level…

• Turing machine
➢ Tape

o Input is given on tape

o Intermediate computations can be written there

o Output must to be written there

➢ Head pointer

o Initially pointing at start of input on tape

➢ Maintains an internal “state”

➢ A transition function describes how to change state, move head
pointer, and read/write symbols on tape

Computability

373F20 - Nisarg Shah 14

• Church-Turing Thesis
➢ “Everything that is computable can be computed by a Turing

machine”

➢ Widely accepted, cannot be “proven”

➢ There are problems which a Turing machine cannot solve, regardless
of the amount of time available

o E.g., the halting problem

• What about the problems we can solve? How do we define
the time required?
➢ Need to define an encoding of the input and output

Encoding

373F20 - Nisarg Shah 15

• What can we write on the tape?
➢ 𝑆 = a set of finite symbols

➢ 𝑆∗ 𝑛≥0ڂ = 𝑆𝑛 = set of all finite strings using symbols from 𝑆

• Input: 𝑤 ∈ 𝑆∗

➢ Length of input = |𝑤| = length of 𝑤 on tape

• Output: 𝑓 𝑤 ∈ 𝑆∗

➢ Length of output = 𝑓 𝑤

➢ Decision problems: output = “YES” or “NO”

o E.g. “does there exist a flow of value at least 7 in this network?”

Encoding

373F20 - Nisarg Shah 16

• Example:
➢ “Given 𝑎1, 𝑎2, … , 𝑎𝑛, compute σ𝑖=1

𝑛 𝑎𝑖”

o Suppose we are told that 𝑎𝑖 ≤ 𝐶 for all 𝑖

➢ What |𝑆| should we use?

o 𝑆 = {0,1} (𝑆 = 2, binary representation)

• Length of input = 𝑂 log2 𝑎1 + ⋯ + log2 𝑎𝑛 = 𝑂 𝑛 log2 𝐶

o What about 3-ary (𝑆 = 3) or 18-ary (𝑆 = 18)?

• Only changes the length by a constant factor, still 𝑂(𝑛 log 𝐶)

o What about unary (conceptually, 𝑆 = 1)?

• Length blows up exponentially to 𝑂 𝑛𝐶

o Binary is already good enough, but unary isn’t

Efficient Computability

373F20 - Nisarg Shah 17

• Polynomial-time computability
➢ A TM solves a problem in polynomial time if there is a polynomial 𝑝

such that on every instance of 𝑛-bit input and 𝑚-bit output, the TM
halts in at most 𝑝(𝑛, 𝑚) steps

➢ Polynomial: 𝑛, 𝑛2, 5𝑛100 + 1000𝑛3, 𝑛 log100 𝑛 = 𝑜 𝑛1.001

➢ Non-polynomial: 2𝑛, 2 𝑛, 2log2 𝑛

• Extended Church-Turing Hypothesis
➢ “Everything that is efficiently computable is computable by a TM in

polynomial time”

➢ Much less widely accepted, especially today

➢ But in this course, efficient = polynomial-time

If you ask the Turing machine to write a 2𝑛-bit output, it’s only reasonable
to let it take 2𝑛 time…but usually, we’ll look at problems where output is

O(length of input), so we can ignore this 𝑚

P

373F20 - Nisarg Shah 18

• P (polynomial time)
➢ The class of all decision problems computable by a TM in polynomial

time

• Examples
➢ Addition, multiplication, square root

➢ Shortest paths

➢ Network flow

➢ Fast Fourier transform

➢ Checking if a given number is a prime
[Agrawal-Kayal-Saxena 2002]

➢ …

NP

373F20 - Nisarg Shah 19

• NP (nondeterministic polynomial time) intuition

➢ Subset sum problem:

Given an array {−7, −3, −2, 5, 8}, is there a zero-sum subset?

➢ Enumerating all subsets is exponential

➢ But…given {-3, -2, 5}, we can verify in polynomial time that it is
indeed a valid subset and has zero sum

➢ A nondeterministic Turing machine could “guess” the solution and
then test if it has zero sum in polynomial time

NP

373F20 - Nisarg Shah 20

• NP (nondeterministic polynomial time)
➢ The class of all decision problems for which a YES answer can be

verified by a TM in polynomial time given polynomial length “advice”
or “witness”.

➢ There is a polynomial-time verifier TM 𝑉 and another polynomial 𝑝
such that

o For all YES inputs 𝑥, there exists advice 𝑦 with 𝑦 = 𝑝 𝑥 on
which 𝑉(𝑥, 𝑦) returns YES

o For all NO inputs 𝑥, 𝑉(𝑥, 𝑦) returns NO for every possible 𝑦

➢ Informally: “Whenever the answer is YES, there’s a short proof of it.”

o When the answer is NO, there may not be any short proof for it.

co-NP

373F20 - Nisarg Shah 21

• co-NP
➢ Same as NP, except whenever the answer is NO, there is a short

proof of it

• Open questions
➢ NP = co-NP?

