CSC373

Week 6: Linear Programming

Illustration Courtesy: Kevin Wayne & Denis Pankratov

Announcement

- ACM ICPC Qualification Round
- Oct 24, 3-8pm EST
- Sign up at: https://www.teach.cs.toronto.edu/~acm/
- Top 9 participants will be chosen to represent U of T at the regional contest (broken into three teams of 3 each)

Recap

Network flow

- > Ford-Fulkerson algorithm
 - Ways to make the running time polynomial
- > Correctness using max-flow, min-cut
- > Applications:
 - Edge-disjoint paths
 - Multiple sources/sinks
 - o Circulation
 - Circulation with lower bounds
 - Survey design
 - Image segmentation
 - Profit maximization

Brewery Example

- A brewery can invest its inventory of corn, hops and malt into producing some amount of ale and some amount of beer
 - Per unit resource requirement and profit of the two items are as given below

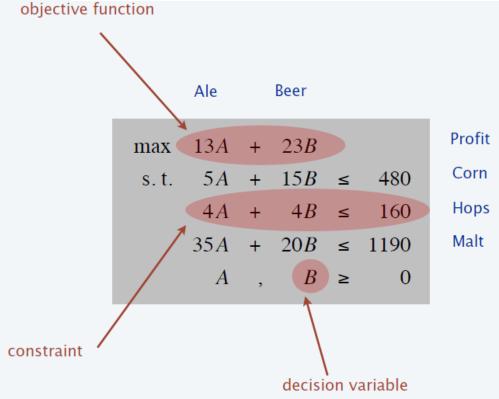
Beverage	Corn (pounds)	Hops (ounces)	Malt (pounds)	Profit (\$)
Ale (barrel)	5	4	35	13
Beer (barrel)	15	4	20	23
constraint	480	160	1190	

Example Courtesy: Kevin Wayne

Brewery Example

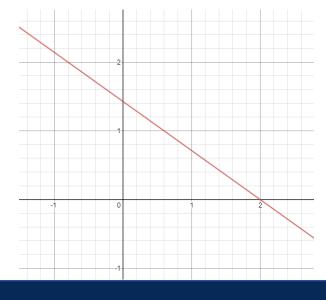
Beverage	Corn (pounds)	Hops (ounces)	Malt (pounds)	Profit (\$)
Ale (barrel)	5	4	35	13
Beer (barrel)	15	4	20	23
constraint	480	160	1100	1.1

- Suppose it produces A units of ale and B units of beer
- Then we want to solve this program:



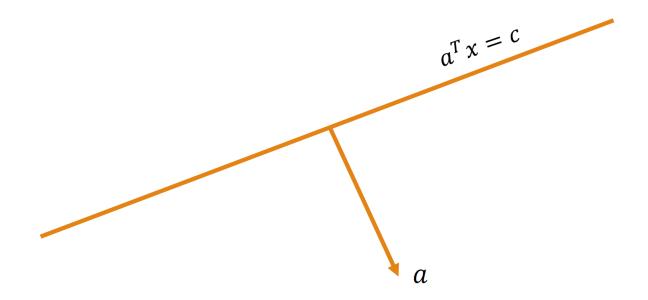
Linear Function

- $f: \mathbb{R}^n \to \mathbb{R}$ is a linear function if $f(x) = a^T x$ for some $a \in \mathbb{R}^n$
 - **Example:** $f(x_1, x_2) = 3x_1 5x_2 = \binom{3}{-5}^T \binom{x_1}{x_2}$
- Linear objective: *f*
- Linear constraints:
 - $\Rightarrow g(x) = c$, where $g: \mathbb{R}^n \to \mathbb{R}$ is a linear function and $c \in \mathbb{R}$
 - \succ Line in the plane (or a hyperplane in \mathbb{R}^n)
 - \rightarrow Example: $5x_1 + 7x_2 = 10$



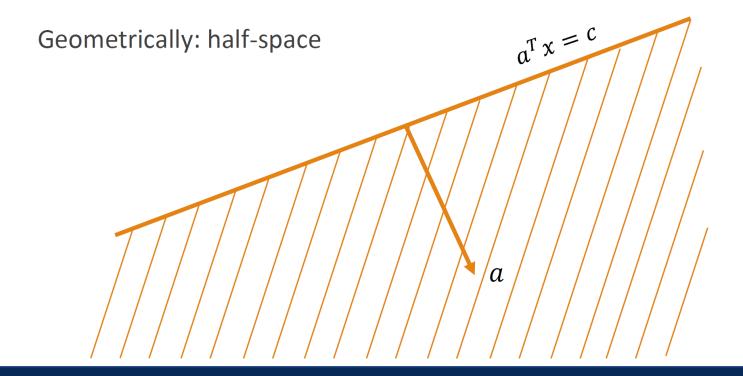
Linear Function

• Geometrically, a is the normal vector of the line(or hyperplane) represented by $a^Tx=c$



Linear Inequality

• $a^T x \le c$ represents a "half-space"



Linear Programming

 Maximize/minimize a linear function subject to linear equality/inequality constraints

Objective function

$$\max x_1 + 6x_2$$

Constraints

$$x_1 \le 200$$

$$x_2 \le 300$$

$$x_1 + x_2 \le 400$$

$$x_1, x_2 \ge 0$$

Linear objective!

Linear constraints: inequalities

Geometrically...

