CSC373

Week 11: Randomized Algorithms

Randomized Algorithms

• Running time

- Harder goal: the running time should *always* be small
 Regardless of both the input and the random coin flips
- Easier goal: the running time should be small *in expectation* Expectation over random coin flips
 But it should still be small for every input (i.e. worst-case)

Approximation Ratio

- The objective value of the solution returned should, in expectation, be close to the optimum objective value
 - \circ Once again, the expectation is over random coin flips
 - $\,\circ\,$ The approximation ratio should be small for every input

- After coming up with a randomized approximation algorithm, one might ask if it can be "derandomized"
 - Informally, the randomized algorithm is making random choices that, in expectation, turn out to be good
 - > Can we make these "good" choices deterministically?
- For some problems...
 - It may be easier to first design a simple randomized approximation algorithm and then de-randomize it...
 - Than to try to directly design a deterministic approximation algorithm

Recap: Probability Theory

• Random variable X

> Discrete

 $_{\odot}$ Takes value v_{1} with probability p_{1} , v_{2} w.p. p_{2} , ...

- Expected value $E[X] = p_1 \cdot v_1 + p_2 \cdot v_2 + \cdots$
- Examples: coin toss, the roll of a six-sided die, ...

Continuous

- \circ Has a probability density function (pdf) f
- \circ Its integral is the cumulative density function (cdf) F

•
$$F(x) = \Pr[X \le x] = \int_{-\infty}^{x} f(t) dt$$

- Expected value $E[X] = \int_{-\infty}^{\infty} x f(x) dx$
- Examples: normal distribution, exponential distribution, uniform distribution over [0,1], ...

Recap: Probability Theory

• Things you should be aware of...

- Conditional probabilities
- Conditional expectations
- > Independence among random variables
- Moments of random variables
- Standard discrete distributions: uniform over a finite set, Bernoulli, binomial, geometric, Poisson, ...
- Standard continuous distributions: uniform over intervals, Gaussian/normal, exponential, ...

Three Pillars

Linearity of Expectation Union Bound

Chernoff Bound

- Deceptively simple, but incredibly powerful!
- Many many many many probabilistic results are just interesting applications of these three results

Three Pillars

- Linearity of expectation
 - $\succ E[X+Y] = E[X] + E[Y]$
 - > This does *not* require any independence assumptions about *X* and *Y*
 - E.g. if you want to find out how many people will attend your party on average, just ask each person the probability with which they will attend and sum up the probabilities
 - It does not matter whether some of them are friends and either all will attend together or none will attend

Three Pillars

Union bound

- ▶ For any two events A and B, $Pr[A \cup B] \leq Pr[A] + Pr[B]$
- > "Probability that at least one of the n events $A_1, ..., A_n$ will occur is at most $\sum_i \Pr[A_i]$ "
- > Typically, A_1, \dots, A_n are "bad events"
 - $\,\circ\,$ You do not want any of them to occur
 - If you can individually bound $Pr[A_i] \le \frac{1}{2n}$ for each *i*, then probability that at least one them occurs $\le 1/2$

 \circ Thus, with probability $\geq 1/2$, none of the bad events will occur

Chernoff bound & Hoeffding's inequality

Read up!

• Problem (recall)

- Input: An exact k-SAT formula φ = C₁ ∧ C₂ ∧ ··· ∧ C_m, where each clause C_i has exactly k literals, and a weight w_i ≥ 0 of each clause C_i
- > Output: A truth assignment τ maximizing the number (or total weight) of clauses satisfied under τ

> Let us denote by $W(\tau)$ the total weight of clauses satisfied under τ

- Recall our local search
 - > $N_d(\tau)$ = set of all truth assignments which can be obtained by changing the value of at most d variables in τ
- Result 1: Neighborhood $N_1(\tau) \Rightarrow 2/3$ -apx for Exact Max-2-SAT.
- Result 2: Neighborhood $N_1(\tau) \cup \tau^c \Rightarrow {}^3/_4$ -apx for Exact Max-2-SAT.
- Result 3: Neighborhood $N_1(\tau)$ + oblivious local search $\Rightarrow 3/_4$ -apx for Exact Max-2-SAT.