➢ P = NP ∩ co-NP?

➢ And…drum roll please…

𝑃 = 𝑁𝑃?

P versus NP

373F20 - Nisarg Shah 22

• Lance Fortnow in his article on P and NP in Communications
of the ACM, Sept 2009

“The P versus NP problem has gone
from an interesting problem related to
logic to perhaps the most fundamental
and important mathematical question of
our time, whose importance only grows
as computers become more powerful
and widespread.”

Millenium Problems

373F20 - Nisarg Shah 23

• Award of $1M for each problem by the Clay Math institute

1. Birch and Swinnerton-Dyer Conjecture

2. Hodge Conjecture

3. Navier-Stokes Equations

4. P = NP?

5. Poincare Conjecture (Solved)1

6. Riemann Hypothesis

7. Yang-Mills Theory

1Solved by Grigori Perelman (2003): Prize unclaimed

Claim: Worth >> $1M

Cook’s Conjecture

373F20 - Nisarg Shah 24

• Cook’s conjecture
➢ (And every sane person’s belief…)

➢ 𝑃 is likely not equal to 𝑁𝑃

• Why do we believe this?
➢ There is a large class of problems (NP-complete)

➢ By now, contains thousands and thousands of problems

➢ Each problem is the “hardest problem in NP”

➢ If you can efficiently solve any one of them, you can efficiently solve
every problem in NP

o Despite decades of effort, no polynomial time solution has been
found for any of them

Reductions

373F20 - Nisarg Shah 25

• Problem 𝐴 is p-reducible to problem 𝐵 (denoted 𝐴 ≤𝑝 𝐵) if
an “oracle” (subroutine) for 𝐵 can be used to efficiently
solve 𝐴
➢ You can solve 𝐴 by making polynomially many calls to the oracle and

doing additional polynomial-time computation

• Question: If 𝐴 is p-reducible to 𝐵, then which of the
following is true?
a) If 𝐴 cannot be solved efficiently, then neither can 𝐵.

b) If 𝐵 cannot be solved efficiently, then neither can 𝐴.

c) Both.

d) None.

Reductions

373F20 - Nisarg Shah 26

• Problem 𝐴 is p-reducible to problem 𝐵 (denoted 𝐴 ≤𝑝 𝐵) if
an “oracle” (subroutine) for 𝐵 can be used to efficiently
solve 𝐴
➢ You can solve 𝐴 by making polynomially many calls to the oracle and

doing additional polynomial computation

• Question: If I want to prove that my problem 𝑋 is “hard”, I
should:
a) Reduce my problem 𝑋 to a known hard problem.

b) Reduce a known hard problem to my problem 𝑋.

c) Both.

d) None.

NP-completeness

373F20 - Nisarg Shah 27

• NP-completeness
➢ A problem 𝐵 is NP-complete if it is in NP and every problem 𝐴 in NP

is p-reducible to 𝐵

➢ Hardest problems in NP

➢ If one of them can be solved efficiently, every problem in NP can be
solved efficiently, implying P=NP

• Observation:
➢ If 𝐴 is in NP, and some NP-complete problem 𝐵 is p-reducible to 𝐴,

then 𝐴 is NP-complete too

o “If I could solve A, then I could solve B, and then I could solve any
problem in NP”

NP-completeness

373F20 - Nisarg Shah 28

• But this uses an already known NP-complete problem to
prove another problem is NP-complete

• How do we find the first NP-complete problem?
➢ How do we know there are any NP-complete problems at all?

➢ Key result by Cook

➢ First NP-complete problem: SAT

o By a reduction from an arbitrary problem in NP to SAT

o “From first principles”

CNF Formulas

373F20 - Nisarg Shah 29

• Conjunctive normal form (CNF)
➢ Boolean variables 𝑥1, 𝑥2, … , 𝑥𝑛

➢ Their negations ҧ𝑥1, ҧ𝑥2, … , ҧ𝑥𝑛

➢ Literal ℓ: a variable or its negation

➢ Clause 𝐶 = ℓ1 ∨ ℓ2 ∨ ⋯ ∨ ℓ𝑟 is a disjunction of literals

➢ CNF formula 𝜑 = 𝐶1 ∧ 𝐶2 ∧ ⋯ ∧ 𝐶𝑚 is a conjunction of clauses

o 𝑘CNF: Each clause has at most 𝑘 literals

• We’ll abuse notation a little and assume there are exactly 𝑘

• Example of 3CNF

𝜑 = ҧ𝑥1 ∨ 𝑥2 ∨ 𝑥3 ∧ 𝑥1 ∨ ҧ𝑥2 ∨ 𝑥3 ∧ ҧ𝑥1 ∨ 𝑥2 ∨ 𝑥4 ∧ (ҧ𝑥3 ∨ ҧ𝑥4 ∨ 𝑥1)

