CSC373

Week 4: Dynamic Programming (contd) Network Flow (start)

Nisarg Shah

Recap

- Dynamic Programming Basics
 - > Optimal substructure property
 - > Bellman equation
 - > Top-down (memoization) vs bottom-up implementations
- Dynamic Programming Examples
 - Weighted interval scheduling
 - Knapsack problem
 - > Single-source shortest paths
 - > Chain matrix product
 - Edit distance (aka sequence alignment)

This Lecture

- Some more DP
 - > Traveling salesman problem (TSP)
- Start of network flow
 - > Problem statement
 - > Ford-Fulkerson algorithm
 - > Running time
 - > Correctness

Input

- \triangleright Directed graph G = (V, E)
- \succ Distance $d_{i,j}$ is the distance from node i to node j

Output

- \succ Minimum distance which needs to be traveled to start from some node v, visit every other node exactly once, and come back to v
 - That is, the minimum cost of a Hamiltonian cycle

Approach

- \triangleright Let's start at node $v_1 = 1$
 - It's a cycle, so the starting point does not matter
- \triangleright Want to visit the other nodes in some order, say v_2, \dots, v_n
- > Total distance is $d_{1,v_2}+d_{v_2,v_3}+\cdots+d_{v_{n-1},v_n}+d_{v_n,1}$
 - Want to minimize this distance

Naïve solution

> Check all possible orderings

$$> (n-1)! = \Theta\left(\sqrt{n} \cdot \left(\frac{n}{e}\right)^n\right)$$
 (Stirling's approximation)

DP Approach

- \triangleright Consider v_n (the last node before returning to $v_1 = 1$)
 - \circ If $v_n = c$
 - Find optimal order of visiting nodes in $\{2,\dots,n\}\setminus\{c\}$ and then ending at c
 - Need to keep track of the subset of nodes visited and the end node
- \Rightarrow OPT[S, c] = minimum total travel distance when starting at 1, visiting each node in S exactly once, and ending at $c \in S$
- > The original answer is $\min_{c \in S} OPT[S,c] + d_{c,1}$, where $S = \{2,\dots,n\}$

- DP Approach
 - > To compute OPT[S, c], we condition over the vertex which is visited right before c
- Bellman equation

$$OPT[S,c] = \min_{m \in S \setminus \{c\}} \left(OPT[S \setminus \{c\}, m] + d_{m,c} \right)$$

Final solution =
$$\min_{c \in \{2,...,n\}} OPT[\{2,...,n\},c] + d_{c,1}$$

- Time: $O(n \cdot 2^n)$ calls, O(n) time per call $\Rightarrow O(n^2 \cdot 2^n)$
 - > Much better than the naïve solution which has $(n/e)^n$

Bellman equation

$$OPT[S,c] = \min_{m \in S \setminus \{c\}} \left(OPT[S \setminus \{c\}, m] + d_{m,c} \right)$$

Final solution =
$$\min_{c \in \{2,...,n\}} OPT[\{2,...,n\},c] + d_{c,1}$$

- Space complexity: $O(n \cdot 2^n)$
 - > But computing the optimal solution with |S| = k only requires storing the optimal solutions with |S| = k 1
- Question:
 - Using this observation, how much can we reduce the space complexity?

DP Concluding Remarks

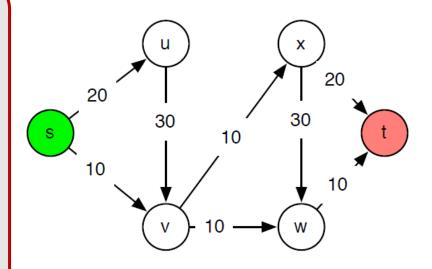
- Key steps in designing a DP algorithm
 - "Generalize" the problem first
 - \circ E.g. instead of computing edit distance between strings $X=x_1,\ldots,x_m$ and $Y=y_1,\ldots,y_n$, we compute E[i,j]= edit distance between i-prefix of X and j-prefix of Y for all (i,j)
 - The right generalization is often obtained by looking at the structure of the "subproblem" which must be solved optimally to get an optimal solution to the overall problem
 - Remember the difference between DP and divide-andconquer
 - Sometimes you can save quite a bit of space by only storing solutions to those subproblems that you need in the future

