CSC373

Week 11:
Randomized Algorithms
Randomized Algorithms

Deterministic Algorithm

Input → Deterministic Algorithm → Output

Randomized Algorithm

Input → Randomized Algorithm → Output

Randomness → Randomized Algorithm → Output
Randomized Algorithms

• Running time
 ➢ Harder goal: the running time should *always* be small
 o Regardless of both the input and the random coin flips
 ➢ Easier goal: the running time should be small *in expectation*
 o Expectation over random coin flips
 o But it should still be small for every input (i.e. worst-case)

• Approximation Ratio
 ➢ The objective value of the solution returned should, *in expectation*, be close to the optimum objective value
 o Once again, the expectation is over random coin flips
 o The approximation ratio should be small for every input
Derandomization

• After coming up with a randomized approximation algorithm, one might ask if it can be “derandomized”
 ➢ Informally, the randomized algorithm is making random choices that, in expectation, turn out to be good
 ➢ Can we make these “good” choices deterministically?

• For some problems...
 ➢ It may be easier to first design a simple randomized approximation algorithm and then de-randomize it...
 ➢ Than to try to directly design a deterministic approximation algorithm
Recap: Probability Theory

• Random variable X

 ➢ Discrete
 - Takes value v_1 with probability p_1, v_2 w.p. p_2, ...
 - Expected value $E[X] = p_1 \cdot v_1 + p_2 \cdot v_2 + \cdots$
 - Examples: coin toss, the roll of a six-sided die, ...

 ➢ Continuous
 - Has a probability density function (pdf) f
 - Its integral is the cumulative density function (cdf) F
 • $F(x) = \Pr[X \leq x] = \int_{-\infty}^{x} f(t) \, dt$
 - Expected value $E[X] = \int_{-\infty}^{\infty} x \, f(x) \, dx$
 - Examples: normal distribution, exponential distribution, uniform distribution over $[0, 1]$, ...
Recap: Probability Theory

• Things you should be aware of...
 ➢ Conditional probabilities
 ➢ Conditional expectations
 ➢ Independence among random variables
 ➢ Moments of random variables
 ➢ Standard discrete distributions: uniform over a finite set, Bernoulli, binomial, geometric, Poisson, ...
 ➢ Standard continuous distributions: uniform over intervals, Gaussian/normal, exponential, ...
Three Pillars

- Deceptively simple, but incredibly powerful!
- Many many many many many probabilistic results are just interesting applications of these three results
Three Pillars

• Linearity of expectation

 ➢ $E[X + Y] = E[X] + E[Y]$

 ➢ This does *not* require any independence assumptions about X and Y

 ➢ E.g. if you want to find out how many people will attend your party on average, just ask each person the probability with which they will attend and sum up the probabilities

 o It does not matter whether some of them are friends and either all will attend together or none will attend
Three Pillars

• **Union bound**
 - For any two events A and B, $Pr[A \cup B] \leq Pr[A] + Pr[B]$
 - “Probability that at least one of the n events A_1, \ldots, A_n will occur is at most $\sum_i Pr[A_i]$”
 - Typically, A_1, \ldots, A_n are “bad events”
 - You do not want any of them to occur
 - If you can individually bound $Pr[A_i] \leq \frac{1}{2n}$ for each i, then probability that at least one them occurs $\leq \frac{1}{2}$
 - Thus, with probability $\geq \frac{1}{2}$, *none* of the bad events will occur

• **Chernoff bound & Hoeffding’s inequality**
 - Read up!
Exact Max-k-SAT
Exact Max-k-SAT

• **Problem (recall)**
 - **Input:** An exact k-SAT formula $\varphi = C_1 \land C_2 \land \cdots \land C_m$, where each clause C_i has exactly k literals, and a weight $w_i \geq 0$ of each clause C_i
 - **Output:** A truth assignment τ maximizing the number (or total weight) of clauses satisfied under τ

 - Let us denote by $W(\tau)$ the total weight of clauses satisfied under τ
Exact Max-k-SAT

• Recall our local search
 \[N_d(\tau) = \text{set of all truth assignments which can be obtained by}
 \text{changing the value of at most } d \text{ variables in } \tau \]

• Result 1: Neighborhood \(N_1(\tau) \Rightarrow 2/3\)-apx for Exact Max-2-SAT.