SAT and 3SAT

373F20 - Nisarg Shah 30

• Example of 3CNF

𝜑 = ҧ𝑥1 ∨ 𝑥2 ∨ 𝑥3 ∧ 𝑥1 ∨ ҧ𝑥2 ∨ 𝑥3 ∧ ҧ𝑥1 ∨ 𝑥2 ∨ 𝑥4 ∧ (ҧ𝑥3 ∨ ҧ𝑥4 ∨ 𝑥1)

• “SAT” (Satisfiability) Problem:
➢ A CNF formula 𝜑 is satisfiable if there is an assignment of truth

values (TRUE/FALSE) to variables under which the formula evaluates
to TRUE

o That means, in each clause, at least one literal is TRUE

➢ SAT: “Given a CNF formula 𝜑, is it satisfiable?”

➢ 3SAT: “Given a 3CNF formula 𝜑, is it satisfiable?”

SAT and 3SAT

373F20 - Nisarg Shah 31

• Cook-Levin Theorem
➢ SAT (and even 3SAT) is NP-complete

• Doesn’t use any known NP-complete problem

➢ Directly reduces any given NP problem to SAT

➢ Reduction is a bit complex, so we’ll defer it until later

➢ But for now, let’s assume SAT and 3SAT are NP-complete and reduce
them to other problems (and then those problems to other
problems…)

NP-Complete Examples

373F20 - Nisarg Shah 32

• NP-complete problems
➢ SAT = first NP complete problem

➢ Decision TSP: Is there a route visiting all 𝑛 cities with total distance at
most 𝑘?

➢ 3-Colorabitility: Can the vertices of a graph be colored with at most 3
colors such that no two adjacent vertices have the same color?

➢ Karp’s 21 NP-complete problems

• co-NP-complete
➢ Tautology problem (“negation” of SAT):

o “Given a CNF formula 𝜑, does it always evaluate to TRUE
regardless of variable assignments?”

Complexity

373F20 - Nisarg Shah 33

By Behnam Esfahbod, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=3532181

373F20 - Nisarg Shah 34

⋮ ⋮

373F20 - Nisarg Shah 35

Just A Tad Bit of History

373F20 - Nisarg Shah 36

• [Cook 1971]
➢ Proved 3SAT is NP-complete in seminal paper

• [Karp 1972]
➢ Showed that 20 other problems are also NP-complete

➢ “Karp's 21 NP-complete problems”

➢ Renewed interest in this idea

• 1982: Cook won the Turing award

• Problem
➢ Input: Undirected graph 𝐺 = (𝑉, 𝐸), integer 𝑘

➢ Question: Does there exist a subset of vertices 𝑆 ⊆ 𝑉 with 𝑆 = 𝑘
such that for each edge, at most one of its endpoints is in 𝑆?

Independent Set

373F20 - Nisarg Shah 37

= independent setExample:
• Does this graph have an

independent set of size 6?
• Yes!

• Does this graph have an
independent set of size 7?
• No!

• Claim: Independent Set is in NP

➢ Recall: We need to show that there is a polynomial-time algorithm
which

o Can accept every YES instance with the right polynomial-size advice

o Will not accept a NO instance with any advice

➢ Advice: the actual independent set 𝑆

➢ Algorithm: check if 𝑆 is an independent set and if 𝑆 = 𝑘

➢ Simple!

Independent Set

373F20 - Nisarg Shah 38

• Claim: 3SAT ≤𝑝 Independent Set

➢ Given a formula 𝜑 of 3SAT with 𝑘 clauses, construct an instance (𝐺, 𝑘)
of Independent Set as follows

o Create 3 vertices for each clause (one for each literal)

o Connect them in a triangle

o Connect the vertex of each literal to each of its negations

Independent Set

373F20 - Nisarg Shah 39

➢ Why does this work?

o 3SAT = YES ⇒ Independent Set = YES

• From each clause, take any literal that is TRUE in the assignment

o Independent Set = YES ⇒ 3SAT = YES

• Independent set 𝑆 must contain one vertex from each triangle

• No literal and its negation are both in 𝑆

• Set literals in 𝑆 to TRUE, their negations to FALSE, and the rest to
arbitrary values

Independent Set

373F20 - Nisarg Shah 40

Different Types of Reductions

373F20 - Nisarg Shah 41

• 𝐴 ≤ 𝐵
➢ Karp reductions

o Take an arbitrary instance of 𝐴, and in polynomial time, construct
a single instance of 𝐵 with the same answer

o Very restricted type of reduction

o The reduction we just constructed was a Karp reduction

➢ Turing/Cook reductions

o Take an arbitrary instance of 𝐴, and solve it by making
polynomially many calls to an oracle for solving 𝐵 and some
polynomial-time extra computation

o Very general reduction

o In this course, we’ll allow Turing/Cook reductions, but whenever
possible, see if you can construct a Karp reduction

Subset Sum

373F20 - Nisarg Shah 42

• Problem
➢ Input: Set of integers 𝑆 = {𝑤1, … , 𝑤𝑛}, integer 𝑊

➢ Question: Is there 𝑆′ ⊆ 𝑆 that adds up to exactly 𝑊?