Input

- \triangleright A directed graph G = (V, E)
- \triangleright Edge capacities $c: E \to \mathbb{R}_{\geq 0}$
- > Source node s, target node t

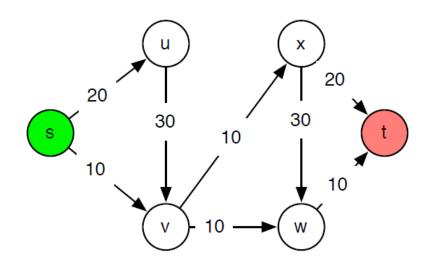
Output

> Maximum "flow" from s to t



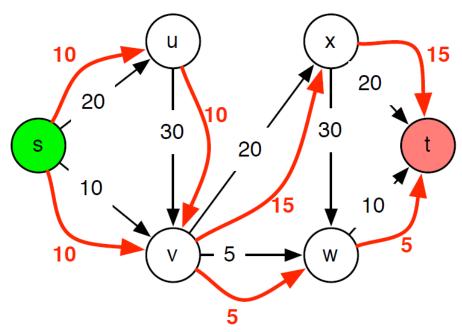
Assumptions

- > For simplicity, assume that...
- > No edges enter s
- > No edges leave t
- \triangleright Edge capacity c(e) is a nonnegative integer
 - \circ Later, we'll see what happens when c(e) can be a rational number



Flow

- \triangleright An s-t flow is a function $f: E \to \mathbb{R}_{\geq 0}$
- > Intuitively, f(e) is the "amount of material" carried on edge e

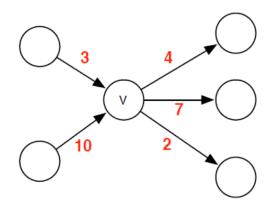


- Constraints on flow f
 - 1. Respecting capacities

$$\forall e \in E : 0 \le f(e) \le c(e)$$

2. Flow conservation

$$\forall v \in V \setminus \{s, t\} : \sum_{e \text{ entering } v} f(e) = \sum_{e \text{ leaving } v} f(e)$$



Flow in = flow out at every node other than s and t

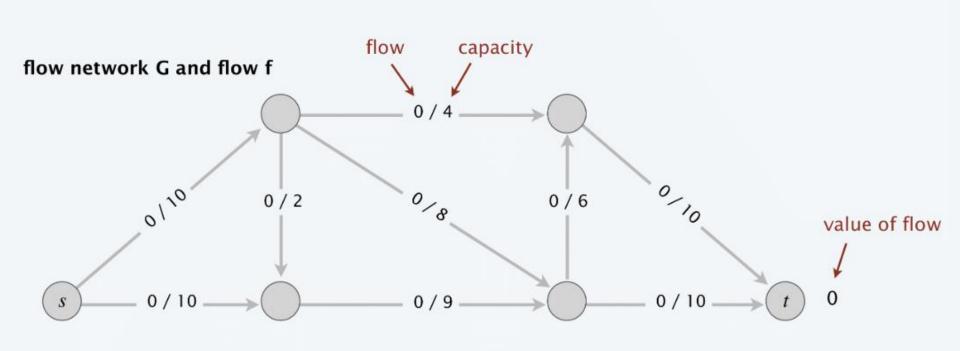
Flow out at s = flow in at t

- $f^{in}(v) = \sum_{e \text{ entering } v} f(e)$
- $f^{out}(v) = \sum_{e \text{ leaving } v} f(e)$
- Value of flow f is $v(f) = f^{out}(s) = f^{in}(t)$

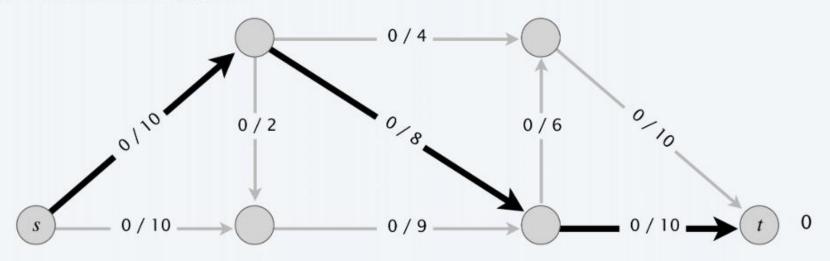
- Restating the problem:
 - \succ Given a directed graph G=(V,E) with edge capacities $c\colon E\to\mathbb{R}_{\geq 0}$, find a flow f^* with the maximum value.