Objective function $\max x_1 + 6x_2$

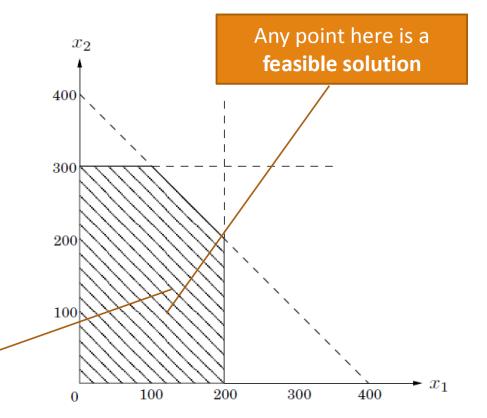
Constraints

$$x_1 \le 200$$

$$x_2 \le 300$$

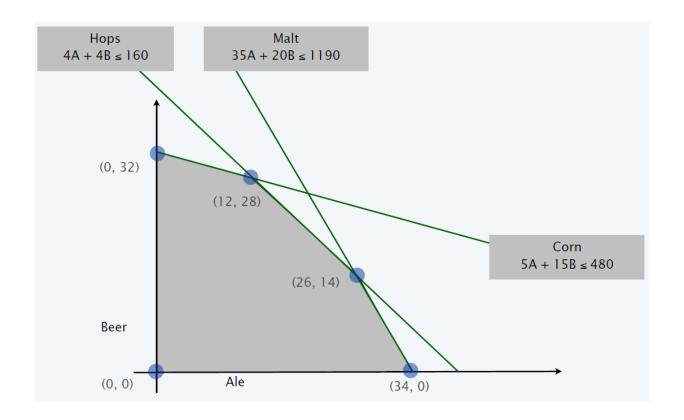
$$x_1 + x_2 \le 400$$

$$x_1, x_2 \ge 0$$

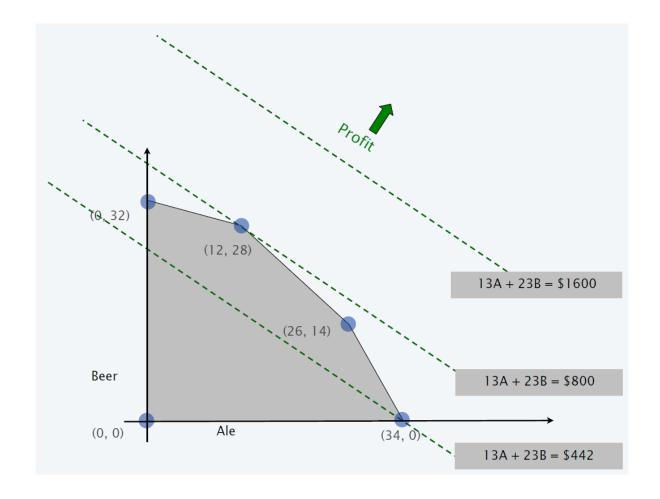


Feasible region – polytope, aka intersection of half-spaces!

Back to Brewery Example

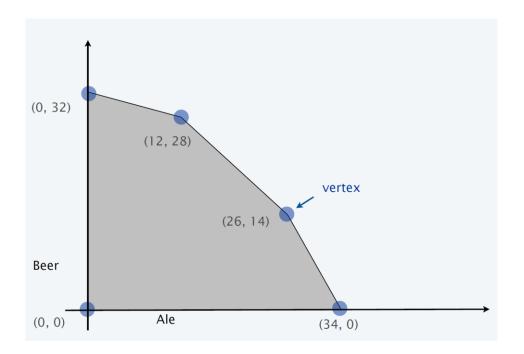


Back to Brewery Example



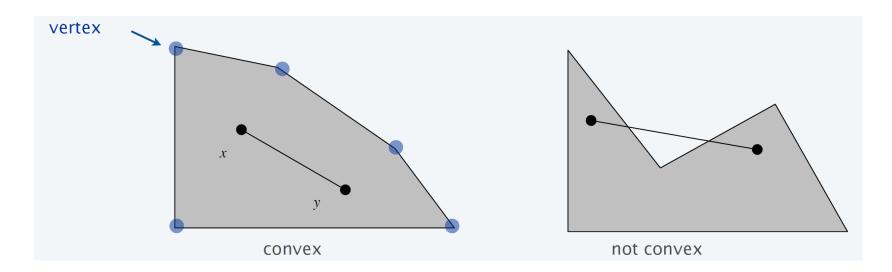
Optimal Solution At A Vertex

 Claim: Regardless of the objective function, there must be a vertex that is an optimal solution



Convexity

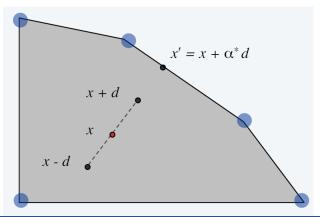
- Convex set: S is convex if $x, y \in S, \lambda \in [0,1] \Rightarrow \lambda x + (1 \lambda)y \in S$
- Vertex: A point which cannot be written as a strict convex combination of any two points in the set
- Observation: Feasible region of an LP is a convex set



Optimal Solution At A Vertex

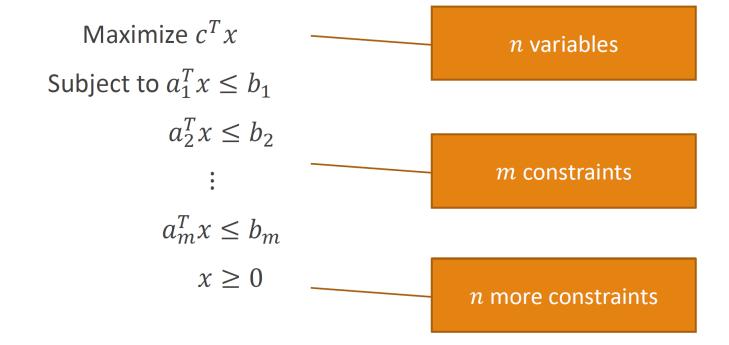
Intuitive proof of the claim:

- > Start at some point *x* in the feasible region
- \triangleright If x is not a vertex:
 - \circ Find a direction d such that points within a positive distance of ϵ from x in both d and -d directions are within the feasible region
 - Objective must not decrease in at least one of the two directions
 - Follow that direction until you reach a new point x for which at least one more constraint is "tight"
- > Repeat until we are at a vertex



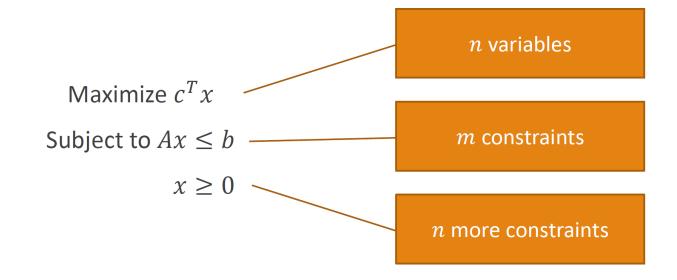
LP, Standard Formulation

- Input: $c, a_1, a_2, \dots, a_m \in \mathbb{R}^n, b \in \mathbb{R}^m$
 - > There are n variables and m constraints
- Goal:



LP, Standard Matrix Form

- Input: $c, a_1, a_2, \dots, a_m \in \mathbb{R}^n, b \in \mathbb{R}^m$
 - > There are n variables and m constraints
- Goal:



Convert to Standard Form

- What if the LP is not in standard form?
 - ➤ Constraints that use ≥

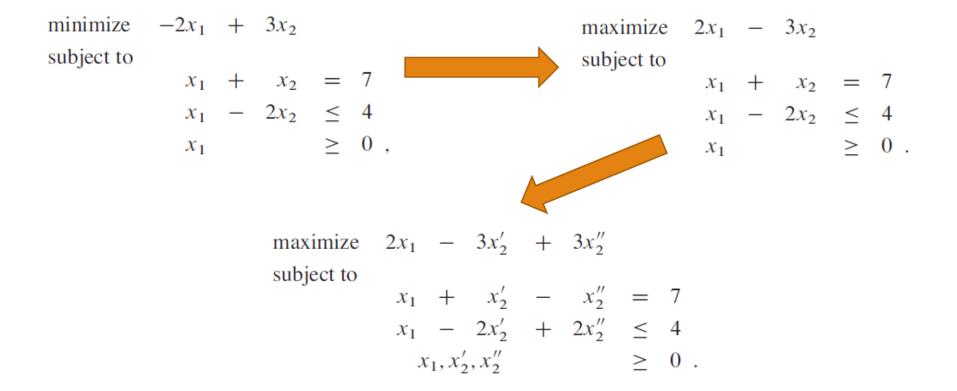
$$a^T x \ge b \iff -a^T x \le -b$$

Constraints that use equality

$$a^T x = b \iff a^T x \le b, \ a^T x \ge b$$

- > Objective function is a minimization
 - \circ Minimize $c^T x \Leftrightarrow \text{Maximize } -c^T x$
- Variable is unconstrained
 - o x with no constraint \Leftrightarrow Replace x by two variables x' and x'', replace every occurrence of x with x' x'', and add constraints $x' \ge 0$, $x'' \ge 0$

LP Transformation Example



Optimal Solution

- Does an LP always have an optimal solution?
- No! The LP can "fail" for two reasons:
 - 1. It is *infeasible*, i.e. $\{x \mid Ax \leq b\} = \emptyset$
 - E.g. the set of constraints is $\{x_1 \le 1, -x_1 \le -2\}$
 - 2. It is *unbounded*, i.e. the objective function can be made arbitrarily large (for maximization) or small (for minimization)
 - E.g. "maximize x_1 subject to $x_1 \ge 0$ "
- But if the LP has an optimal solution, we know that there must be a vertex which is optimal

Simplex Algorithm

```
let v be any vertex of the feasible region while there is a neighbor v' of v with better objective value: set v=v'
```

- Simple algorithm, easy to specify geometrically
- Worst-case running time is exponential
- Excellent performance in practice

Simplex: Geometric View

let v be any vertex of the feasible region while there is a neighbor v^\prime of v with better objective value: set $v=v^\prime$

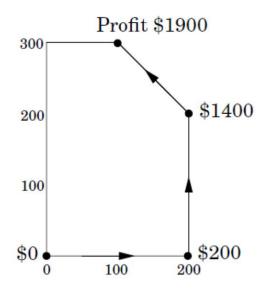
$$\max x_1 + 6x_2$$

$$x_1 \le 200$$

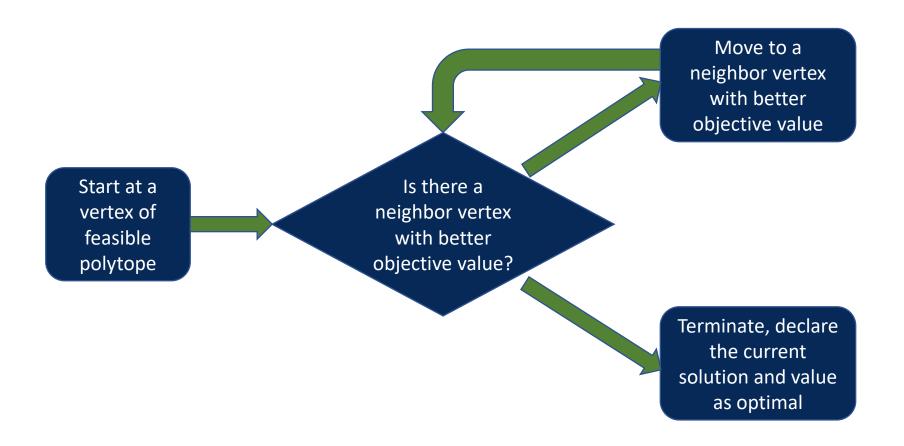
$$x_2 \le 300$$

$$x_1 + x_2 \le 400$$

$$x_1, x_2 \ge 0$$



Algorithmic Implementation



How Do We Implement This?

- We'll work with the slack form of LP
 - > Convenient for implementing simplex operations
 - \succ We want to maximize z in the slack form, but for now, forget about the maximization objective

Standard form:

Maximize
$$c^T x$$

Subject to $Ax \le b$
 $x \ge 0$

Slack form:

$$z = c^{T} x$$

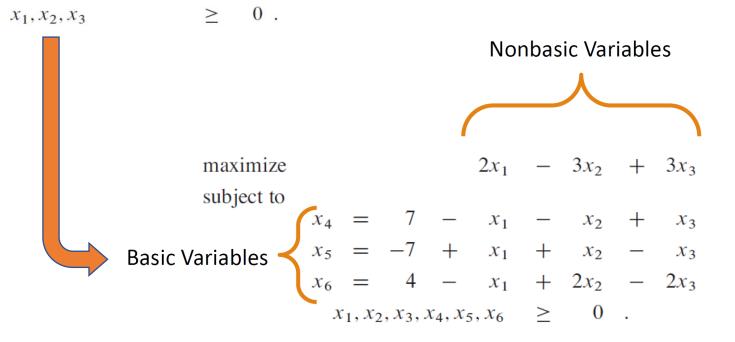
$$s = b - Ax$$

$$s, x \ge 0$$

Slack Form

maximize
$$2x_1 - 3x_2 + 3x_3$$

subject to $x_1 + x_2 - x_3 \le 7$
 $-x_1 - x_2 + x_3 \le -7$
 $x_1 - 2x_2 + 2x_3 \le 4$



Slack Form

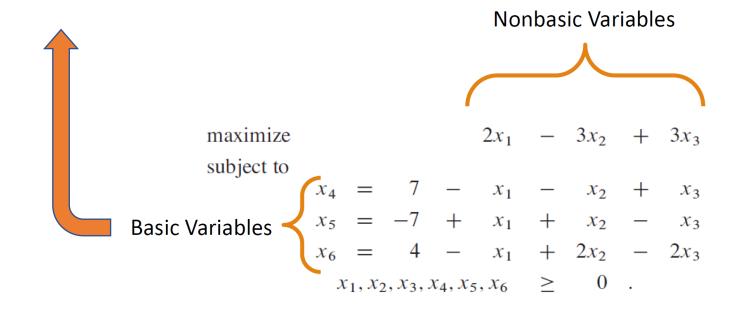
$$z = 2x_1 - 3x_2 + 3x_3$$

$$x_4 = 7 - x_1 - x_2 + x_3$$

$$x_5 = -7 + x_1 + x_2 - x_3$$

$$x_6 = 4 - x_1 + 2x_2 - 2x_3$$

$$x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$$



- Start at a feasible vertex
 - > How do we find a feasible vertex?
 - \rightarrow For now, assume $b \ge 0$ (each $b_i \ge 0$)
 - \circ In this case, x = 0 is a feasible vertex.
 - \circ In the slack form, this means setting the nonbasic variables to 0
 - > We'll later see what to do in the general case