• Example
➢ 𝑆 = {1, 4, 16, 64, 256, 1040, 1041, 1093, 1284, 1344}, 𝑊 = 3754?

➢ Yes!

o 1 + 16 + 64 + 256 + 1040 + 1093 + 1284 = 3754

• Claim: Subset Sum is in NP

➢ Recall: We need to show that there is a polynomial-time algorithm
which

o Can accept every YES instance with the right polynomial-size advice

o Will not accept a NO instance with any advice

➢ Advice: the actual subset 𝑆′

➢ Algorithm: check that 𝑆′ is indeed a subset of 𝑆 and sums to 𝑊

➢ Simple!

Subset Sum

373F20 - Nisarg Shah 43

• Claim: 3SAT ≤𝑝 Subset Sum

➢ Given a formula 𝜑 of 3SAT, we want to construct (𝑆, 𝑊) of Subset Sum
with the same answer

➢ In the table in the following slide:

o Columns are for variables and clauses

o Each row is a number in 𝑆, represented in decimal

o Number for literal ℓ : has 1 in its variable column and in the column
of every clause where that literal appears

• Number selected = literal set to TRUE

o “Dummy” rows: can help make the sum in a clause column 4 if and
only if at least one literal is set to TRUE

Subset Sum

373F20 - Nisarg Shah 44

• Claim: 3SAT ≤𝑝 Subset Sum

Subset Sum

373F20 - Nisarg Shah 45

Decimal
representation

• Note
➢ The Subset Sum instance we constructed has “large” numbers

o Their values are exponentially large (~10#𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠+#𝑐𝑙𝑎𝑢𝑠𝑒𝑠)

o But the number of bits required to write them is polynomial

➢ Can we hope to construct Subset Sum instance with numbers whose
values are only 𝑝𝑜𝑙𝑦(#𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠, #𝑐𝑙𝑎𝑠𝑢𝑠𝑒𝑠) large?

o Unlikely, as that would prove 𝑃 = 𝑁𝑃!

o Like Knapsack, Subset Sum can be solved in pseudo-polynomial time

• That is, in polynomial time if the numbers are only polynomially
large in value

Subset Sum

373F20 - Nisarg Shah 46

3-Coloring

373F20 - Nisarg Shah 47

• Problem
➢ Input: Undirected graph 𝐺 = (𝑉, 𝐸)

➢ Question: Can we color each vertex of 𝐺 using at most three colors
such that no two adjacent vertices have the same color?

• Claim: 3-coloring is in NP

➢ Recall: We need to show that there is a polynomial-time algorithm
which

o Can accept every YES instance with the right polynomial-size advice

o Will not accept a NO instance with any advice

➢ Advice: colors of the nodes in a valid 3-coloring

➢ Algorithm: check that this is a valid 3-coloring

➢ Simple!

3-Coloring

373F20 - Nisarg Shah 48

3-Coloring

373F20 - Nisarg Shah 49

• Claim: 3SAT ≤𝑝 3-Coloring

➢ Given a 3SAT formula 𝜑, we want to construct a graph 𝐺 such that 𝐺 is
3-colorable if and only if 𝜑 has a satisfying assignment

➢ 𝐺 will have the following nodes:

o Type 1: true, false, base, one for each 𝑥𝑖, one for each ഥ𝑥𝑖

o Type 2: additional nodes for each clause 𝐶𝑗

➢ 1-1 correspondence between valid 3-colorings of type 1 nodes and valid
truth assignments:

o All literals with the same color as “true” node are set to true

o All literals with the same color as “false” node are set to false

➢ Claim: Fix any colors of type 1 nodes. There exists a valid 3-coloring of 𝐺
giving these colors to type 1 nodes if and only if the corresponding truth
assignment is satisfying for 𝜑.

3-Coloring

373F20 - Nisarg Shah 50

➢ Create 3 new nodes T, F, and B, and connect them in a triangle

➢ Create a node for each literal, connect it to its negation and to B

➢ T-F-B must have different colors, and so must B-𝑥𝑖- ҧ𝑥𝑖

o Each literal has the color of T or F; its negation has the other color

o Valid 3-coloring ⇔ valid truth assignment (set all with color T to true)

…

3-Coloring

373F20 - Nisarg Shah 51

➢ We also need valid 3-coloring ⇔ satisfying truth assignment

o For each clause, add the following gadget with 6 nodes and 13 edges

o Claim: Clause gadget is 3-colorable ⇔ at least one of the nodes
corresponding to the literals in the clause is assigned color of T

3-Coloring

373F20 - Nisarg Shah 52

➢ Claim: Valid 3-coloring ⇒ truth assignment satisfies 𝜑

o Suppose a clause 𝐶𝑖 is not satisfied, so all its three literals must be F

o Then the 3 nodes in top layer must be B

o Then the first two nodes in bottom layer must be F and T

o No color left for the remaining node ⇒ contradiction!

