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Announcement
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• ACM ICPC Qualification Round

• Oct 24, 3-8pm EST

• Sign up at: https://www.teach.cs.toronto.edu/~acm/

• Top 9 participants will be chosen to represent U of T at the 
regional contest (broken into three teams of 3 each)

https://www.teach.cs.toronto.edu/~acm/


Recap
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• Network flow

➢ Ford-Fulkerson algorithm

o Ways to make the running time polynomial

➢ Correctness using max-flow, min-cut

➢ Applications:

o Edge-disjoint paths

o Multiple sources/sinks

o Circulation 

o Circulation with lower bounds

o Survey design

o Image segmentation

o Profit maximization



Brewery Example
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• A brewery can invest its inventory of corn, hops and malt 
into producing some amount of ale and some amount of 
beer
➢ Per unit resource requirement and profit of the two items are as 

given below

Example Courtesy: Kevin Wayne



Brewery Example
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• Suppose it produces 𝐴
units of ale and 𝐵 units 
of beer

• Then we want to solve 
this program:



Linear Function
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• 𝑓:ℝ𝑛 → ℝ is a linear function if 𝑓 𝑥 = 𝑎𝑇𝑥 for some 𝑎 ∈ ℝ𝑛

➢ Example: 𝑓 𝑥1, 𝑥2 = 3𝑥1 − 5𝑥2 =
3
−5

𝑇 𝑥1
𝑥2

• Linear objective: 𝑓

• Linear constraints:
➢ 𝑔 𝑥 = 𝑐, where 𝑔:ℝ𝑛 → ℝ is a linear function and 𝑐 ∈ ℝ

➢ Line in the plane (or a hyperplane in ℝ𝑛)

➢ Example: 5𝑥1 + 7𝑥2 = 10



Linear Function
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• Geometrically, 𝑎 is the normal vector of the line(or 
hyperplane) represented by 𝑎𝑇𝑥 = 𝑐



Linear Inequality
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• 𝑎𝑇𝑥 ≤ 𝑐 represents a “half-space”



Linear Programming
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• Maximize/minimize a linear function subject to linear 
equality/inequality constraints



Geometrically…
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Back to Brewery Example
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Back to Brewery Example
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• Claim: Regardless of the objective function, there must be a 
vertex that is an optimal solution

Optimal Solution At A Vertex
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Convexity
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• Convex set: 𝑆 is convex if 
𝑥, 𝑦 ∈ 𝑆, 𝜆 ∈ [0,1] ⇒ 𝜆𝑥 + 1 − 𝜆 𝑦 ∈ 𝑆

• Vertex: A point which cannot be written as a strict convex 
combination of any two points in the set

• Observation: Feasible region of an LP is a convex set



Optimal Solution At A Vertex
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• Intuitive proof of the claim:
➢ Start at some point 𝑥 in the feasible region

➢ If 𝑥 is not a vertex:

o Find a direction 𝑑 such that points within a positive distance of 𝜖 from 𝑥 in 
both 𝑑 and −𝑑 directions are within the feasible region

o Objective must not decrease in at least one of the two directions

o Follow that direction until you reach a new point 𝑥 for which at least one 
more constraint is “tight”

➢ Repeat until we are at a vertex



LP, Standard Formulation
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• Input: 𝑐, 𝑎1, 𝑎2, … , 𝑎𝑚 ∈ ℝ𝑛, 𝑏 ∈ ℝ𝑚

➢ There are 𝑛 variables and 𝑚 constraints

• Goal:



LP, Standard Matrix Form
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• Input: 𝑐, 𝑎1, 𝑎2, … , 𝑎𝑚 ∈ ℝ𝑛, 𝑏 ∈ ℝ𝑚

➢ There are 𝑛 variables and 𝑚 constraints

• Goal:



Convert to Standard Form
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• What if the LP is not in standard form?