- A natural greedy approach
 - 1. Start from zero flow (f(e) = 0 for each e).
 - 2. While there exists an s-t path P in G such that f(e) < c(e) for each $e \in P$
 - a. Find one such path *P*
 - b. Increase the flow on each edge $e \in P$ by $\min_{e \in P} (c(e) f(e))$

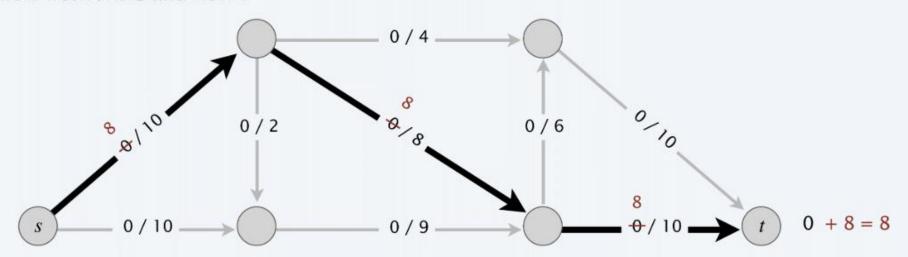
Let's run it on an example!



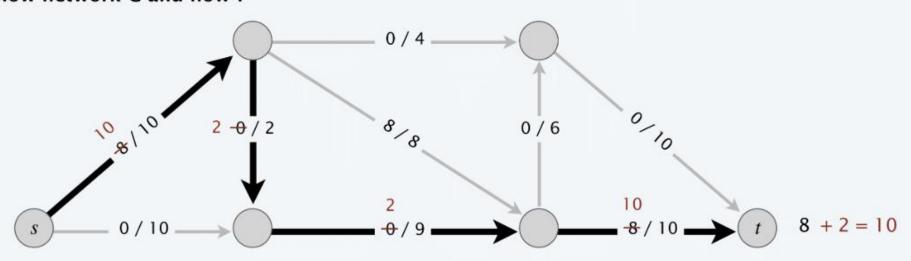
flow network G and flow f



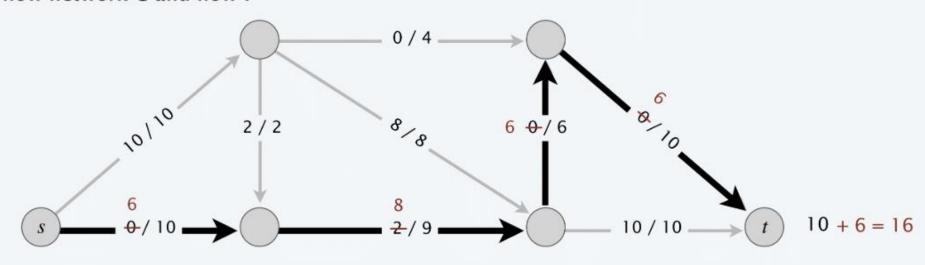
flow network G and flow f



flow network G and flow f

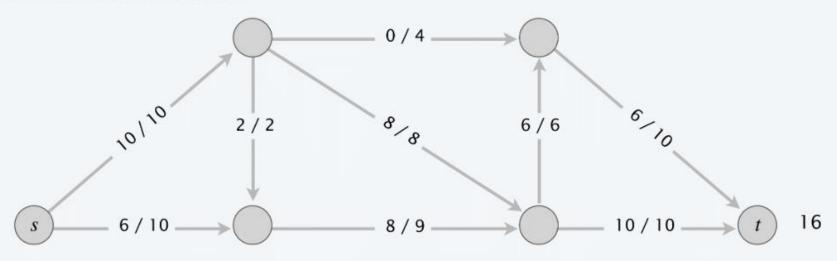


flow network G and flow f



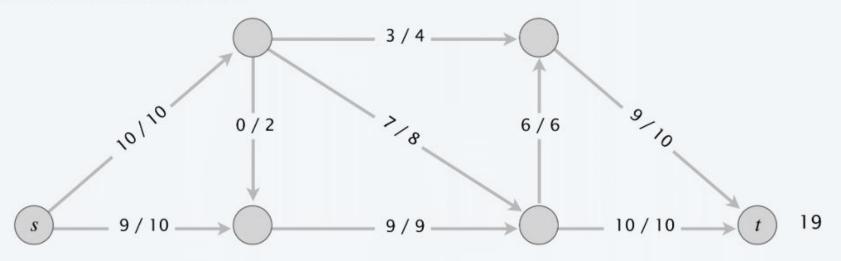
ending flow value = 16

flow network G and flow f



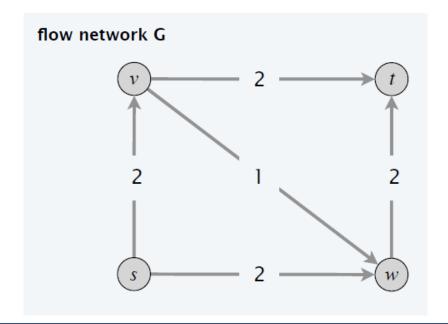
but max-flow value = 19

flow network G and flow f



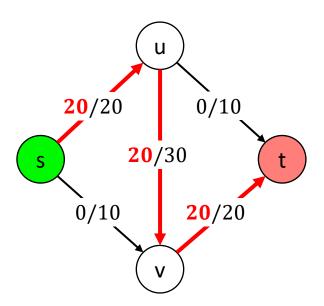
- Q: Why does the simple greedy approach fail?
- A: Because once it increases the flow on an edge, it is not allowed to decrease it.

 Need a way to "reverse" bad decisions

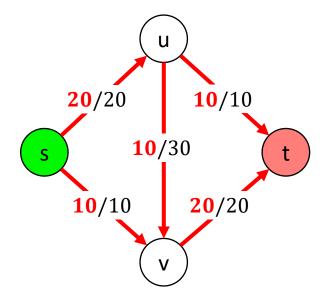