• Result 2: Neighborhood \(N_1(\tau) \cup \tau^c \Rightarrow 3/4\)-apx for Exact Max-2-SAT.

• Result 3: Neighborhood \(N_1(\tau) + \text{oblivious local search} \Rightarrow 3/4\)-apx for Exact Max-2-SAT.
Exact Max-\(k\)-SAT

• Recall our local search

 \[N_d(\tau) = \text{set of all truth assignments which can be obtained by changing the value of at most } d \text{ variables in } \tau \]

• We claimed that \(\frac{3}{4}\)-apx for Exact Max-2-SAT can be generalized to \(\frac{2^k - 1}{2^k}\)-apx for Exact Max-\(k\)-SAT

 \[\text{Algorithm becomes slightly more complicated} \]

• What can we do with randomized algorithms?
Exact Max-k-SAT

• Recall:
 ➢ We have a formula $\varphi = C_1 \land C_2 \land \cdots \land C_m$
 ➢ Variables = x_1, \ldots, x_n, literals = variables or their negations
 ➢ Each clause contains exactly k literals

• The most naïve randomized algorithm
 ➢ Set each variable to TRUE with probability $\frac{1}{2}$ and to FALSE with probability $\frac{1}{2}$

• How good is this?
Exact Max-k-SAT

• Recall:
 ➢ We have a formula $\varphi = C_1 \land C_2 \land \cdots \land C_m$
 ➢ Variables = x_1, \ldots, x_n, literals = variables or their negations
 ➢ Each clause contains exactly k literals

• Let τ be a random assignment
 ➢ For each clause C_i: $\Pr[C_i \text{ is not satisfied}] = \frac{1}{2^k}$ (WHY?)
 o Hence, $\Pr[C_i \text{ is satisfied}] = \frac{(2^k-1)}{2^k}$
 ➢ $E[W(\tau)] = \sum_{i=1}^{m} w_i \cdot \Pr[C_i \text{ is satisfied}]$ (WHY?)
 ➢ $E[W(\tau)] = \frac{2^k-1}{2^k} \cdot \sum_{i=1}^{m} w_i \geq \frac{2^k-1}{2^k} \cdot OPT$
Derandomization

• Can we derandomize this algorithm?
 ➢ What are the choices made by the algorithm?
 o Setting the values of x_1, x_2, \ldots, x_n
 ➢ How do we know which set of choices is good?

• Idea:
 ➢ Do not think about all the choices at once.
 ➢ Think about them one by one.
 ➢ Goal: Gradually convert the random assignment τ to a deterministic assignment $\hat{\tau}$ such that $W(\hat{\tau}) \geq E[W(\tau)]$
 o Combining with $E[W(\tau)] \geq \frac{2^k - 1}{2^k} \cdot OPT$ will give the desired deterministic approximation ratio
Derandomization

• Start with the random assignment τ and write...

\[E[W(\tau)] = \Pr[x_1 = T] \cdot E[W(\tau)|x_1 = T] + \Pr[x_1 = F] \cdot E[W(\tau)|x_1 = F] \]
\[= \frac{1}{2} \cdot E[W(\tau)|x_1 = T] + \frac{1}{2} \cdot E[W(\tau)|x_1 = F] \]

➢ Hence, \(\max(E[W(\tau)|x_1 = T], E[W(\tau)|x_1 = F]) \geq E[W(\tau)] \)
 o What is \(E[W(\tau)|x_1 = T] \)?
 • It is the expected weight when setting \(x_1 = T \) deterministically but still keeping \(x_2, \ldots, x_n \) random

➢ If we can compute both \(E[W(\tau)|x_1 = T] \) and \(E[W(\tau)|x_1 = F] \), and pick the better one...
 o Then we can set \(x_1 \) deterministically without degrading the expected objective value
• After deterministically making the right choice for x_1 (say T), we can apply the same logic to x_2

$$E[W(\tau)|x_1 = T] = \frac{1}{2} \cdot E[W(\tau)|x_1 = T, x_2 = T]$$
$$+ \frac{1}{2} \cdot E[W(\tau)|x_1 = T, x_2 = F]$$