- Recall our local search
 - > $N_d(\tau)$ = set of all truth assignments which can be obtained by changing the value of at most d variables in τ
- We claimed that $\frac{3}{4}$ -apx for Exact Max-2-SAT can be generalized to $\frac{2^{k}-1}{2^{k}}$ -apx for Exact Max-*k*-SAT

> Algorithm becomes slightly more complicated

• What can we do with randomized algorithms?

- Recall:
 - \succ We have a formula $\varphi = \mathit{C}_1 \land \mathit{C}_2 \land \cdots \land \mathit{C}_m$
 - > Variables = $x_1, ..., x_n$, literals = variables or their negations
 - > Each clause contains exactly k literals

• The most naïve randomized algorithm

- \succ Set each variable to TRUE with probability $\frac{1}{2}$ and to FALSE with probability $\frac{1}{2}$
- How good is this?

- Recall:
 - \succ We have a formula $\varphi = \mathit{C}_1 \land \mathit{C}_2 \land \cdots \land \mathit{C}_m$
 - > Variables = $x_1, ..., x_n$, literals = variables or their negations
 - > Each clause contains exactly k literals
- Let τ be a random assignment
 - > For each clause C_i : $\Pr[C_i \text{ is not satisfied}] = \frac{1}{2^k}$ (WHY?)

• Hence, $\Pr[C_i \text{ is satisfied}] = \frac{\binom{2^k - 1}{2^k}}{2^k}$

> $E[W(\tau)] = \sum_{i=1}^{m} w_i \cdot \Pr[C_i \text{ is satisfied}] \text{ (WHY?)}$ > $E[W(\tau)] = \frac{2^{k}-1}{2^k} \cdot \sum_{i=1}^{m} w_i \ge \frac{2^k-1}{2^k} \cdot OPT$

- Can we derandomize this algorithm?
 - > What are the choices made by the algorithm?
 - \circ Setting the values of x_1, x_2, \dots, x_n
 - > How do we know which set of choices is good?

• Idea:

- > Do not think about all the choices at once.
- > Think about them one by one.
- ▶ Goal: Gradually convert the random assignment τ to a deterministic assignment $\hat{\tau}$ such that $W(\hat{\tau}) \ge E[W(\tau)]$
 - Combining with $E[W(\tau)] \ge \frac{2^{k-1}}{2^{k}} \cdot OPT$ will give the desired deterministic approximation ratio

• Start with the random assignment au and write...

$$E[W(\tau)] = \Pr[x_1 = T] \cdot E[W(\tau)|x_1 = T] + \Pr[x_1 = F] \cdot E[W(\tau)|x_1 = F]$$

= $\frac{1}{2} \cdot E[W(\tau)|x_1 = T] + \frac{1}{2} \cdot E[W(\tau)|x_1 = F]$

- > Hence, $\max(E[W(\tau)|x_1 = T], E[W(\tau)|x_1 = F]) \ge E[W(\tau)]$ ○ What is $E[W(\tau)|x_1 = T]$?
 - It is the expected weight when setting $x_1 = T$ deterministically but still keeping $x_2, ..., x_n$ random
- > If we can compute both $E[W(\tau)|x_1 = T]$ and $E[W(\tau)|x_1 = F]$, and pick the better one...
 - \circ Then we can set x_1 deterministically without degrading the expected objective value

• After deterministically making the right choice for x_1 (say T), we can apply the same logic to x_2

$$E[W(\tau)|x_1 = T] = \frac{1}{2} \cdot E[W(\tau)|x_1 = T, x_2 = T] + \frac{1}{2} \cdot E[W(\tau)|x_1 = T, x_2 = F]$$

> Pick the better of the two conditional expectations

• Derandomized Algorithm:

For *i* = 1, ..., *n*
○ Let
$$z_i = T$$
 if $E[W(\tau)|x_1 = z_1, ..., x_{i-1} = z_{i-1}, x_i = T] ≥$
 $E[W(\tau)|x_1 = z_1, ..., x_{i-1} = z_{i-1}, x_i = F]$, and $z_i = F$ otherwise
○ Set $x_i = z_i$

- This is called the method of conditional expectations
 - If we're happy when making a choice at random, we should be at least as happy conditioned on at least one of the possible values of that choice
- Remaining question:
 - > How do we compute & compare the two conditional expectations: $E[W(\tau)|x_1 = z_1, ..., x_{i-1} = z_{i-1}, x_i = T]$ and $E[W(\tau)|x_1 = z_1, ..., x_{i-1} = z_{i-1}, x_i = F]$?

- $E[W(\tau)|x_1 = z_1, \dots, x_{i-1} = z_{i-1}, x_i = T]$
 - > $\sum_r w_r \cdot \Pr[C_r \text{ is satisfied } | x_1 = z_1, \dots, x_{i-1} = z_{i-1}, x_i = T]$ > Set the values of x_1, \dots, x_{i-1}, x_i
 - > If C_r resolves to TRUE already, the corresponding probability is 1
 - > If C_r resolves to FALSE already, the corresponding probability is 0
 - > Otherwise, if there are ℓ literals left in C_r after setting x_1, \dots, x_{i-1}, x_i , the corresponding probability is $\frac{2^{\ell}-1}{2^{\ell}}$
- Compute $E[W(\tau)|x_1 = z_1, ..., x_{i-1} = z_{i-1}, x_i = F]$ similarly

Max-SAT

- Simple randomized algorithm
 - > $\frac{2^{k}-1}{2^{k}}$ –approximation for Max-k-SAT
 - > Max-3-SAT ⇒ $^{7}/_{8}$

 \circ [Håstad]: This is the best possible assuming P ≠ NP

> Max-2-SAT
$$\Rightarrow 3/_4 = 0.75$$

- The best known approximation is 0.9401 using semi-definite programming and randomized rounding
- > Max-SAT $\Rightarrow 1/_2$
 - \circ Max-SAT = no restriction on the number of literals in each clause
 - The best known approximation is 0.7968, also using semi-definite programming and randomized rounding

Max-SAT

Better approximations for Max-SAT

- Semi-definite programming is out of the scope
- > But we will see the simpler "LP relaxation + randomized rounding" approach that gives $1 \frac{1}{e} \approx 0.6321$ approximation

• Max-SAT:

- > Input: $\varphi = C_1 \wedge C_2 \wedge \cdots \wedge C_m$, where each clause C_i has weight $w_i \ge 0$ (and can have any number of literals)
- Output: Truth assignment that approximately maximizes the weight of clauses satisfied

LP Formulation of Max-SAT

- First, IP formulation:
 - > Variables:

 $y_1, ..., y_n \in \{0, 1\}$ • $y_i = 1$ iff variable $x_i = \text{TRUE}$ in Max-SAT $z_1, ..., z_m \in \{0, 1\}$ • $z_i = 1$ iff clause C_i is satisfied in Max-SAT

○ **Program:**

$$\begin{array}{l} \text{Maximize } \Sigma_j \ w_j \cdot z_j \\ \text{s.t.} \\ \Sigma_{x_i \in C_j} \ y_i + \Sigma_{\bar{x}_i \in C_j} \ (1 - y_i) \geq z_j \quad \forall j \in \{1, \dots, m\} \\ y_i, z_j \in \{0, 1\} \qquad \qquad \forall i \in \{1, \dots, n\}, j \in \{1, \dots, m\} \end{array}$$

LP Formulation of Max-SAT

• LP relaxation:

> Variables:

 $y_1, ..., y_n \in [0,1]$ • $y_i = 1$ iff variable $x_i = \text{TRUE}$ in Max-SAT $z_1, ..., z_m \in [0,1]$ • $z_i = 1$ iff clause C_i is satisfied in Max-SAT