Reversing Bad Decisions

Suppose we start by sending 20 units of flow along this path



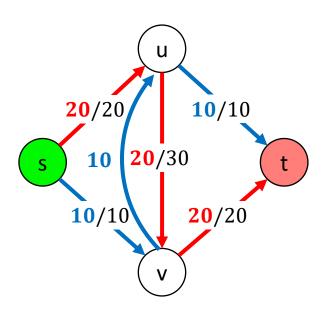
But the optimal configuration requires 10 fewer units of flow on $u \rightarrow v$

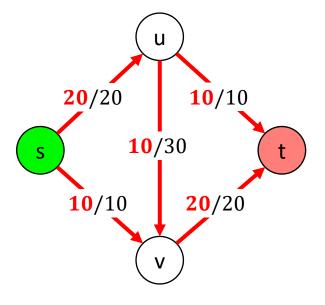


Reversing Bad Decisions

We can essentially send a "reverse" flow of 10 units along $v \rightarrow u$

So now we get this optimal flow



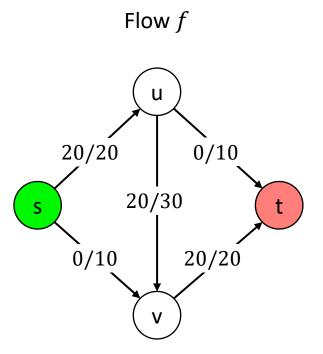


Residual Graph

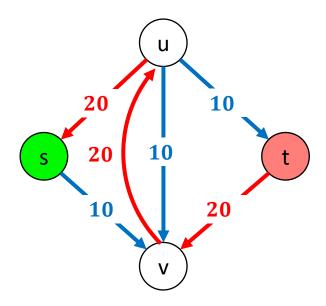
- Suppose the current flow is f
- Define the residual graph G_f of flow f
 - $\succ G_f$ has the same vertices as G
 - \triangleright For each edge e = (u, v) in G, G_f has at most two edges
 - o Forward edge e = (u, v) with capacity c(e) f(e)
 - We can send this much additional flow on e
 - \circ Reverse edge $e^{rev} = (v, u)$ with capacity f(e)
 - The maximum "reverse" flow we can send is the maximum amount by which we can reduce flow on e, which is f(e)
 - \circ We only add edge of capacity > 0

Residual Graph

• Example!