➢ Pick the better of the two conditional expectations

• Derandomized Algorithm:

➢ For $i = 1, \ldots, n$
 o Let $z_i = T$ if $E[W(\tau)|x_1 = z_1, \ldots, x_{i-1} = z_{i-1}, x_i = T] \geq E[W(\tau)|x_1 = z_1, \ldots, x_{i-1} = z_{i-1}, x_i = F]$, and $z_i = F$ otherwise
 o Set $x_i = z_i$
Derandomization

• This is called *the method of conditional expectations*
 - If we’re happy when making a choice at random, we should be at least as happy conditioned on at least one of the possible values of that choice

• Remaining question:
 - How do we compute & compare the two conditional expectations:
 \[E[W(\tau)|x_1 = z_1, \ldots, x_{i-1} = z_{i-1}, x_i = T] \] and
 \[E[W(\tau)|x_1 = z_1, \ldots, x_{i-1} = z_{i-1}, x_i = F]? \]
Derandomization

- $E[W(\tau)|x_1 = z_1, ..., x_{i-1} = z_{i-1}, x_i = T]$
 - $\sum_r w_r \cdot \Pr[C_r \text{ is satisfied }|x_1 = z_1, ..., x_{i-1} = z_{i-1}, x_i = T]$
 - Set the values of $x_1, ..., x_{i-1}, x_i$
 - If C_r resolves to TRUE already, the corresponding probability is 1
 - If C_r resolves to FALSE already, the corresponding probability is 0
 - Otherwise, if there are ℓ literals left in C_r after setting $x_1, ..., x_{i-1}, x_i$, the corresponding probability is $\frac{2^{\ell-1}}{2^\ell}$

- Compute $E[W(\tau)|x_1 = z_1, ..., x_{i-1} = z_{i-1}, x_i = F]$ similarly
Max-SAT

• Simple randomized algorithm

 \[
 \frac{2^k-1}{2^k} \text{—approximation for Max-}k\text{-SAT}
 \]

 \[
 \text{Max-3-SAT } \Rightarrow \frac{7}{8}
 \]

 o [Håstad]: This is the best possible assuming \(P \neq NP \)

 \[
 \text{Max-2-SAT } \Rightarrow \frac{3}{4} = 0.75
 \]

 o The best known approximation is 0.9401 using semi-definite programming and randomized rounding

 \[
 \text{Max-SAT } \Rightarrow \frac{1}{2}
 \]

 o Max-SAT = no restriction on the number of literals in each clause

 o The best known approximation is 0.7968, also using semi-definite programming and randomized rounding
Max-SAT

• Better approximations for Max-SAT
 ➢ Semi-definite programming is out of the scope
 ➢ But we will see the simpler “LP relaxation + randomized rounding” approach that gives $1 - \frac{1}{e} \approx 0.6321$ approximation

• Max-SAT:
 ➢ Input: $\varphi = C_1 \land C_2 \land \cdots \land C_m$, where each clause C_i has weight $w_i \geq 0$ (and can have any number of literals)
 ➢ Output: Truth assignment that approximately maximizes the weight of clauses satisfied
LP Formulation of Max-SAT

• First, IP formulation:

➢ Variables:
 o \(y_1, ..., y_n \in \{0,1\} \)
 • \(y_i = 1 \) iff variable \(x_i = \text{TRUE} \) in Max-SAT
 o \(z_1, ..., z_m \in \{0,1\} \)
 • \(z_j = 1 \) iff clause \(C_j \) is satisfied in Max-SAT

o Program:

Maximize \(\sum_j w_j \cdot z_j \)

s.t.
\[
\sum_{x_i \in C_j} y_i + \sum_{\bar{x}_i \in C_j} (1 - y_i) \geq z_j \quad \forall j \in \{1, ..., m\}
\]
\[
y_i, z_j \in \{0,1\} \quad \forall i \in \{1, ..., n\}, j \in \{1, ..., m\}
\]
LP Formulation of Max-SAT

• LP relaxation:

 ➢ Variables:

 o \(y_1, \ldots, y_n \in [0,1] \)
 • \(y_i = 1 \) iff variable \(x_i = \text{TRUE} \) in Max-SAT
 o \(z_1, \ldots, z_m \in [0,1] \)
 • \(z_j = 1 \) iff clause \(C_j \) is satisfied in Max-SAT

 o Program:

 Maximize \(\sum_j w_j \cdot z_j \)
 s.t.
 \(\sum_{i \in C_j} y_i + \sum_{\overline{x}_i \in C_j} (1 - y_i) \geq z_j \quad \forall j \in \{1, \ldots, m\} \)
 \(y_i, z_j \in [0,1] \quad \forall i \in \{1, \ldots, n\}, j \in \{1, \ldots, m\} \)
Randomized Rounding

• Randomized rounding
 ➢ Find the optimal solution \((y^*, z^*)\) of the LP
 ➢ Compute a random IP solution \(\hat{y}\) such that
 o Each \(\hat{y}_i = 1\) with probability \(y_i^*\) and \(0\) with probability \(1 - y_i^*\)
 o Independently of other \(\hat{y}_i\)'s
 o The output of the algorithm is the corresponding truth assignment
 ➢ What is \(\Pr[C_j \text{ is satisfied}]\) if \(C_j\) has \(k\) literals?

\[
1 - \Pi_{x_i \in C_j} (1 - y_i^*) \cdot \Pi_{\bar{x}_i \in C_j} (y_i^*) \\
\geq 1 - \left(\frac{\Sigma_{x_i \in C_j} (1 - y_i^*) + \Sigma_{\bar{x}_i \in C_j} (y_i^*)}{k} \right)^k \\
\geq 1 - \left(\frac{k - z_j^*}{k} \right)^k
\]

AM-GM inequality LP constraint
Randomized Rounding

• Claim

\[1 - \left(1 - \frac{z}{k} \right)^k \geq \left(1 - \left(1 - \frac{1}{k} \right)^k \right) \cdot z \]
for all \(z \in [0,1] \) and \(k \in \mathbb{N} \)

• Assuming the claim:

\[\Pr[C_j \text{ is satisfied}] \geq 1 - \left(\frac{k - z^*_j}{k} \right)^k \geq \left(1 - \left(1 - \frac{1}{k} \right)^k \right) \cdot z^*_j \geq \left(1 - \frac{1}{e} \right) \cdot z^*_j \]

• Hence,

\[\mathbb{E}[\text{#weight of clauses satisfied}] \geq \left(1 - \frac{1}{e} \right) \sum_j w_j \cdot z^*_j \geq \left(1 - \frac{1}{e} \right) \cdot OPT \]
Randomized Rounding

• Claim
 \[1 - \left(1 - \frac{z}{k}\right)^k \geq \left(1 - \left(1 - \frac{1}{k}\right)^k\right) \cdot z \] for all \(z \in [0,1] \) and \(k \in \mathbb{N} \)

• Proof of claim:
 - True at \(z = 0 \) and \(z = 1 \) (same quantity on both sides)
 - For \(0 \leq z \leq 1 \):
 - LHS is a convex function
 - RHS is a linear function
 - Hence, LHS \(\geq \) RHS \(\blacksquare \)
Improving Max-SAT Apx

• Best of both worlds:
 ➢ Run both “LP relaxation + randomized rounding” and “naïve randomized algorithm”
 ➢ Return the best of the two solutions

➢ Claim without proof: This achieves a $\frac{3}{4} = 0.75$ approximation!
 o This algorithm can be derandomized.

➢ Recall:
 o “naïve randomized” = independently set each variable to TRUE/FALSE with probability 0.5 each, which only gives $\frac{1}{2} = 0.5$ approximation by itself
Back to 2-SAT

• Max-2-SAT is NP-hard (we didn’t prove this!)
• But 2-SAT can be efficiently solved
 ➢ “Given a 2-CNF formula, check whether all clauses can be satisfied simultaneously.”