Standard form:

Maximize $c^T x$ Subject to $Ax \le b$ $x \ge 0$

Slack form:

$$z = c^{T} x$$

$$s = b - Ax$$

$$s, x \ge 0$$

• What next? Let's look at an example

$$z = 3x_1 + x_2 + 2x_3$$

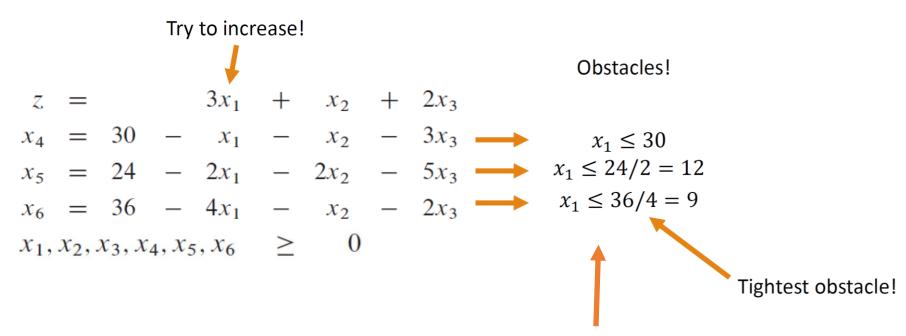
$$x_4 = 30 - x_1 - x_2 - 3x_3$$

$$x_5 = 24 - 2x_1 - 2x_2 - 5x_3$$

$$x_6 = 36 - 4x_1 - x_2 - 2x_3$$

$$x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$$

- To increase the value of z:
 - Find a nonbasic variable with a positive coefficient
 - This is called an *entering variable*
 - See how much you can increase its value without violating any constraints



This is because the current values of x_2 and x_3 are 0, and we need $x_4, x_5, x_6 \ge 0$

$$z = 3x_1 + x_2 + 2x_3$$

 $x_4 = 30 - x_1 - x_2 - 3x_3$
 $x_5 = 24 - 2x_1 - 2x_2 - 5x_3$
 $x_6 = 36 - 4x_1 - x_2 - 2x_3$ Tightest obstacle
 $x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$

> Solve the tightest obstacle for the nonbasic variable

$$x_1 = 9 - \frac{x_2}{4} - \frac{x_3}{2} - \frac{x_6}{4}$$

- Substitute the entering variable (called pivot) in other equations
- \circ Now x_1 becomes basic and x_6 becomes non-basic
- $\circ x_6$ is called the *leaving variable*

$$z = 3x_1 + x_2 + 2x_3$$

$$x_4 = 30 - x_1 - x_2 - 3x_3$$

$$x_5 = 24 - 2x_1 - 2x_2 - 5x_3$$

$$x_6 = 36 - 4x_1 - x_2 - 2x_3$$

$$x_1 = 9 - \frac{x_2}{4} - \frac{x_3}{2} - \frac{x_3}{4}$$

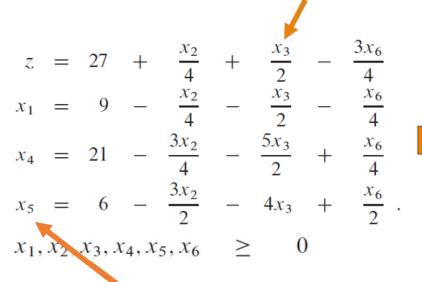
$$x_4 = 21 - \frac{3x_2}{4} - \frac{5x_3}{2} + \frac{x_6}{4}$$

$$x_5 = 6 - \frac{3x_2}{2} - 4x_3 + \frac{x_6}{2}$$

$$x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$$

- After one iteration of this step:
 - > The basic feasible solution (i.e. substituting 0 for all nonbasic variables) improves from z=0 to z=27
- Repeat!

Entering variable Try to increase!



Leaving variable Tightest obstacle!

$$z = \frac{111}{4} + \frac{x_2}{16} - \frac{x_5}{8} - \frac{11x_6}{16}$$

$$x_1 = \frac{33}{4} - \frac{x_2}{16} + \frac{x_5}{8} - \frac{5x_6}{16}$$

$$x_3 = \frac{3}{2} - \frac{3x_2}{8} - \frac{x_5}{4} + \frac{x_6}{8}$$

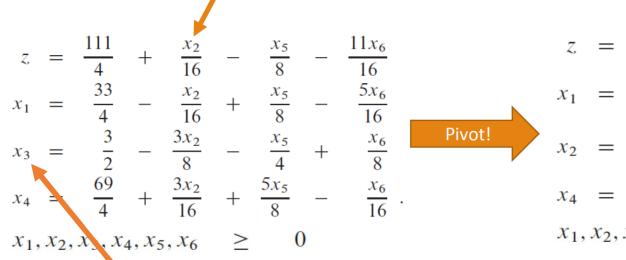
$$x_4 = \frac{69}{4} + \frac{3x_2}{16} + \frac{5x_5}{8} - \frac{x_6}{16}$$

$$x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$$

373F20 - Nisarg Shah 32

Pivot!

Entering variable Try to increase!



Leaving variable Tightest obstacle!

$$z = 28 - \frac{x_3}{6} - \frac{x_5}{6} - \frac{2x_6}{3}$$

$$x_1 = 8 + \frac{x_3}{6} + \frac{x_5}{6} - \frac{x_6}{3}$$

$$x_2 = 4 - \frac{8x_3}{3} - \frac{2x_5}{3} + \frac{x_6}{3}$$

$$x_4 = 18 - \frac{x_3}{2} + \frac{x_5}{2}$$

$$x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$$

$$z = 28 - \frac{x_3}{6} - \frac{x_5}{6} - \frac{2x_6}{3}$$

$$x_1 = 8 + \frac{x_3}{6} + \frac{x_5}{6} - \frac{x_6}{3}$$

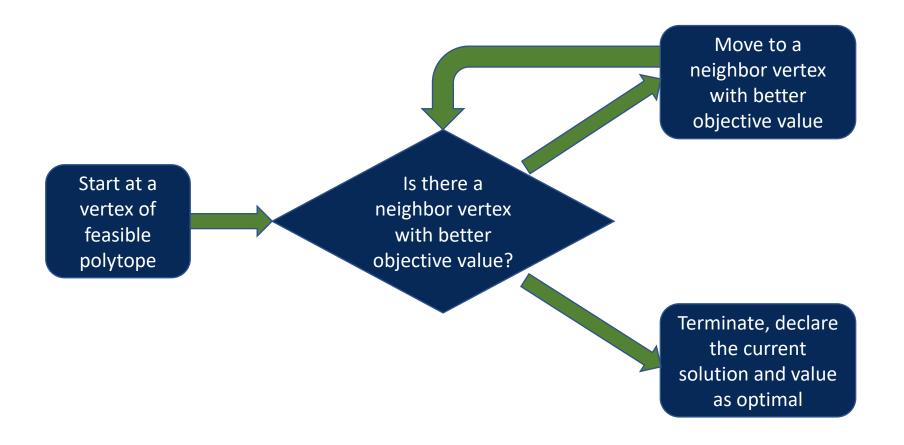
$$x_2 = 4 - \frac{8x_3}{3} - \frac{2x_5}{3} + \frac{x_6}{3}$$