➢ Constraints that use ≥
o 𝑎𝑇𝑥 ≥ 𝑏 ⇔ −𝑎𝑇𝑥 ≤ −𝑏

➢ Constraints that use equality

o 𝑎𝑇𝑥 = 𝑏 ⇔ 𝑎𝑇𝑥 ≤ 𝑏, 𝑎𝑇𝑥 ≥ 𝑏

➢ Objective function is a minimization

o Minimize 𝑐𝑇𝑥 ⇔ Maximize −𝑐𝑇𝑥

➢ Variable is unconstrained

o 𝑥 with no constraint  ⇔ Replace 𝑥 by two variables 𝑥′and 𝑥′′, replace 
every occurrence of 𝑥 with 𝑥′ − 𝑥′′, and add constraints 𝑥′ ≥ 0, 𝑥′′ ≥ 0



LP Transformation Example
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Optimal Solution

373F20 - Nisarg Shah 20

• Does an LP always have an optimal solution?

• No! The LP can “fail” for two reasons:
1. It is infeasible, i.e. 𝑥 𝐴𝑥 ≤ 𝑏} = ∅

o E.g. the set of constraints is 𝑥1 ≤ 1,−𝑥1≤ −2

2. It is unbounded, i.e. the objective function can be made arbitrarily 
large (for maximization) or small (for minimization)

o E.g. “maximize 𝑥1 subject to 𝑥1 ≥ 0”

• But if the LP has an optimal solution, we know that there 
must be a vertex which is optimal



Simplex Algorithm
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• Simple algorithm, easy to specify geometrically 

• Worst-case running time is exponential

• Excellent performance in practice



Simplex: Geometric View
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Algorithmic Implementation
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Start at a 
vertex of 
feasible 

polytope

Move to a 
neighbor vertex 

with better 
objective value

Terminate, declare 
the current 

solution and value 
as optimal

Is there a 
neighbor vertex 

with better 
objective value?



How Do We Implement This?

373F20 - Nisarg Shah 24

• We’ll work with the slack form of LP
➢ Convenient for implementing simplex operations

➢ We want to maximize 𝑧 in the slack form, but for now, forget about 
the maximization objective



Slack Form
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Slack Form
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Simplex: Step 1
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• Start at a feasible vertex
➢ How do we find a feasible vertex?

➢ For now, assume 𝑏 ≥ 0 (each 𝑏𝑖 ≥ 0)
o In this case, 𝑥 = 0 is a feasible vertex.

o In the slack form, this means setting the nonbasic variables to 0

➢ We’ll later see what to do in the general case



Simple: Step 2
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• What next? Let’s look at an example

• To increase the value of 𝑧:
➢ Find a nonbasic variable with a positive coefficient
o This is called an entering variable

➢ See how much you can increase its value without violating any 
constraints



Simple: Step 2
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This is because the current 
values of 𝑥2 and 𝑥3 are 0, 

and we need 𝑥4, 𝑥5, 𝑥6 ≥ 0



Simple: Step 2

373F20 - Nisarg Shah 30

Tightest obstacle

➢ Solve the tightest obstacle for the nonbasic variable

𝑥1 = 9 −
𝑥2
4
−
𝑥3
2
−
𝑥6
4

o Substitute the entering variable (called pivot) in other equations

o Now 𝑥1 becomes basic and 𝑥6 becomes non-basic

o 𝑥6 is called the leaving variable



Simplex: Step 2
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• After one iteration of this step:
➢ The basic feasible solution (i.e. substituting 0 for all nonbasic

variables) improves from 𝑧 = 0 to 𝑧 = 27

• Repeat!