Residual graph G_f

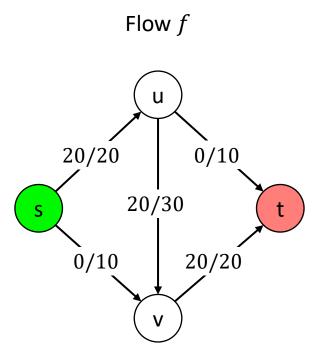


Augmenting Paths

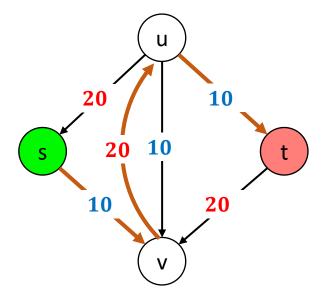
- Let P be an s-t path in the residual graph G_f
- Let bottleneck(P, f) be the smallest capacity across all edges in P
- "Augment" flow f by "sending" bottleneck(P, f) units of flow along P
 - \triangleright What does it mean to send x units of flow along P?
 - \triangleright For each forward edge $e \in P$, increase the flow on e by x
 - \triangleright For each reverse edge $e^{rev} \in P$, decrease the flow on e by x

Residual Graph

Example!



Residual graph G_f

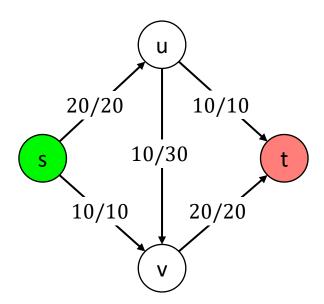


Path $P \rightarrow \text{send flow} = \text{bottleneck} = 10$

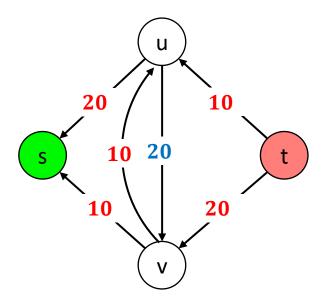
Residual Graph

• Example!

New flow f



New residual graph G_f



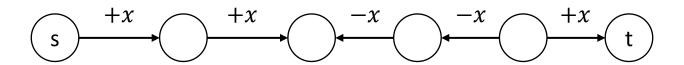
No *s-t* path because no outgoing edge from *s*

Augmenting Paths

- Let's argue that the new flow is a valid flow
- Capacity constraints (easy):
 - > If we increase flow on e, we can do so by at most the capacity of forward edge e in G_f , which is c(e) f(e)
 - \circ So the new flow can be at most f(e) + (c(e) f(e)) = c(e)
 - > If we decrease flow on e, we can do so by at most the capacity of reverse edge e^{rev} in G_f , which is f(e)
 - \circ So the new flow is at least f(e) f(e) = 0

Augmenting Paths

- Let's argue that the new flow is a valid flow
- Flow conservation (more tricky):
 - ➤ Each node on the path (except s and t) has exactly two incident edges
 - Both forward / both reverse ⇒ one is incoming, one is outgoing
 - Flow increased on both or decreased on both
 - One forward, one reverse ⇒ both incoming / both outgoing
 - Flow increased on one but decreased on the other
 - In each case, net flow remains 0



Ford-Fulkerson Algorithm

```
MaxFlow(G):
 // initialize:
 Set f(e) = 0 for all e in G
 // while there is an s-t path in G_f:
 While P = FindPath(s, t, Residual(G, f))! = None:
   f = Augment(f, P)
   UpdateResidual(G, f)
 EndWhile
 Return f
```

Ford-Fulkerson Algorithm

Running time:

- > #Augmentations:
 - At every step, flow and capacities remain integers
 - For path P in G_f , bottleneck(P, f) > 0 implies bottleneck $(P, f) \ge 1$
 - Each augmentation increases flow by at least 1
 - At most $C = \sum_{e \text{ leaving } s} c(e)$ augmentations
- > Time for an augmentation:
 - \circ G_f has n vertices and at most 2m edges
 - \circ Finding an s-t path in G_f takes O(m+n) time
- \triangleright Total time: $O((m+n)\cdot C)$