$$x_4 = 18 - \frac{x_3}{2} + \frac{x_5}{2}$$

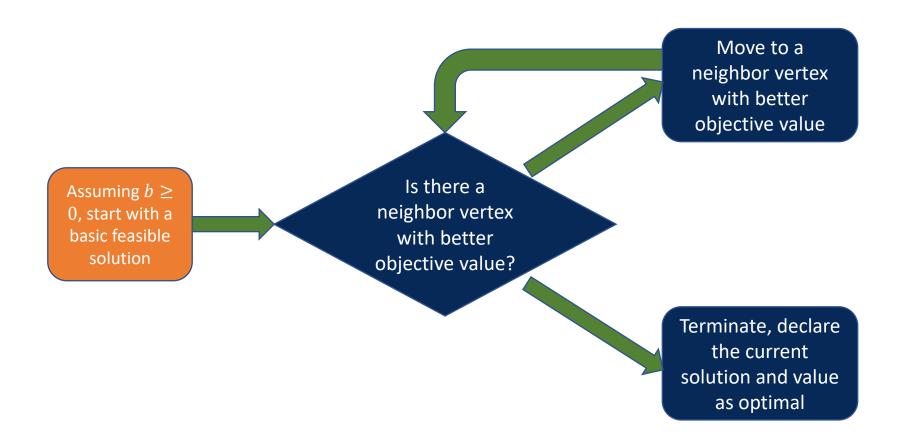
$$x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$$

- There is no leaving variable (nonbasic variable with positive coefficient).
- What now? Nothing! We are done.
- Take the basic feasible solution ($x_3 = x_5 = x_6 = 0$).
- Gives the optimal value z = 28
- In the optimal solution, $x_1 = 8$, $x_2 = 4$, $x_3 = 0$