Simplex: Step 2
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Simplex: Step 2
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Simplex: Step 2
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• There is no leaving variable (nonbasic variable with positive coefficient). 
• What now? Nothing! We are done. 
• Take the basic feasible solution (𝑥3 = 𝑥5 = 𝑥6 = 0).
• Gives the optimal value 𝑧 = 28
• In the optimal solution, 𝑥1 = 8, 𝑥2 = 4, 𝑥3 = 0



Simplex Overview
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Start at a 
vertex of 
feasible 

polytope

Move to a 
neighbor vertex 

with better 
objective value

Terminate, declare 
the current 

solution and value 
as optimal

Is there a 
neighbor vertex 

with better 
objective value?



Simplex Overview
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Assuming 𝑏 ≥
0, start with a 
basic feasible 

solution

Move to a 
neighbor vertex 

with better 
objective value

Terminate, declare 
the current 

solution and value 
as optimal

Is there a 
neighbor vertex 

with better 
objective value?



Simplex Overview
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Assuming 𝑏 ≥
0, start with a 
basic feasible 

solution

Move to a 
neighbor vertex 

with better 
objective value

Terminate, declare 
the current 

solution and value 
as optimal

Is there an 
entering variable 

with positive 
coefficient?



Simplex Overview
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Assuming 𝑏 ≥
0, start with a 
basic feasible 

solution

Pivot on a leaving 
variable

Terminate, declare 
the current 

solution and value 
as optimal

Is there an 
entering variable 

with positive 
coefficient?



Simplex Overview
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Assuming 𝑏 ≥
0, start with a 
basic feasible 

solution

Pivot on a leaving 
variable

Terminate, declare 
optimal value

Is there an 
entering variable 

with positive 
coefficient?



Some Outstanding Issues
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• What if the entering variable has no upper bound?
➢ If it doesn’t appear in any constraints, or only appears in constraints 

where it can go to ∞

➢ Then 𝑧 can also go to ∞, so declare that LP is unbounded

• What if pivoting doesn’t change the constant in 𝑧?
➢ Known as degeneracy, and can lead to infinite loops

➢ Can be prevented by “perturbing” 𝑏 by a small random amount in 
each coordinate

➢ Or by carefully breaking ties among entering and leaving variables, 
e.g., by smallest index (known as Bland’s rule)



Some Outstanding Issues
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• We assumed 𝑏 ≥ 0, and then started with the vertex 𝑥 = 0

• What if this assumption does not hold?

𝐿𝑃1

Max 𝑐𝑇𝑥

s.t. 𝑎1
𝑇𝑥 ≤ 𝑏1

𝑎2
𝑇𝑥 ≤ 𝑏2

⋮

𝑎𝑚
𝑇 𝑥 ≤ 𝑏𝑚

𝑥 ≥ 0

𝐿𝑃2

Max 𝑐𝑇𝑥

s.t. 𝑎1
𝑇𝑥 + 𝑠1 = 𝑏1

𝑎2
𝑇𝑥 + 𝑠2 = 𝑏2

⋮

𝑎𝑚
𝑇 𝑥 + 𝑠𝑚 = 𝑏𝑚

𝑥, 𝑠 ≥ 0

𝐿𝑃3

Max 𝑐𝑇𝑥

s.t. 𝑎1
𝑇𝑥 + 𝑠1 = 𝑏1

−𝑎2
𝑇𝑥 − 𝑠2 = −𝑏2

⋮

−𝑎𝑚
𝑇 𝑥 − 𝑠𝑚 = −𝑏𝑚

𝑥, 𝑠 ≥ 0

Multiply every 
constraint with 
negative 𝑏𝑖 by 
− 1 so RHS is 
now positive



Some Outstanding Issues
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• We assumed 𝑏 ≥ 0, and then started with the vertex 𝑥 = 0

• What if this assumption does not hold?