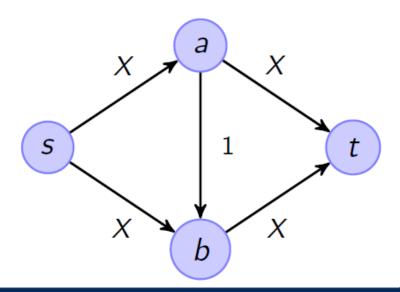
Ford-Fulkerson Algorithm

- Total time: $O((m+n) \cdot C)$
 - > This is pseudo-polynomial time
 - > C can be exponentially large in the input length (the number of bits required to write down the edge capacities)
 - Note: We assumed integer capacities, but this also gives a pseudo-polynomial time algorithm for rational capacities
 - O Why?

Q: Can we convert this to polynomial time?

Ford-Fulkerson Algorithm

- Q: Can we convert this to polynomial time?
 - \succ Not if we choose an *arbitrary* path in G_f at each step
 - > In the graph below, we might end up repeatedly sending 1 unit of flow across $a \rightarrow b$ and then reversing it
 - Takes X steps, which can be exponential in the input length



A Brief Note

Two quantities

- > Number of integers provided as input
- > Total number of bits provided as input

Running time

- > Strongly polynomial time
 - #ops polynomial in #integers but not dependent on #bits
 - Running time still polynomial in #bits
- > Weakly polynomial time
 - #ops polynomial in #bits
- > Pseudo-polynomial time
 - #ops polynomial in the values of the input integers (i.e. polynomial in the number of "unary digits" required to write input)

Ford-Fulkerson Algorithm

- Ways to achieve polynomial time
 - > Find the shortest augmenting path using BFS
 - Edmonds-Karp algorithm
 - \circ Runs in $O(nm^2)$ operations
 - "Strongly polynomial time"
 - Can be found in CLRS
 - > Find the maximum bottleneck capacity augmenting path
 - \circ Runs in $O(m^2 \cdot \log C)$ operations
 - "Weakly polynomial time"

➤ ...

Max Flow Problem

Race to reduce the running time

- > 1972: $O(n m^2)$ Edmonds-Karp
- > 1980: $O(n m \log^2 n)$ Galil-Namaad
- > 1983: $O(n m \log n)$ Sleator-Tarjan
- > 1986: $O(n m \log(n^2/m))$ Goldberg-Tarjan
- > 1992: $O(n m + n^{2+\epsilon})$ King-Rao-Tarjan
- > 1996: $O\left(n \, m \, \frac{\log n}{\log^{m}/n \log n}\right)$ King-Rao-Tarjan
 - \circ Note: These are O(n m) when $m = \omega(n)$
- > 2013: O(n m) Orlin
 - o Breakthrough!

Back to Ford-Fulkerson

• We argued that the algorithm must terminate, and must terminate in $O((m+n)\cdot C)$ time

 But we didn't argue correctness yet, i.e., the algorithm must terminate with the optimal flow

Recall: Ford-Fulkerson

```
MaxFlow(G):
 // initialize:
 Set f(e) = 0 for all e in G
 // while there is an s-t path in G_f:
 While P = FindPath(s, t, Residual(G, f))! = None:
   f = Augment(f, P)
   UpdateResidual(G, f)
 EndWhile
 Return f
```

Recall: Notation

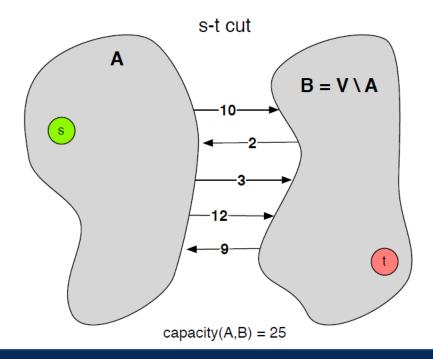
- f = flow, s = source, t = target
- *f* ^{out}, *f* ⁱⁿ
 - > For a node u: $f^{out}(u)$, $f^{in}(u)$ = total flow out of and into u
 - > For a set of nodes $X: f^{out}(X)$, $f^{in}(X)$ defined similarly