3-Coloring

373F20 - Nisarg Shah 53

➢ We just proved: valid 3-coloring ⇒ satisfying assignment

➢ Claim: satisfying assignment ⇒ valid 3-coloring

o Each clause has at least one literal with color T

o Exercise: Regardless of which literal has color T and which color (T/F)
the other literals have, the clause widget can always be 3-colored

Review of Reductions

373F20 - Nisarg Shah 54

• If you want to show that problem B is NP-complete

• Step 1: Show that B is in NP
➢ Some polynomial-size advice should be sufficient to verify a YES

instance in polynomial time

➢ No advice should work for a NO instance

➢ Usually, the solution of the “search version” of the problem works

o But sometimes, the advice can be non-trivial

o For example, to check LP optimality, one possible advice is the
values of both primal and dual variables, as we saw in the last
lecture

Review of Reductions

373F20 - Nisarg Shah 55

• If you want to show that problem B is NP-complete

• Step 2: Find a known NP-complete problem A and reduce it
to B (i.e. show A ≤𝑝 B)
➢ This means taking an arbitrary instance of A, and solving it in

polynomial time using an oracle for B

o Caution 1: Remember the direction. You are “reducing known NP-
complete problem to your current problem”.

o Caution 2: The size of the B-instances you construct should be
polynomial in the size of the original A-instance

➢ This would show that if B can be solved in polynomial time, then A
can be as well

➢ Some reductions are trivial, some are notoriously tricky…

Binary Integer Linear
Programming (BILP)

373F20 - Nisarg Shah 56

• Problem
➢ Input: 𝑐 ∈ ℝ𝑛, 𝑏 ∈ ℝ𝑚, 𝐴 ∈ ℝ𝑚×𝑛, 𝑘 ∈ ℝ

➢ Question: Does there exist 𝑥 ∈ 0,1 𝑛 such that 𝑐𝑇𝑥 ≥ 𝑘 and 𝐴𝑥 ≤ 𝑏?

➢ Decision variant of “maximize 𝑐𝑇𝑥 subject to 𝐴𝑥 ≤ 𝑏” but instead of
any 𝑥 ∈ ℝ𝑛 with 𝑥 ≥ 0, we are restricting 𝑥 to binary.

➢ Does restricting search space make the problem easier or harder?

o This is actually NP-complete!

BILP Feasibility

373F20 - Nisarg Shah 57

• An even simpler problem
➢ Special case where 𝑐 = 𝑘 = 0, so 𝑐𝑇𝑥 ≥ 𝑘 is always true

• Problem
➢ Input: 𝑏 ∈ ℝ𝑚, 𝐴 ∈ ℝ𝑚×𝑛

➢ Question: Does there exist 𝑥 ∈ 0,1 𝑛 such that 𝐴𝑥 ≤ 𝑏?

➢ Just need to find a feasible solution

➢ This is still NP-complete!

• Claim: BILP Feasibility is in NP

➢ Recall: We need to show that there is a polynomial-time algorithm
which

o Can accept every YES instance with the right polynomial-size advice

o Will not accept a NO instance with any advice

➢ Advice: simply a vector 𝑥 satisfying 𝐴𝑥 ≤ 𝑏

➢ Algorithm: Check if 𝐴𝑥 ≤ 𝑏

➢ Simple!

BILP Feasibility

373F20 - Nisarg Shah 58

• Claim: 3SAT ≤𝑝 BILP Feasibility

➢ Take any formula 𝜑 of 3SAT

➢ Create a binary variable 𝑥𝑖 for each variable 𝑥𝑖 in 𝜑

o We’ll represent its negation ҧ𝑥𝑖 with 1 − 𝑥𝑖

➢ For each clause 𝐶, we want at least one of its three literals to be TRUE

o Just make sure their sum is at least 1

o E.g. 𝐶 = 𝑥1 ∨ ҧ𝑥2 ∨ ҧ𝑥3 ⇒ 𝑥1 + 1 − 𝑥2 + 1 − 𝑥3 ≥ 1

➢ Easy to check that

o this is a polynomial reduction

o Resulting system has a feasible solution iff 𝜑 is satisfiable

BILP Feasibility

373F20 - Nisarg Shah 59

So far…

373F20 - Nisarg Shah 60

• To establish NP-completeness of problem B, we always
reduced 3SAT to B
➢ But we can reduce any other problem A that we have already

established to be NP-complete

➢ Sometimes this might lead to a simpler reduction because A might
already be “similar” to B

• Let’s see an example!