• Algorithm:
 ➢ Repeatedly eliminate a clause with one literal & set the literal to true
 ➢ Create a graph with each remaining literal as a vertex
 ➢ For every clause \((x \lor y)\), add two edges: \(\overline{x} \rightarrow y\) and \(\overline{y} \rightarrow x\)
 o \(u \rightarrow v\) means if \(u\) is true, \(v\) must be true
 ➢ Formula is satisfiable iff no path from \(x\) to \(\overline{x}\) or \(\overline{x}\) to \(x\) for any \(x\)
 o Can be checked in polynomial time
Random Walk + 2-SAT

• Here’s a cute randomized algorithm by Papadimitriou [1991]

• Algorithm:
 ➢ Start with an arbitrary assignment.
 ➢ While there is an unsatisfied clause $C = (x \lor y)$
 o Pick one of the two literals with equal probability.
 o Flip the variable value so that C is satisfied.

• But can’t this hurt the other clauses?
 ➢ In a given step, yes.
 ➢ But in expectation, we will still make progress.
Random Walk + 2-SAT

• Theorem:
 ➢ If there is a satisfying assignment τ^*, then this algorithm reaches a satisfying assignment in $O(n^2)$ expected time.

• Proof:
 ➢ Fix a satisfying assignment τ^*
 ➢ Let τ_0 be the starting assignment
 ➢ Let τ_i be the assignment after i iterations
 ➢ Consider the “hamming distance” d_i between τ_i and τ^*
 o Number of coordinates in which the two differ
 o $d_i \in \{0,1,\ldots,n\}$
 ➢ Claim: the algorithm hits $d_i = 0$ in $O(n^2)$ iterations in expectation, unless it stops before that
Random Walk + 2-SAT

• **Observation:** \(d_{i+1} = d_i - 1 \) or \(d_{i+1} = d_i + 1 \)
 - Because we change one variable in each iteration.

• **Claim:** \(\Pr[d_{i+1} = d_i - 1] \geq 1/2 \)

• **Proof:**
 - Iteration \(i \) considers an unsatisfied clause \(C = (x \lor y) \)
 - \(\tau^* \) satisfies at least one of \(x \) or \(y \), while \(\tau_i \) satisfies neither
 - Because we pick a literal randomly, w.p. at least \(1/2 \) we pick one where \(\tau_i \) and \(\tau^* \) differ and decrease the distance
 - **Q:** Why did we need an unsatisfied clause? What if we pick one of \(n \) variables randomly and flip it?
Random Walk 2-SAT

• Answer:
 ➢ We want the distance to decrease with probability at least \(\frac{1}{2} \) no matter how close or far we are from \(\tau^* \)
 ➢ If we are already close, choosing a variable at random will likely choose one where \(\tau \) and \(\tau^* \) already match
 ➢ Flipping this variable will increase the distance with high probability
 ➢ An unsatisfied clause narrows it down to two variables s.t. \(\tau \) and \(\tau^* \) differ on at least one of them
Random Walk + 2-SAT

- Observation: \(d_{i+1} = d_i - 1 \) or \(d_{i+1} = d_i + 1 \)
- Claim: \(\Pr[d_{i+1} = d_i - 1] \geq 1/2 \)

• How does this help?
• How does this help?
 - Can view this as a “Markov chain” and use known results on “hitting time”
 - But let’s prove it using elementary methods
Random Walk + 2-SAT

• For $k > \ell$, define:
 ➢ $T_{k,\ell} =$ expected number of iterations it takes to hit distance ℓ
 for the first time when you start at distance k

• $T_{i+1,i} \leq \frac{1}{2} * 1 + \frac{1}{2} * (1 + T_{i+2,i})$
 $= \frac{1}{2} * (1) + \frac{1}{2} * (1 + T_{i+2,i+1} + T_{i+1,i})$

• Simplifying:
 ➢ $T_{i+1,i} \leq 2 + T_{i+2,i+1} \leq 4 + T_{i+3,i+2} \leq \cdots \leq O(n) + T_{n,n-1} \leq O(n)$
 ○ Uses $T_{n,n-1} = 1$ (Why?)