Constraints

- ightharpoonup Capacity: $0 \le f(e) \le c(e)$
- Flow conservation: $f^{out}(u) = f^{in}(u)$ for all $u \neq s$, t
- $v(f) = f^{out}(s) = f^{in}(t)$ = value of the flow

Cuts and Cut Capacities

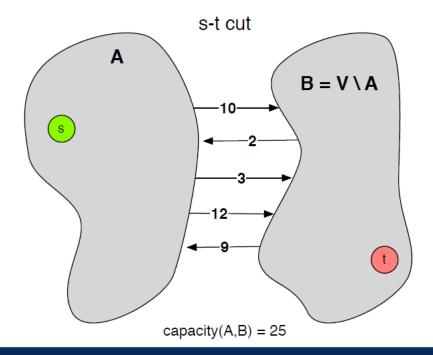
- (A, B) is an s-t cut if it is a partition of vertex set V (i.e. $A \cup B = V$, $A \cap B = \emptyset$) with $s \in A$, and $t \in B$
- Its capacity, denoted cap(A, B), is the sum of capacities of edges *leaving* A



• Theorem: For any flow f and any s-t cut (A, B),

$$v(f) = f^{out}(A) - f^{in}(A)$$

• Proof (on the board): Just take a sum of the flow conservation constraint over all nodes in *A*



• Theorem: For any flow f and any s-t cut (A, B),

$$v(f) \le cap(A, B)$$

Proof:

$$v(f) = f^{out}(A) - f^{in}(A)$$

$$\leq f^{out}(A)$$

$$= \sum_{e \text{ leaving } A} f(e)$$

$$\leq \sum_{e \text{ leaving } A} c(e)$$

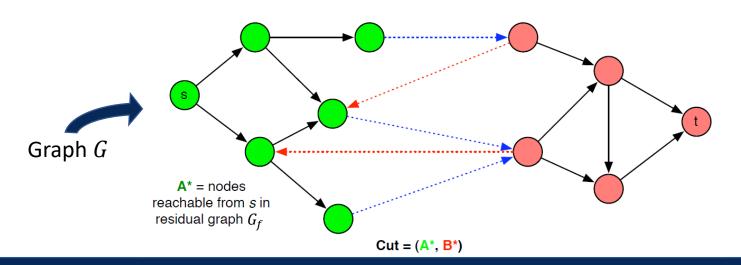
$$= cap(A, B)$$

• Theorem: For any flow f and any s-t cut (A, B),

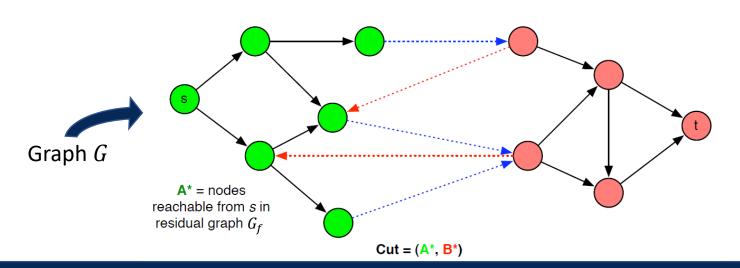
$$v(f) \le cap(A, B)$$

- Hence, max value of any flow \leq min capacity of any s-t cut.
- We will now prove:
 - > Value of flow generated by Ford-Fulkerson = capacity of <u>some</u> cut
- Implications
 - > 1) Max flow = min cut
 - > 2) Ford-Fulkerson generates max flow.

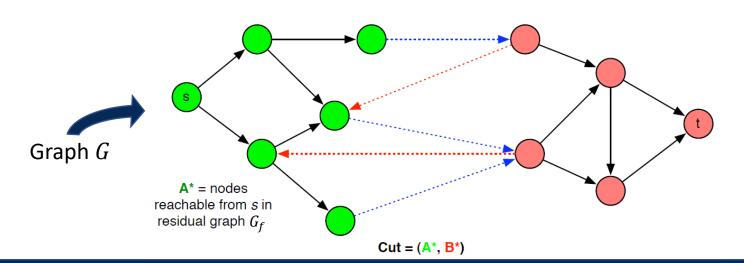
- Theorem: Ford-Fulkerson finds maximum flow.
- Proof:
 - \rightarrow f = flow returned by Ford-Fulkerson
 - $\rightarrow A^*$ = nodes reachable from s in G_f
 - $> B^*$ = remaining nodes $V \setminus A^*$
 - \succ Note: We look at the residual graph G_f , but define the cut in G