Vertex Cover

373F20 - Nisarg Shah 61

• Problem
➢ Input: Undirected graph 𝐺 = (𝑉, 𝐸), integer 𝑘

➢ Question: Does there exist a vertex cover of size 𝑘?

o That is, does there exist 𝑆 ⊆ 𝑉 with 𝑆 = 𝑘 such that every edge is
incident to at least one vertex in 𝑆?

= vertex coverExample:
• Does this graph have a

vertex cover of size 4?
• Yes!

• Does this graph have a
vertex cover of size 3?
• No!

Vertex Cover

373F20 - Nisarg Shah 62

• Problem
➢ Input: Undirected graph 𝐺 = (𝑉, 𝐸), integer 𝑘

➢ Question: Does there exist a vertex cover of size 𝑘?

o That is, does there exist 𝑆 ⊆ 𝑉 with 𝑆 = 𝑘 such that every edge is
incident to at least one vertex in 𝑆?

= independent set

Question:
• Did we see this graph in

the last lecture?
• Yes!
• For independent set

of size 6

= vertex cover

Vertex Cover

373F20 - Nisarg Shah 63

• Vertex cover and independent set are intimately connected!

• Claim: 𝐺 has a vertex cover of size 𝑘 if and only if 𝐺 has an
independent set of size 𝑛 − 𝑘

• Stronger claim: 𝑆 is a vertex cover if and only if 𝑉\S is an
independent set

Vertex Cover

373F20 - Nisarg Shah 64

• Claim: 𝑆 is a vertex cover if and only if 𝑉\S is an independent
set

• Proof:
➢ 𝑆 is a vertex cover

➢ IFF: For every 𝑢, 𝑣 ∈ 𝐸, at least one of {𝑢, 𝑣} is in 𝑆

➢ IFF: For every 𝑢, 𝑣 ∈ 𝐸, at most one of {𝑢, 𝑣} is in 𝑉\S

➢ IFF: No two vertices of 𝑉\S are connected by an edge

➢ IFF: 𝑉\S is an independent set ∎

Vertex Cover

373F20 - Nisarg Shah 65

• Claim: Independent Set ≤𝑝 Vertex Cover

➢ Take an arbitrary instance (𝐺, 𝑘) of Independent Set

➢ We want to check if there is an independent set of size 𝑘

➢ Just convert it to the instance (𝐺, 𝑛 − 𝑘) of Vertex Cover

➢ Simple!

o A reduction from 3SAT would have basically repeated the reduction
we already did for 3SAT ≤𝑝 Independent Set

➢ Note: I didn’t argue that Vertex Cover is in NP

o This is simple as usual. Just give the actual vertex cover as the advice.

Set Cover

373F20 - Nisarg Shah 66

• Problem
➢ Input: A universe of elements 𝑈, a family of subsets 𝑆, and an integer 𝑘

➢ Question: Do there exist 𝑘 sets from 𝑆 whose union is 𝑈?

• Example
➢ 𝑈 = {1,2,3,4,5,6,7}

➢ 𝑆 = 1,3,7 , 2,4,6 , 4,5 , 1 , 1,2,6

➢ 𝑘 = 3? Yes! 1,3,7 , 4,5 , {1,2,6}

➢ 𝑘 = 2? No!

• Claim: Set Cover is in NP

➢ Easy. Let the advice be the actual 𝑘 sets whose union is 𝑈.

• Claim: Vertex Cover ≤𝑝 Set Cover

➢ Given an instance of vertex cover with graph 𝐺 = (𝑉, 𝐸) and integer 𝑘,
create the following set cover instance

o Set 𝑈 = 𝐸

o For each 𝑣 ∈ 𝑉, 𝑆 contains a set 𝑆𝑣 of all edges incident on 𝑣

o Selecting 𝑘 set whose union is 𝑈 = selecting 𝑘 vertices such that
union of their incident edges covers all edges

o Hence, the two problems obviously have the same answer

Set Cover

373F20 - Nisarg Shah 67

373F20 - Nisarg Shah 68

Cook-Levin Theorem

373F20 - Nisarg Shah 69

• We did not prove “the first NP-completeness” result

• Theorem: 3SAT is NP-complete
➢ We need to prove this without using any other “known NP-

complete” problem

➢ We want to directly show that every problem in NP can be reduced to
3SAT

• We will first reduce any NP problem to SAT, and then reduce
SAT to 3SAT

Cook-Levin Theorem

373F20 - Nisarg Shah 70

• We’re not going to prove it in this class, but the key idea is
as follows

➢ If a problem is in NP, then ∃ Turing machine 𝑇(𝑥, 𝑦) which

o takes as input a problem instance 𝑥 and an advice 𝑦 of size 𝑝(|𝑥|)