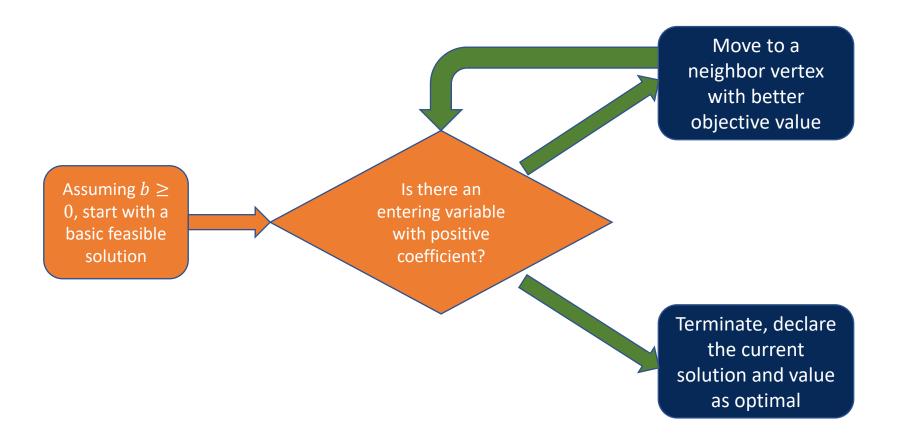
Simplex Overview



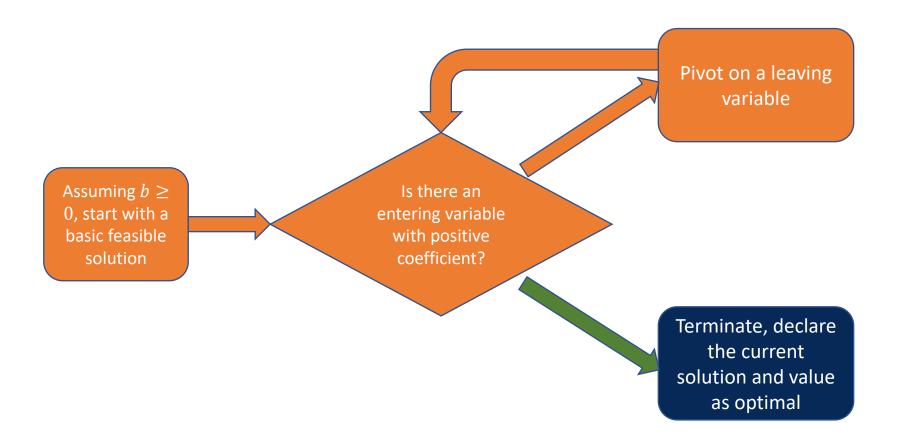
Simplex Overview



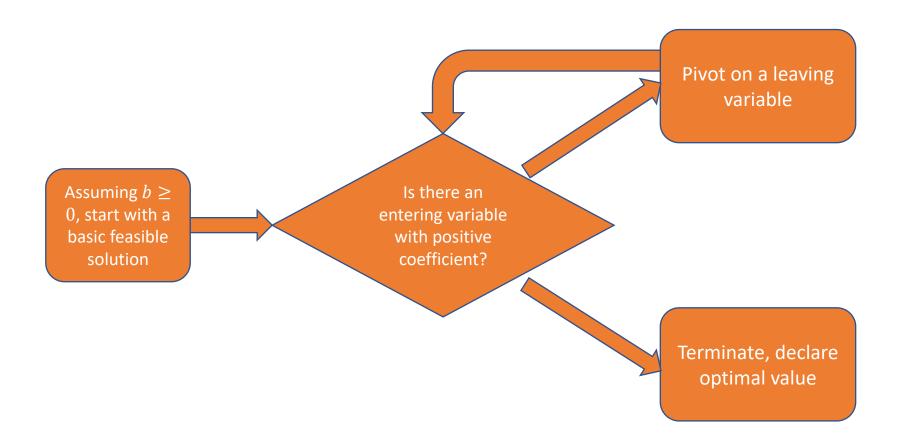
Simplex Overview



Simplex Overview

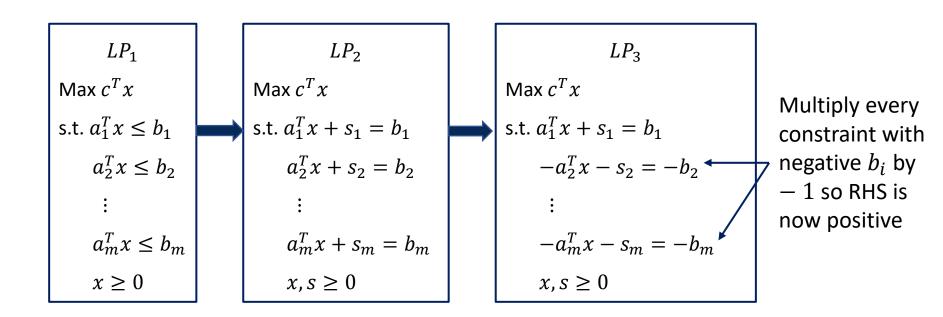


Simplex Overview

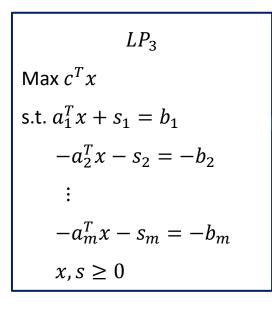


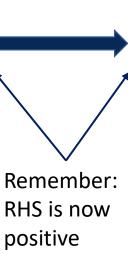
- What if the entering variable has no upper bound?
 - ➤ If it doesn't appear in any constraints, or only appears in constraints where it can go to ∞
 - \triangleright Then z can also go to ∞ , so declare that LP is unbounded
- What if pivoting doesn't change the constant in z?
 - Known as degeneracy, and can lead to infinite loops
 - Can be prevented by "perturbing" b by a small random amount in each coordinate
 - Or by carefully breaking ties among entering and leaving variables,
 e.g., by smallest index (known as Bland's rule)

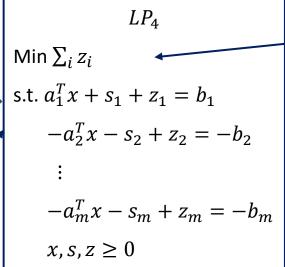
- We assumed $b \ge 0$, and then started with the vertex x = 0
- What if this assumption does not hold?



- We assumed $b \ge 0$, and then started with the vertex x = 0
- What if this assumption does not hold?

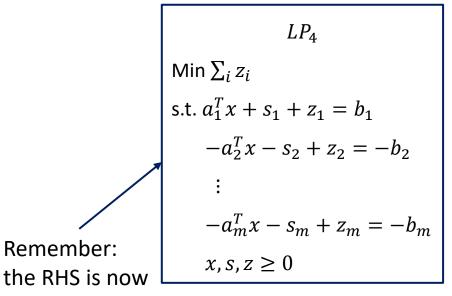






Remember: we only want to find a basic feasible solution to LP_1

- We assumed $b \ge 0$, and then started with the vertex x = 0
- What if this assumption does not hold?



Remember:

positive

What now?

- Solve LP_4 using simplex with the initial basic solution being x = s = 0, z = |b|
- If its optimum value is 0, extract a basic feasible solution x^* from it, use it to solve LP_1 using simplex
- If optimum value for LP_4 is greater than 0, then LP_1 is infeasible

- We assumed $b \ge 0$, and then started with the vertex x = 0
- What if this assumption does not hold?

$$LP_1 \qquad \qquad LP_2$$

$$\operatorname{Max} c^T x \qquad \operatorname{Min} \sum_i z_i$$

$$\operatorname{s.t.} a_1^T x \leq b_1 \qquad \Longrightarrow \qquad \operatorname{s.t.} a_1^T x + s_1 + z_1 = b_1 \qquad \Longrightarrow \qquad$$

$$a_2^T x \leq b_2 \qquad \qquad a_2^T x + s_2 + z_2 = b_2$$

$$\vdots \qquad \vdots \qquad \qquad \vdots$$

$$a_m^T x \leq b_m \qquad \qquad a_m^T x + s_m + z_m = b_m$$

$$x \geq 0 \qquad \qquad x, s \geq 0$$

- Solve LP_2 using simplex with the initial basic feasible solution x = s = 0, z = b
- If its optimum value is 0, extract a basic feasible solution x^* from it, use it to solve LP_1 using simplex
- If optimum value for LP_2 is greater than 0, then LP_1 is infeasible

 Curious about pseudocode? Proof of correctness? Running time analysis?

• See textbook for details, but this is **NOT** in syllabus!

Running Time

Notes

- Number of vertices of a polytope can be exponential in the number of constraints
 - There are examples where simplex takes exponential time if you choose your pivots arbitrarily
 - o No pivot rule known which guarantees polynomial running time
- > There are other algorithms which run in polynomial time
 - Ellipsoid method, interior point method, ...
 - \circ Ellipsoid uses $O(mn^3L)$ arithmetic operations, where L = length of input
 - But no known strongly polynomial time algorithm
 - Number of arithmetic operations = poly(m,n)

- Suppose you design a state-of-the-art LP solver that can solve very large problem instances
- You want to convince someone that you have this new technology without showing them the code
 - Idea: They can give you very large LPs and you can quickly return the optimal solutions
 - Question: But how would they know that your solutions are optimal, if they don't have the technology to solve those LPs?

$$\max x_1 + 6x_2$$

$$x_1 \le 200$$

$$x_2 \le 300$$

$$x_1 + x_2 \le 400$$

$$x_1, x_2 \ge 0$$

- Suppose I tell you that $(x_1, x_2) = (100,300)$ is optimal with objective value 1900
- How can you check this?
 - Note: Can easily substitute (x_1, x_2) , and verify that it is feasible, and its objective value is indeed 1900

$$\max x_1 + 6x_2$$

$$x_1 \le 200$$

$$x_2 \le 300$$

$$x_1 + x_2 \le 400$$

$$x_1, x_2 \ge 0$$

• Claim: $(x_1, x_2) = (100,300)$ is optimal with objective value 1900

- Any solution that satisfies these inequalities also satisfies their positive combinations
 - > E.g. 2*first_constraint + 5*second_constraint + 3*third_constraint
 - > Try to take combinations which give you $x_1 + 6x_2$ on LHS

$$\max x_1 + 6x_2$$

$$x_1 \le 200$$

$$x_2 \le 300$$

$$x_1 + x_2 \le 400$$

$$x_1, x_2 \ge 0$$

• Claim: $(x_1, x_2) = (100,300)$ is optimal with objective value 1900

- first_constraint + 6*second_constraint
 - $x_1 + 6x_2 \le 200 + 6 * 300 = 2000$
 - > This shows that no feasible solution can beat 2000

$$\max x_1 + 6x_2$$

$$x_1 \le 200$$

$$x_2 \le 300$$

$$x_1 + x_2 \le 400$$

$$x_1, x_2 \ge 0$$

• Claim: $(x_1, x_2) = (100,300)$ is optimal with objective value 1900

- 5*second_constraint + third_constraint
 - $> 5x_2 + (x_1 + x_2) \le 5 * 300 + 400 = 1900$
 - > This shows that no feasible solution can beat 1900
 - No need to proceed further
 - We already know one solution that achieves 1900, so it must be optimal!