• $T_{n,0} \leq T_{n,n-1} + \cdots + T_{1,0} = O(n^2)$

Which pillar did we use?
Random Walk + 2-SAT

• Can view this algorithm as a “drunken local search”
 ➢ We are searching the local neighborhood
 ➢ But we don’t ensure that we necessarily improve
 ➢ We just ensure that in expectation, we aren’t hurt
 ➢ Hope to reach a feasible solution in polynomial time

• Schöning extended this technique to k-SAT
 ➢ Schöning’s algorithm no longer runs in polynomial time, but this is okay because k-SAT is NP-hard
 ➢ It still improves upon the naïve 2^n
 ➢ Later derandomized by Moser and Scheder [2011]
Schöning’s Algorithm for \(k \)-SAT

Algorithm:
- Choose a random assignment \(\tau \)
- Repeat \(3n \) times (\(n = \# \text{variables} \))
 - If \(\tau \) satisfies the CNF, stop
 - Else, pick an arbitrary unsatisfied clause and flip a random literal in the clause
Schöning’s Algorithm

• Randomized algorithm with one-sided error
 ➢ If the CNF is satisfiable, it finds an assignment with probability at least \((\frac{1}{2} \cdot \frac{k}{k-1})^n\)
 ➢ If the CNF is unsatisfiable, it never finds an assignment

• Expected #times we need to repeat in order to find a satisfying assignment when one exists: \(O\left(2 \left(1 - \frac{1}{k}\right)^n\right)\)
 ➢ For \(k = 3\), this gives \(O(1.3333^n)\)
 ➢ For \(k = 4\), this gives \(O(1.5^n)\)
Best Known Results

• 3-SAT

• Deterministic
 ➢ Derandomized Schöning’s algorithm: $O(1.3333^n)$
 ➢ Best known: $O(1.3303^n)$ [HSSW]
 o If we are assured that there is a unique satisfying assignment: $O(1.3071^n)$ [PPSZ]

• Randomized
 ➢ Nothing better known without one-sided error
 ➢ With one-sided error, best known is $O(1.30704^n)$ [Modified PPSZ]
Random Walk + 2-SAT

• Random walks are not only of theoretical interest
 ➢ WalkSAT is a practical SAT algorithm
 ➢ At each iteration, pick an unsatisfied clause \textit{at random}
 ➢ Pick a variable in the unsatisfied clause to flip:
 o With some probability, pick at random.
 o With the remaining probability, pick one that will make the fewest previously satisfied clauses unsatisfied
 ➢ Restart a few times (avoids being stuck in local minima)

• Faster than “intelligent local search” (GSAT)
 ➢ Flip the variable that satisfies most clauses
Random Walks on Graphs

• Aleliunas et al. [1979]
 ➢ Let G be a connected undirected graph. Then a random walk starting from any vertex will cover the entire graph (visit each vertex at least once) in $O(mn)$ steps.

• Limiting probability distribution
 ➢ In the limit, the random walk will visit a vertex with degree d_i in $\frac{d_i}{2m}$ fraction of the steps

• Markov chains
 ➢ Generalize to directed (possibly infinite) graphs with unequal edge traversal probabilities
Randomization for Sublinear Running Time
Sublinear Running Time

• Given an input of length \(n \), we want an algorithm that runs in time \(o(n) \)
 - \(o(n) \) examples: \(\log n, \sqrt{n}, n^{0.999}, \frac{n}{\log n}, ... \)
 - The algorithm doesn’t even get to read the full input!

• There are four possibilities:
 - Exact vs inexact: whether the algorithm always returns the correct/optimal solution or only does so with high probability (or gives some approximation)
 - Worst-case versus expected running time: whether the algorithm always takes \(o(n) \) time or only does so in expectation (but still on every instance)
Exact algorithms, expected sublinear time
Searching in Sorted List

• **Input:** A sorted doubly linked list with n elements.
 - Imagine you have an array A with $O(1)$ access to $A[i]$
 - $A[i]$ is a tuple (x_i, p_i, n_i)
 - Value, index of previous element, index of next element.
 - Sorted: $x_{p_i} \leq x_i \leq x_{n_i}$

• **Task:** Given x, check if there exists i s.t. $x = x_i$

• **Goal:** We will give a randomized + exact algorithm with expected running time $O(\sqrt{n})$!
Searching in Sorted List

• Motivation:
 ➢ Often we deal with large datasets that are stored in a large file on disk, or possibly broken into multiple files
 ➢ Creating a new, sorted version of the dataset is expensive
 ➢ It is often preferred to “implicitly sort” the data by simply adding previous-next pointers along with each element