o verifies in 𝑞(|𝑥|) time whether 𝑥 is a YES instance

o both 𝑝 and 𝑞 are polynomials

➢ 𝑥 is a YES instance iff ∃𝑦 𝑇 𝑥, 𝑦 = 𝐴𝐶𝐶𝐸𝑃𝑇

Cook-Levin Theorem

373F20 - Nisarg Shah 71

• 𝑥 is a YES instance iff ∃𝑦 𝑇 𝑥, 𝑦 = 𝐴𝐶𝐶𝐸𝑃𝑇
➢ We need to convert ∃𝑦 𝑇 𝑥, 𝑦 = 𝐴𝐶𝐶𝐸𝑃𝑇 into whether a SAT

formula 𝜑 is satisfiable

• Recall that a Turing machine 𝑇 consists of a memory tape, a
head pointer, a state, and a transition function

• What describes 𝑇 at any given step of its computation?
➢ What is written in each cell of its memory tape?

➢ Which cell of the tape is the read/write head currently pointing to?

➢ What state is the Turing machine in?

NOT IN SYLLABUS

Cook-Levin Theorem

373F20 - Nisarg Shah 72

• 𝑥 is a YES instance iff ∃𝑦 𝑇 𝑥, 𝑦 = 𝐴𝐶𝐶𝐸𝑃𝑇
➢ We need to convert ∃𝑦 𝑇 𝑥, 𝑦 = 𝐴𝐶𝐶𝐸𝑃𝑇 into ∃𝑧 𝜑 𝑧 = 𝑇𝑅𝑈𝐸,

where 𝑧 consists of Boolean variables and 𝜑 is a SAT formula

• Variables:
➢ 𝑇𝑖,𝑗,𝑘 = True if machine’s tape cell 𝑖 contains symbol 𝑗 at step 𝑘 of the

computation

➢ 𝐻𝑖,𝑘 = True if the machine’s read/write head is at tape cell 𝑖 at step 𝑘
of the computation

➢ 𝑄𝑞,𝑘 = True if machine is in state 𝑞 at step 𝑘 of the computation

➢ Cell index 𝑖 and computation step 𝑘 only need to be polynomially
large as 𝑇 works in polynomial time

NOT IN SYLLABUS

Cook-Levin Theorem

373F20 - Nisarg Shah 73

• 𝑥 is a YES instance iff ∃𝑦 𝑇 𝑥, 𝑦 = 𝐴𝐶𝐶𝐸𝑃𝑇
➢ We need to convert ∃𝑦 𝑇 𝑥, 𝑦 = 𝐴𝐶𝐶𝐸𝑃𝑇 into ∃𝑧 𝜑 𝑧 = 𝑇𝑅𝑈𝐸,

where 𝑧 consists of Boolean variables and 𝜑 is a SAT formula

• Clauses:
➢ Express how the variables must be related using the transition

function

➢ Express that the Turing machine must reach the state 𝐴𝐶𝐶𝐸𝑃𝑇 at
some step of the computation

• This establishes that SAT is NP-complete.

• Next: SAT ≤𝑝 3SAT.

NOT IN SYLLABUS

Cook-Levin Theorem

373F20 - Nisarg Shah 74

• Claim: SAT ≤𝑝 3SAT
➢ Take an instance 𝜑 = 𝐶1 ∧ 𝐶2 ∧ ⋯ of SAT

➢ Replace each clause with multiple clauses with exactly 3 literals each

➢ For a clause with one literal, 𝐶 = ℓ1:

o Add two variables 𝑧1, 𝑧2, and replace 𝐶 with four clauses

ℓ1 ∨ 𝑧1 ∨ 𝑧2 ∧ ℓ1 ∨ ҧ𝑧1 ∨ 𝑧2 ∧ ℓ1 ∨ 𝑧1 ∨ ҧ𝑧2 ∧ ℓ1 ∨ ҧ𝑧1 ∨ ҧ𝑧2

o Verify that this is logically equivalent to ℓ1

➢ For a clause with two literals, 𝐶 = (ℓ1 ∨ ℓ2):

o Add variable 𝑧1 and replace it with the following:

ℓ1 ∨ ℓ2 ∨ 𝑧1 ∧ ℓ1 ∨ ℓ2 ∨ ҧ𝑧1

o Verify that this is logically equal to ℓ1 ∨ ℓ2

Cook-Levin Theorem

373F20 - Nisarg Shah 75

• Claim: SAT ≤𝑝 3SAT

➢ For a clause with three literals, 𝐶 = ℓ1 ∨ ℓ2 ∨ ℓ3:

o Perfect. No need to do anything!