𝐿𝑃3

Max 𝑐𝑇𝑥

s.t. 𝑎1
𝑇𝑥 + 𝑠1 = 𝑏1

−𝑎2
𝑇𝑥 − 𝑠2 = −𝑏2

⋮

−𝑎𝑚
𝑇 𝑥 − 𝑠𝑚 = −𝑏𝑚

𝑥, 𝑠 ≥ 0 Remember: 
RHS is now 
positive

𝐿𝑃4

Min σ𝑖 𝑧𝑖

s.t. 𝑎1
𝑇𝑥 + 𝑠1 + 𝑧1 = 𝑏1

−𝑎2
𝑇𝑥 − 𝑠2 + 𝑧2 = −𝑏2

⋮

−𝑎𝑚
𝑇 𝑥 − 𝑠𝑚 + 𝑧𝑚 = −𝑏𝑚

𝑥, 𝑠, 𝑧 ≥ 0

Remember: 
we only 
want to 
find a basic 
feasible 
solution to 
𝐿𝑃1



Some Outstanding Issues
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• We assumed 𝑏 ≥ 0, and then started with the vertex 𝑥 = 0

• What if this assumption does not hold?

Remember: 
the RHS is now 
positive

𝐿𝑃4

Min σ𝑖 𝑧𝑖

s.t. 𝑎1
𝑇𝑥 + 𝑠1 + 𝑧1 = 𝑏1

−𝑎2
𝑇𝑥 − 𝑠2 + 𝑧2 = −𝑏2

⋮

−𝑎𝑚
𝑇 𝑥 − 𝑠𝑚 + 𝑧𝑚 = −𝑏𝑚

𝑥, 𝑠, 𝑧 ≥ 0

What now?
• Solve 𝐿𝑃4 using simplex with 

the initial basic solution 
being 𝑥 = 𝑠 = 0, 𝑧 = 𝑏

• If its optimum value is 0, 
extract a basic feasible 
solution 𝑥∗ from it, use it to 
solve 𝐿𝑃1 using simplex

• If optimum value for 𝐿𝑃4 is 
greater than 0, then 𝐿𝑃1 is 
infeasible



Some Outstanding Issues
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• We assumed 𝑏 ≥ 0, and then started with the vertex 𝑥 = 0

• What if this assumption does not hold?

𝐿𝑃1

Max 𝑐𝑇𝑥

s.t. 𝑎1
𝑇𝑥 ≤ 𝑏1

𝑎2
𝑇𝑥 ≤ 𝑏2

⋮

𝑎𝑚
𝑇 𝑥 ≤ 𝑏𝑚

𝑥 ≥ 0

𝐿𝑃2

Min σ𝑖 𝑧𝑖

s.t. 𝑎1
𝑇𝑥 + 𝑠1 + 𝑧1 = 𝑏1

𝑎2
𝑇𝑥 + 𝑠2 + 𝑧2 = 𝑏2

⋮

𝑎𝑚
𝑇 𝑥 + 𝑠𝑚 + 𝑧𝑚 = 𝑏𝑚

𝑥, 𝑠 ≥ 0

• Solve 𝐿𝑃2 using simplex with 
the initial basic feasible 
solution 𝑥 = 𝑠 = 0, 𝑧 = 𝑏

• If its optimum value is 0, 
extract a basic feasible 
solution 𝑥∗ from it, use it to 
solve 𝐿𝑃1 using simplex

• If optimum value for 𝐿𝑃2 is 
greater than 0, then 𝐿𝑃1 is 
infeasible



Some Outstanding Issues
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• Curious about pseudocode? Proof of correctness? Running 
time analysis?

• See textbook for details, but this is NOT in syllabus!



Running Time
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• Notes
➢ Number of vertices of a polytope can be exponential in the number 

of constraints
o There are examples where simplex takes exponential time if you choose 

your pivots arbitrarily

o No pivot rule known which guarantees polynomial running time

➢ There are other algorithms which run in polynomial time
o Ellipsoid method, interior point method, …

o Ellipsoid uses 𝑂(𝑚𝑛3𝐿) arithmetic operations, where 𝐿 = length of input

o But no known strongly polynomial time algorithm

• Number of arithmetic operations = poly(m,n)



Certificate of Optimality
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• Suppose you design a state-of-the-art LP solver that can 
solve very large problem instances

• You want to convince someone that you have this new 
technology without showing them the code
➢ Idea: They can give you very large LPs and you can quickly return the 

optimal solutions

➢ Question: But how would they know that your solutions are optimal, 
if they don’t have the technology to solve those LPs?