- Introduce variables y_1, y_2, y_3 by which we will be multiplying the three constraints
 - > Note: These need not be integers. They can be reals.

Multiplier	Inequality			
y_1	x_1		\leq	200
y_2		x_2	\leq	300
y_3	$x_1 +$	x_2	\leq	400

After multiplying and adding constraints, we get:

$$(y_1 + y_3)x_1 + (y_2 + y_3)x_2 \le 200y_1 + 300y_2 + 400y_3$$

Multiplier Inequality
$$y_1 x_1 \leq 200$$

$$y_2 x_2 \leq 300$$

$$y_3 x_1 + x_2 \leq 400$$

> We have:

$$(y_1 + y_3)x_1 + (y_2 + y_3)x_2 \le 200y_1 + 300y_2 + 400y_3$$

What do we want?

- $y_1, y_2, y_3 \ge 0$ because otherwise direction of inequality flips
- \circ LHS to look like objective $x_1 + 6x_2$
 - In fact, it is sufficient for LHS to be an upper bound on objective
 - So we want $y_1 + y_3 \ge 1$ and $y_2 + y_3 \ge 6$

Multiplier Inequality
$$y_1 x_1 \leq 200$$

$$y_2 x_2 \leq 300$$

$$y_3 x_1 + x_2 \leq 400$$

> We have:

$$(y_1 + y_3)x_1 + (y_2 + y_3)x_2 \le 200y_1 + 300y_2 + 400y_3$$

What do we want?

- $y_1, y_2, y_3 \ge 0$
- $y_1 + y_3 \ge 1, \ y_2 + y_3 \ge 6$
- \circ Subject to these, we want to minimize the upper bound $200y_1 + 300y_2 + 400y_3$

Multiplier	Inequality		
y_1	x_1	≤ 200	
y_2		$x_2 \leq 300$	
y_3	$x_1 +$	$x_2 \leq 400$	

> We have:

$$(y_1 + y_3)x_1 + (y_2 + y_3)x_2 \le 200y_1 + 300y_2 + 400y_3$$

What do we want?

- o This is just another LP!
- Called the dual
- Original LP is called the primal

$$\min 200y_1 + 300y_2 + 400y_3$$
$$y_1 + y_3 \ge 1$$
$$y_2 + y_3 \ge 6$$
$$y_1, y_2, y_3 \ge 0$$

PRIMAL

$\max x_1 + 6x_2$ $x_1 \le 200$ $x_2 \le 300$ $x_1 + x_2 \le 400$ $x_1, x_2 \ge 0$

DUAL

min
$$200y_1 + 300y_2 + 400y_3$$

 $y_1 + y_3 \ge 1$
 $y_2 + y_3 \ge 6$
 $y_1, y_2, y_3 \ge 0$

> The problem of verifying optimality is another LP

- \circ For any (y_1, y_2, y_3) that you can find, the objective value of the dual is an upper bound on the objective value of the primal
- o If you found a specific (y_1, y_2, y_3) for which this dual objective becomes equal to the primal objective for the (x_1, x_2) given to you, then you would know that the given (x_1, x_2) is optimal for primal (and your (y_1, y_2, y_3) is optimal for dual)

PRIMAL

DUAL

min
$$200y_1 + 300y_2 + 400y_3$$

 $y_1 + y_3 \ge 1$
 $y_2 + y_3 \ge 6$
 $y_1, y_2, y_3 \ge 0$

- > The problem of verifying optimality is another LP
 - o Issue 1: But...but...if I can't solve large LPs, how will I solve the dual to verify if optimality of (x_1, x_2) given to me?
 - You don't. Ask the other party to give you both (x_1, x_2) and the corresponding (y_1, y_2, y_3) for proof of optimality
 - o Issue 2: What if there are no (y_1, y_2, y_3) for which dual objective matches primal objective under optimal solution (x_1, x_2) ?
 - As we will see, this can't happen!

373F20 - Nisarg Shah <u>57</u>

Primal LP

$$\max \ \mathbf{c}^T \mathbf{x}$$

$$Ax \le b$$

$$\mathbf{x} \geq 0$$

Dual LP

$$\min \mathbf{y}^T \mathbf{b}$$

$$\mathbf{y}^T \mathbf{A} \ge \mathbf{c}^T$$

$$\mathbf{y} \ge 0$$

> General version, in our standard form for LPs

Primal LP Dual LP $\max \mathbf{c}^T \mathbf{x} \qquad \min \mathbf{y}^T \mathbf{b}$ $\mathbf{A} \mathbf{x} \leq \mathbf{b} \qquad \mathbf{y}^T \mathbf{A} \geq \mathbf{c}^T$ $\mathbf{x} \geq 0 \qquad \mathbf{y} \geq 0$

- $c^T x$ for any feasible $x \leq y^T b$ for any feasible y
- $\begin{array}{ccc}
 & \max_{\text{primal feasible } x} c^T x \leq \min_{\text{dual feasible } y} y^T b
 \end{array}$
- o If there is (x^*, y^*) with $c^T x^* = (y^*)^T b$, then both must be optimal
- \circ In fact, for optimal (x^*, y^*) , we claim that this must happen!
 - Does this remind you of something? Max-flow, min-cut...

Weak Duality

Primal LP	Dual LP	
$\max \mathbf{c}^T \mathbf{x}$	$\min \mathbf{y}^T \mathbf{b}$	
$\mathbf{A}\mathbf{x} \leq \mathbf{b}$	$\mathbf{y}^T\mathbf{A} \geq \mathbf{c}^T$	
$\mathbf{x} \ge 0$	$\mathbf{y} \geq 0$	

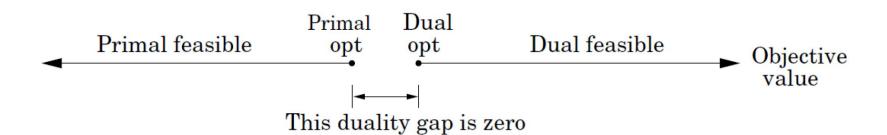
- From here on, assume primal LP is feasible and bounded
- Weak duality theorem:
 - > For any primal feasible x and dual feasible y, $c^Tx \le y^Tb$
- Proof:

$$c^T x \le (y^T A)x = y^T (Ax) \le y^T b$$

Strong Duality

Primal LP Dual LP $\max \mathbf{c}^T \mathbf{x} \qquad \min \mathbf{y}^T \mathbf{b}$ $\mathbf{A} \mathbf{x} \leq \mathbf{b} \qquad \mathbf{y}^T \mathbf{A} \geq \mathbf{c}^T$ $\mathbf{x} \geq 0 \qquad \mathbf{y} \geq 0$