 ➢ Would like algorithms that can operate on such implicitly sorted versions and yet achieve sublinear running time
 o Just like binary search achieves for an explicitly sorted array
Searching in Sorted List

Algorithm:
- Select \sqrt{n} random indices R
- Access x_j for each $j \in R$
- Find “accessed x_j nearest to x in either direction”
 - either the largest among all $x_j \leq x$...
 - or the smallest among all $x_j \geq x$
- If you take the largest $x_j \leq x$, start from there and keep going “next” until you find x or go past its value
- If you take the smallest $x_j \geq x$, start from there and keep going “previous” until you find x or go past its value
Searching in Sorted List

- Analysis sketch:
 - Suppose you find the largest $x_j \leq x$ and keep going “next”
 - Let x_i be smallest value $\geq x$
 - Algorithm stops when it hits x_i
 - Algorithm throws \sqrt{n} random “darts” on the sorted list
 - Chernoff bound:
 - Expected distance of x_i to the closest dart to its left is $O(\sqrt{n})$
 - We’ll assume this without proof!
 - Hence, the algorithm only does “next” $O(\sqrt{n})$ times in expectation
Searching in Sorted List

• **Note:**
 - We don’t *really* require the list to be doubly linked. Just “next” pointer suffices if we have a pointer to the first element of the list (a.k.a. “anchored list”).

• This algorithm is optimal!

• **Theorem:** No algorithm that always returns the correct answer can run in $o(\sqrt{n})$ expected time.
 - Can be proved using “Yao’s minimax principle”
 - Beyond the scope of the course, but this is a fundamental result with wide-ranging applications
Sublinear Geometric Algorithms

• Chazelle, Liu, and Magen [2003] proved the $\Theta(\sqrt{n})$ bound for searching in a sorted linked list

 ➢ Their main focus was to generalize these ideas to come up with sublinear algorithms for geometric problems

 ➢ Polygon intersection: Given two convex polyhedra, check if they intersect.

 ➢ Point location: Given a Delaunay triangulation (or Voronoi diagram) and a point, find the cell in which the point lies.

 ➢ They provided optimal $O(\sqrt{n})$ algorithms for both these problems.
Inexact algorithms, expected sublinear time
Estimating Avg Degree in Graph

- **Input:**
 - Undirected graph G with n vertices
 - $O(1)$ access to the degree of any queried vertex

- **Output:**
 - Estimate the average degree of all vertices
 - More precisely, we want to find a $(2 + \epsilon)$-approximation in expected time $O(\epsilon^{-O(1)}\sqrt{n})$

- **Wait!**
 - Isn’t this equivalent to “given an array of n numbers between 1 and $n - 1$, estimate their average”?
 - No! That requires $\Omega(n)$ time for any constant approximation!
 - Consider an instance with constantly many $n - 1$’s, and all other 1’s: you may not discover any $n - 1$ until you query $\Omega(n)$ numbers
Estimating Avg Degree in Graph

• Why are degree sequences more special?

• Erdős–Gallai theorem:
 - $d_1 \geq \cdots \geq d_n$ is a degree sequence iff their sum is even and
 $$\sum_{i=1}^{k} d_i \leq k(k - 1) + \sum_{i=k+1}^{n} d_i$$

• Intuitively, we will sample $O(\sqrt{n})$ vertices
 - We may not discover the few high degree vertices but we’ll find their neighbors and thus account for their edges anyway!
Estimating Avg Degree in Graph

• Algorithm:
 - Take $8/\epsilon$ random subsets $S_i \subseteq V$ with $|S_i| = O\left(\frac{\sqrt{n}}{\epsilon}\right)$
 - Compute the average degree d_{S_i} in each S_i.
 - Return $\overline{d} = \min_i d_{S_i}$

• Analysis beyond the scope of this course
 - This gets the approximation right with probability at least $\frac{5}{6}$
 - By repeating the experiment $\Omega(\log n)$ times and reporting the median answer, we can get the approximation right with probability at least $1 - 1/O(n)$ and a bad approximation with the other $1/O(n)$ probability cannot hurt much