Certificate of Optimality
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• Suppose I tell you that 𝑥1, 𝑥2 = (100,300) is optimal with 
objective value 1900

• How can you check this?
➢ Note: Can easily substitute (𝑥1, 𝑥2), and verify that it is feasible, and 

its objective value is indeed 1900



Certificate of Optimality
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• Any solution that satisfies these inequalities also satisfies 
their positive combinations
➢ E.g. 2*first_constraint + 5*second_constraint + 3*third_constraint

➢ Try to take combinations which give you 𝑥1 + 6𝑥2 on LHS

• Claim: 𝑥1, 𝑥2 = (100,300) is 
optimal with objective value 1900



Certificate of Optimality
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• first_constraint + 6*second_constraint
➢ 𝑥1 + 6𝑥2 ≤ 200 + 6 ∗ 300 = 2000

➢ This shows that no feasible solution can beat 2000

• Claim: 𝑥1, 𝑥2 = (100,300) is 
optimal with objective value 1900



Certificate of Optimality
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• 5*second_constraint + third_constraint
➢ 5𝑥2 + 𝑥1 + 𝑥2 ≤ 5 ∗ 300 + 400 = 1900

➢ This shows that no feasible solution can beat 1900
o No need to proceed further

o We already know one solution that achieves 1900, so it must be optimal!

• Claim: 𝑥1, 𝑥2 = (100,300) is 
optimal with objective value 1900



Is There a General Algorithm?
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• Introduce variables 𝑦1, 𝑦2, 𝑦3 by which we will be 
multiplying the three constraints
➢ Note: These need not be integers. They can be reals.

• After multiplying and adding constraints, we get:
𝑦1 + 𝑦3 𝑥1 + 𝑦2 + 𝑦3 𝑥2 ≤ 200𝑦1 + 300𝑦2 + 400𝑦3



Is There a General Algorithm?
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➢ We have: 
𝑦1 + 𝑦3 𝑥1 + 𝑦2 + 𝑦3 𝑥2 ≤ 200𝑦1 + 300𝑦2 + 400𝑦3

➢ What do we want?

o 𝑦1, 𝑦2, 𝑦3 ≥ 0 because otherwise direction of inequality flips

o LHS to look like objective 𝑥1 + 6𝑥2
• In fact, it is sufficient for LHS to be an upper bound on objective

• So we want 𝑦1 + 𝑦3 ≥ 1 and 𝑦2 + 𝑦3 ≥ 6



Is There a General Algorithm?

373F20 - Nisarg Shah 54

➢ We have: 
𝑦1 + 𝑦3 𝑥1 + 𝑦2 + 𝑦3 𝑥2 ≤ 200𝑦1 + 300𝑦2 + 400𝑦3

➢ What do we want?

o 𝑦1, 𝑦2, 𝑦3 ≥ 0

o 𝑦1 + 𝑦3 ≥ 1, 𝑦2 + 𝑦3 ≥ 6

o Subject to these, we want to minimize the upper bound 200𝑦1 +
300𝑦2 + 400𝑦3



Is There a General Algorithm?
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➢ We have: 
𝑦1 + 𝑦3 𝑥1 + 𝑦2 + 𝑦3 𝑥2 ≤ 200𝑦1 + 300𝑦2 + 400𝑦3

➢ What do we want?
o This is just another LP!

o Called the dual

o Original LP is called the primal



Is There a General Algorithm?
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➢ The problem of verifying optimality is another LP
o For any 𝑦1, 𝑦2, 𝑦3 that you can find, the objective value of the dual is an 

upper bound on the objective value of the primal

o If you found a specific 𝑦1, 𝑦2, 𝑦3 for which this dual objective becomes 
equal to the primal objective for the (𝑥1, 𝑥2) given to you, then you 
would know that the given 𝑥1, 𝑥2 is optimal for primal (and your 
(𝑦1, 𝑦2, 𝑦3) is optimal for dual)



Is There a General Algorithm?
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➢ The problem of verifying optimality is another LP
o Issue 1: But…but…if I can’t solve large LPs, how will I solve the dual to 

verify if optimality of (𝑥1, 𝑥2) given to me?