- Strong duality theorem:
 - > For any primal optimal x^* and dual optimal y^* , $c^Tx^*=(y^*)^Tb$



Strong Duality Proof

This slide is not in the scope of the course

- Farkas' lemma (one of many, many versions):
 - > Exactly one of the following holds:
 - 1) There exists x such that $Ax \leq b$
 - 2) There exists y such that $y^T A = 0$, $y \ge 0$, $y^T b < 0$

Geometric intuition:

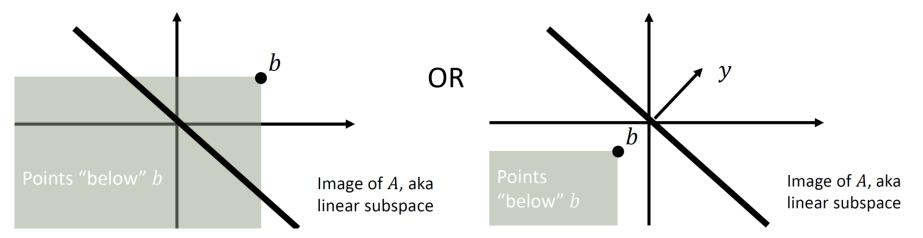
- \triangleright Define image of A = set of all possible values of Ax
- It is known that this is a "linear subspace" (e.g. a line in a plane, a line or plane in 3D, etc)

Strong Duality Proof

This slide is not in the scope of the course

- Farkas' lemma: Exactly one of the following holds:
 - 1) There exists x such that $Ax \leq b$
 - 2) There exists y such that $y^T A = 0$, $y \ge 0$, $y^T b < 0$

- 1) Image of A contains a point "below" b
- 2) The region "below" b doesn't intersect image of A this is witnessed by normal vector to the image of A



Strong Duality

This slide is not in the scope of the course

Primal LP

$$\mathbf{a}\mathbf{x} \leq \mathbf{b}$$

$$\mathbf{x} \geq 0$$

$$\min_{\mathbf{y}^T \mathbf{b}} \mathbf{y}^T \mathbf{b}$$
$$\mathbf{y}^T \mathbf{A} \ge \mathbf{c}^T$$
$$\mathbf{y} \ge 0$$

Strong duality theorem:

- > For any primal optimal x^* and dual optimal y^* , $c^Tx^* = (y^*)^Tb$
- > Proof (by contradiction):
 - Let $z^* = c^T x^*$ be the optimal primal value.
 - \circ Suppose optimal dual objective value $> z^*$
 - \circ So there is no y such that $y^TA \ge c^T$ and $y^Tb \le z^*$, i.e.,

$$\begin{pmatrix} -A^T \\ h^T \end{pmatrix} y \le \begin{pmatrix} c \\ z^* \end{pmatrix}$$

Strong Duality

This slide is not in the scope of the course

65

> There is no y such that $\begin{pmatrix} -A^T \\ h^T \end{pmatrix} y \leq \begin{pmatrix} c \\ Z^* \end{pmatrix}$

$$\begin{pmatrix} -A^T \\ b^T \end{pmatrix} y \le \begin{pmatrix} c \\ z^* \end{pmatrix}$$

 \triangleright By Farkas' lemma, there is x and λ such that

$$(x^T \quad \lambda) \begin{pmatrix} -A^T \\ b^T \end{pmatrix} = 0, x \ge 0, \lambda \ge 0, -x^T c + \lambda z^* < 0$$

- \triangleright Case 1: $\lambda > 0$
 - \circ Note: $c^T x > \lambda z^*$ and $Ax = 0 = \lambda b$.
 - o Divide both by λ to get $A\left(\frac{x}{\lambda}\right) = b$ and $C^T\left(\frac{x}{\lambda}\right) > z^*$
 - Contradicts optimality of z*
- \triangleright Case 2: $\lambda = 0$
 - \circ We have Ax = 0 and $c^Tx > 0$
 - \circ Adding x to optimal x^* of primal improves objective value beyond $z^* \Rightarrow$ contradiction

- A canning company operates two canning plants (A and B).
 S1: 200 tonnes at \$11/tonne
 \$2: 310 tonnes at \$10/tonne
 \$3: 420 tonnes at \$9/tonne
- Three suppliers of fresh fruits: --

To: Plant A Plant B

- Selling price: \$50/tonne, no limit
- Objective: Find which plant should get how much supply from each grower to maximize profit

- Similarly to the brewery example from the beginning:
 - A brewery can invest its inventory of corn, hops and malt into producing three types of beer
 - > Per unit resource requirement and profit are as given below
 - > The brewery cannot produce positive amounts of both A and B
 - > Goal: maximize profit

Beverage	Corn (kg)	Hops (kg)	Malt (kg)	Profit (\$)
Α	5	4	35	13
В	15	4	20	23
С	10	7	25	15
Limit	500	300	1000	

- Similarly to the brewery example from the beginning:
 - A brewery can invest its inventory of corn, hops and malt into producing three types of beer
 - > Per unit resource requirement and profit are as given below
 - \rightarrow The brewery can only produce C in integral quantities up to 100
 - > Goal: maximize profit

Beverage	Corn (kg)	Hops (kg)	Malt (kg)	Profit (\$)
Α	5	4	35	13
В	15	4	20	23
С	10	7	25	15
Limit	500	300	1000	

- Similarly to the brewery example from the beginning:
 - A brewery can invest its inventory of corn, hops and malt into producing three types of beer
 - > Per unit resource requirement and profit are as given below
 - Goal: maximize profit, but if there are multiple profit-maximizing solutions, then...
 - Break ties to choose those with the largest quantity of A
 - Break any further ties to choose those with the largest quantity of B

Beverage	Corn (kg)	Hops (kg)	Malt (kg)	Profit (\$)
А	5	4	35	13
В	15	4	20	23
С	10	7	25	15
Limit	500	300	1000	

More Tricks

- Constraint: $|x| \leq 3$
 - \triangleright Replace with constraints $x \le 3$ and $-x \le 3$
 - \triangleright What if the constraint is $|x| \ge 3$?
- Objective: minimize 3|x| + y
 - > Add a variable t
 - \rightarrow Add the constraints $t \ge x$ and $t \ge -x$ (so $t \ge |x|$)
 - \triangleright Change the objective to minimize 3t + y
 - > What if the objective is to maximize 3|x| + y?
- Objective: minimize max(3x + y, x + 2y)
 - > Hint: minimizing 3|x| + y in the earlier bullet was equivalent to minimizing $\max(3x + y, -3x + y)$

• ...