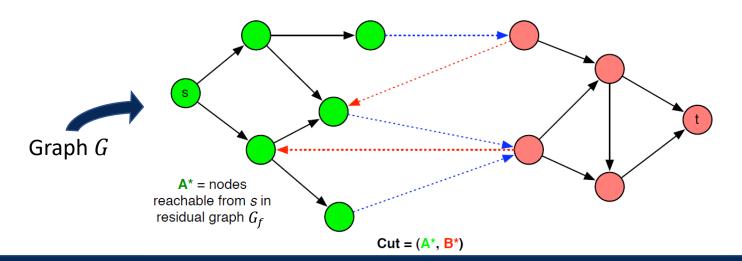
- Theorem: Ford-Fulkerson finds maximum flow.
- Proof:
 - \triangleright Claim: (A^*, B^*) is a valid cut
 - $\circ s \in A^*$ by definition
 - o $t \in B^*$ because when Ford-Fulkerson terminates, there are no s-t paths in G_f , so $t \notin A^*$



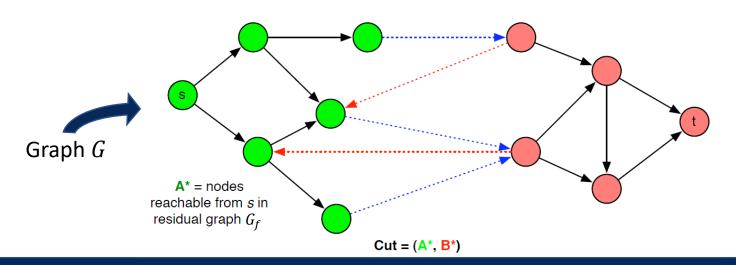
- Theorem: Ford-Fulkerson finds maximum flow.
- Proof:
 - ▶ Blue edges = edges going out of A^* in G
 - ▶ Red edges = edges coming into A^* in G



- Theorem: Ford-Fulkerson finds maximum flow.
- Proof:
 - \triangleright Each blue edge (u, v) must be saturated
 - Otherwise G_f would have its forward edge (u, v) and then $v \in A^*$
 - \triangleright Each red edge (v, u) must have zero flow
 - \circ Otherwise G_f would have its reverse edge (u, v) and then $v \in A^*$



- Theorem: Ford-Fulkerson finds maximum flow.
- Proof:
 - \Rightarrow Each blue edge (u, v) must be saturated $\Rightarrow f^{out}(A^*) = cap(A^*, B^*)$
 - > Each red edge (v, u) must have zero flow $\Rightarrow f^{in}(A^*) = 0$
 - > So $v(f) = f^{out}(A^*) f^{in}(A^*) = cap(A^*, B^*)$



Max Flow - Min Cut

Max Flow-Min Cut Theorem:

In any graph, the value of the maximum flow is equal to the capacity of the minimum cut.

- Our proof already gives an algorithm to find a min cut
 - > Run Ford-Fulkerson to find a max flow f
 - \succ Construct its residual graph G_f
 - ightharpoonup Let $A^* = \text{set of all nodes reachable from } s \text{ in } G_f$
 - Easy to compute using BFS
 - \succ Then $(A^*, V \setminus A^*)$ is a min cut

Piazza Poll

Question

- There is a network G with positive integer edge capacities.
- You run Ford-Fulkerson.
- It finds an augmenting path with bottleneck capacity 1, and after that iteration, it terminates with a final flow value of 1.
- Which of the following statement(s) must be correct about G?
- (a) G has a single s-t path.
- (b) G has an edge e such that all s-t paths go through e.
- (c) The minimum cut capacity in G is greater than 1.
- (d) The minimum cut capacity in G is less than 1.

Why Study Flow Networks?

- Unlike divide-and-conquer, greedy, or DP, this doesn't seem like an algorithmic framework
 - > It seems more like a single problem
- Turns out that many problems can be reduced to this versatile single problem
- Next lecture!