• You don’t. Ask the other party to give you both (𝑥1, 𝑥2) and the 
corresponding 𝑦1, 𝑦2, 𝑦3 for proof of optimality

o Issue 2: What if there are no (𝑦1, 𝑦2, 𝑦3) for which dual objective matches 
primal objective under optimal solution (𝑥1, 𝑥2)?

• As we will see, this can’t happen!



Is There a General Algorithm?

373F20 - Nisarg Shah 58

Primal LP Dual LP

➢ General version, in our standard form for LPs



Is There a General Algorithm?
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Primal LP Dual LP

o 𝑐𝑇𝑥 for any feasible 𝑥 ≤ 𝑦𝑇𝑏 for any feasible 𝑦

o max
primal feasible 𝑥

𝑐𝑇𝑥 ≤ min
dual feasible 𝑦

𝑦𝑇𝑏

o If there is (𝑥∗, 𝑦∗) with 𝑐𝑇𝑥∗ = 𝑦∗ 𝑇𝑏, then both must be optimal

o In fact, for optimal 𝑥∗, 𝑦∗ , we claim that this must happen!

• Does this remind you of something? Max-flow, min-cut…



Weak Duality
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• From here on, assume primal LP is feasible and bounded

• Weak duality theorem:
➢ For any primal feasible 𝑥 and dual feasible 𝑦, 𝑐𝑇𝑥 ≤ 𝑦𝑇𝑏

• Proof:
𝑐𝑇𝑥 ≤ 𝑦𝑇𝐴 𝑥 = 𝑦𝑇 𝐴𝑥 ≤ 𝑦𝑇𝑏

Primal LP Dual LP



Strong Duality
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• Strong duality theorem:
➢ For any primal optimal 𝑥∗ and dual optimal 𝑦∗, 𝑐𝑇𝑥∗ = 𝑦∗ 𝑇𝑏

Primal LP Dual LP



Strong Duality Proof
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• Farkas’ lemma (one of many, many versions):
➢ Exactly one of the following holds:

1) There exists 𝑥 such that 𝐴𝑥 ≤ 𝑏

2) There exists 𝑦 such that 𝑦𝑇𝐴 = 0, 𝑦 ≥ 0, 𝑦𝑇𝑏 < 0

• Geometric intuition:
➢ Define image of 𝐴 = set of all possible values of 𝐴𝑥

➢ It is known that this is a “linear subspace” (e.g. a line in a plane, a 
line or plane in 3D, etc)

This slide is not in the 
scope of the course



Strong Duality Proof
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• Farkas’ lemma: Exactly one of the following holds:
1) There exists 𝑥 such that 𝐴𝑥 ≤ 𝑏

2) There exists 𝑦 such that 𝑦𝑇𝐴 = 0, 𝑦 ≥ 0, 𝑦𝑇𝑏 < 0

1) Image of 𝐴 contains a point “below” 𝑏 2) The region “below” 𝑏 doesn’t intersect image of 𝐴
this is witnessed by normal vector to the image of 𝐴

This slide is not in the 
scope of the course
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• Strong duality theorem:
➢ For any primal optimal 𝑥∗ and dual optimal 𝑦∗, 𝑐𝑇𝑥∗ = 𝑦∗ 𝑇𝑏