➢ For a clause with 4 or more literals, 𝐶 = (ℓ1 ∨ ℓ2 ∨ ⋯ ∨ ℓ𝑘):

o Add variables 𝑧1, 𝑧2, … , 𝑧𝑘−3 and replace it with:

ℓ1 ∨ ℓ2 ∨ 𝑧1 ∧ ℓ3 ∨ ҧ𝑧1 ∨ 𝑧2 ∧ ℓ4 ∨ ҧ𝑧2 ∨ 𝑧3 ∧ ⋯
∧ ℓ𝑘−2 ∨ ҧ𝑧𝑘−4 ∨ 𝑧𝑘−3 ∧ ℓ𝑘−1 ∨ ℓ𝑘 ∨ ҧ𝑧𝑘−3

o Check:

• If any ℓ𝑖 is TRUE, then there exists an assignment of 𝑧 variables
to make this TRUE

• If all ℓ𝑖 are FALSE, then no assignment of 𝑧 variables will make
this TRUE

NP vs co-NP

373F20 - Nisarg Shah 76

• Complements of each other
➢ NP = short proof for YES, co-NP = short proof for NO

➢ If a problem “Does there exist…” is in NP, then its complement “Does
there not exist…” is in co-NP, and vice-versa

➢ The same goes for NP-complete and co-NP-complete

• Example
➢ SAT is NP-complete (“Does there exist 𝑥 satisfying 𝜑?”)

o So “Does there exist no 𝑥 satisfying 𝜑?”, i.e., “Is 𝜑 always FALSE?”
is coNP-complete

➢ Then, Tautology (“Is 𝜑 always TRUE?”) is also coNP-complete

NP ∩ co-NP

373F20 - Nisarg Shah 77

• Clearly, P ⊆ NP ∩ co-NP
➢ No advice needed; can just solve the problem in polytime

➢ Major open question: Is P = NP ∩ co-NP?

• NP ∩ co-NP: Short proof of both YES and NO
➢ Hunt for problems not known in P but still in NP ∩ co-NP

NP ∩ co-NP

373F20 - Nisarg Shah 78

• Linear programming
➢ [Gale–Kuhn–Tucker 1948]: LP is in NP ∩ co-NP

➢ Question: max objective value ≥ threshold?

➢ Proof of YES: Provide a feasible solution with objective ≥ threshold

➢ Proof of NO: Provide optimal primal and dual solutions

NP ∩ co-NP

373F20 - Nisarg Shah 79

• Linear programming
➢ But later, Khachiyan [1979] proved that LP is in P

NP ∩ co-NP

373F20 - Nisarg Shah 80

• Primality testing (“Is 𝑛 a prime?”)
➢ [Pratt 1975]: PRIMES is in NP ∩ co-NP

➢ Proof of NO: Easy, provide a non-trivial factor

➢ Proof of YES: relies on interesting math

NP ∩ co-NP

373F20 - Nisarg Shah 81

• Primality testing (“Is 𝑛 a prime?”)
➢ Later, Agrawal, Kayal, and Saxena [2004] proved that PRIMES is in P

o Milestone result!

NP ∩ co-NP

373F20 - Nisarg Shah 82

• Factoring (“Does 𝑛 have a factor ≤ 𝑘?”)
➢ FACTOR is in NP ∩ co-NP

o Proof of YES: Just present such a factor

o Proof of NO:

• Present the entire prime factorization of 𝑛 along with a short
proof that each presented factor is a prime

• Verifier TM can check that each factor is indeed a prime, their
product is indeed 𝑛, and none of the factors is ≤ 𝑘

• Actually, proofs of primality are not required anymore since
we know the TM can just run the AKS algorithm to check if
the factors are prime

NP ∩ co-NP

373F20 - Nisarg Shah 83

• Factoring (“Does 𝑛 have a factor ≤ 𝑘?”)
➢ Major open question: Is FACTOR in P?

o Basis of several cryptographic procedures

➢ Challenge: Factor the following number.

74037563479561712828046796097429573142593188889231289
08493623263897276503402826627689199641962511784399589
43305021275853701189680982867331732731089309005525051
16877063299072396380786710086096962537934650563796359

RSA-704
($30,000 prize if you can factor it)

NP ∩ co-NP

373F20 - Nisarg Shah 84

• Factoring (“Does 𝑛 have a factor ≤ 𝑘?”)

➢ [Shor 1994]: We can factor an 𝑛-bit integer in 𝑂(𝑛3) steps on a
quantum computer.

➢ *Scalable* quantum computers can help

o 2001: Factored 15 = 3 x 5

o 2012: Factored 21 = 3 x 7

Other Complexity Classes

373F20 - Nisarg Shah 85

• Based on the exact time complexity
➢ DTIME(𝑛), NTIME(𝑛2), …

o Deterministic / nondeterministic time complexity

• Based on space complexity
➢ DSPACE(𝑛), NSPACE(log 𝑛)

• Using randomization
➢ ZPP (expected polynomial time, no errors)

o Is P = ZPP?

• Allowing probabilistic errors
➢ RP (polynomial time, one-sided error)

➢ BPP (polynomial time, two-sided erros)