➢ Proof (by contradiction):

o Let 𝑧∗ = 𝑐𝑇𝑥∗ be the optimal primal value. 

o Suppose optimal dual objective value > 𝑧∗

o So there is no 𝑦 such that 𝑦𝑇𝐴 ≥ 𝑐𝑇 and 𝑦𝑇𝑏 ≤ 𝑧∗, i.e.,

Primal LP Dual LP

This slide is not in the 
scope of the course
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➢ There is no 𝑦 such that

➢ By Farkas’ lemma, there is 𝑥 and 𝜆 such that

➢ Case 1: 𝜆 > 0
o Note: 𝑐𝑇𝑥 > 𝜆𝑧∗ and 𝐴𝑥 = 0 = 𝜆𝑏. 

o Divide both by 𝜆 to get 𝐴
𝑥

𝜆
= 𝑏 and 𝑐𝑇

𝑥

𝜆
> 𝑧∗

• Contradicts optimality of 𝑧∗

➢ Case 2: 𝜆 = 0

o We have 𝐴𝑥 = 0 and 𝑐𝑇𝑥 > 0

o Adding 𝑥 to optimal 𝑥∗ of primal improves objective value beyond 𝑧∗ ⇒
contradiction

This slide is not in the 
scope of the course
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• A canning company operates two
canning plants (A and B). 

• Three suppliers of fresh fruits:

• Shipping costs in $/tonne:

• Plant capacities and labour costs:

• Selling price: $50/tonne, no limit

• Objective: Find which plant should get how much supply 
from each grower to maximize profit
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• Similarly to the brewery example from the beginning:
➢ A brewery can invest its inventory of corn, hops and malt into 

producing three types of beer

➢ Per unit resource requirement and profit are as given below

➢ The brewery cannot produce positive amounts of both A and B

➢ Goal: maximize profit

Beverage Corn (kg) Hops (kg) Malt (kg) Profit ($)

A 5 4 35 13

B 15 4 20 23

C 10 7 25 15

Limit 500 300 1000
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• Similarly to the brewery example from the beginning:
➢ A brewery can invest its inventory of corn, hops and malt into 

producing three types of beer

➢ Per unit resource requirement and profit are as given below

➢ The brewery can only produce 𝐶 in integral quantities up to 100

➢ Goal: maximize profit

Beverage Corn (kg) Hops (kg) Malt (kg) Profit ($)

A 5 4 35 13

B 15 4 20 23

C 10 7 25 15

Limit 500 300 1000
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• Similarly to the brewery example from the beginning:
➢ A brewery can invest its inventory of corn, hops and malt into 

producing three types of beer

➢ Per unit resource requirement and profit are as given below

➢ Goal: maximize profit, but if there are multiple profit-maximizing 
solutions, then…

o Break ties to choose those with the largest quantity of 𝐴

o Break any further ties to choose those with the largest quantity of 𝐵

Beverage Corn (kg) Hops (kg) Malt (kg) Profit ($)

A 5 4 35 13

B 15 4 20 23

C 10 7 25 15

Limit 500 300 1000
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• Constraint: 𝑥 ≤ 3
➢ Replace with constraints 𝑥 ≤ 3 and −𝑥 ≤ 3

➢ What if the constraint is 𝑥 ≥ 3?

• Objective: minimize 3 𝑥 + 𝑦
➢ Add a variable 𝑡

➢ Add the constraints 𝑡 ≥ 𝑥 and 𝑡 ≥ −𝑥 (so 𝑡 ≥ |𝑥|)

➢ Change the objective to minimize 3𝑡 + 𝑦

➢ What if the objective is to maximize 3 𝑥 + 𝑦?

• Objective: minimize max(3𝑥 + 𝑦, 𝑥 + 2𝑦)
➢ Hint: minimizing 3 𝑥 + 𝑦 in the earlier bullet was equivalent to 

minimizing max(3𝑥 + 𝑦,−3𝑥 + 𝑦)

• …
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