○ Program:

$$\begin{array}{l} \text{Maximize } \Sigma_j \ w_j \cdot z_j \\ \text{s.t.} \\ \Sigma_{x_i \in C_j} \ y_i + \Sigma_{\bar{x}_i \in C_j} \ (1 - y_i) \geq z_j \quad \forall j \in \{1, \dots, m\} \\ y_i, z_j \in [0, 1] \qquad \qquad \forall i \in \{1, \dots, n\}, j \in \{1, \dots, m\} \end{array}$$

Randomized Rounding

Randomized rounding

- > Find the optimal solution (y^*, z^*) of the LP
- \succ Compute a random IP solution \hat{y} such that
 - \circ Each $\hat{y}_i = 1$ with probability y_i^* and 0 with probability $1 y_i^*$
 - \circ Independently of other \hat{y}_i 's
 - $\,\circ\,$ The output of the algorithm is the corresponding truth assignment
- > What is $Pr[C_j \text{ is satisfied}]$ if C_j has k literals?

Randomized Rounding

• Claim

>
$$1 - \left(1 - \frac{z}{k}\right)^k \ge \left(1 - \left(1 - \frac{1}{k}\right)^k\right) \cdot z$$
 for all $z \in [0, 1]$ and $k \in \mathbb{N}$

• Assuming the claim:

$$\Pr[C_{j} \text{ is satisfied}] \geq 1 - \left(\frac{k - z_{j}^{*}}{k}\right)^{k} \geq \left(1 - \left(1 - \frac{1}{k}\right)^{k}\right) \cdot z_{j}^{*} \geq \left(1 - \frac{1}{e}\right) \cdot z_{j}^{*}$$
Hence,
$$\operatorname{Standard inequality}$$

$$\mathbb{E}[\text{#weight of clauses satisfied}] \geq \left(1 - \frac{1}{e}\right) \sum_{j} w_{j} \cdot z_{j}^{*} \geq \left(1 - \frac{1}{e}\right) \cdot OPT$$

Optimal LP objective \geq optimal ILP objective

•

Randomized Rounding

Claim

>
$$1 - \left(1 - \frac{z}{k}\right)^k \ge \left(1 - \left(1 - \frac{1}{k}\right)^k\right) \cdot z$$
 for all $z \in [0, 1]$ and $k \in \mathbb{N}$

- Proof of claim:
 - > True at z = 0 and z = 1 (same quantity on both sides)

For
$$0 \le z \le 1$$
:

○ LHS is a convex function
○ RHS is a linear function
○ Hence, LHS ≥ RHS
○ 0.4
0.3
0.2
0.1

Improving Max-SAT Apx

• Best of both worlds:

- Run both "LP relaxation + randomized rounding" and "naïve randomized algorithm"
- Return the best of the two solutions
- Claim without proof: This achieves a ${}^{3}\!/_{4} = 0.75$ approximation!
 This algorithm can be derandomized.
- ➤ Recall:
 - "naïve randomized" = independently set each variable to TRUE/FALSE with probability 0.5 each, which only gives ¹/₂ = 0.5 approximation by itself

Back to 2-SAT

- Max-2-SAT is NP-hard (we didn't prove this!)
- But 2-SAT can be efficiently solved
 - Given a 2-CNF formula, check whether all clauses can be satisfied simultaneously."

• Algorithm:

- > Repeatedly eliminate a clause with one literal & set the literal to true
- > Create a graph with each remaining literal as a vertex
- For every clause (x ∨ y), add two edges: $\bar{x} \to y$ and $\bar{y} \to x$ u → v means if u is true, v must be true
- > Formula is satisfiable iff no path from x to \overline{x} or \overline{x} to x for any x
 - $\,\circ\,$ Can be checked in polynomial time

 Here's a cute randomized algorithm by Papadimitriou [1991]

• Algorithm:

- Start with an arbitrary assignment.
- > While there is an unsatisfied clause $C = (x \lor y)$
 - $\,\circ\,$ Pick one of the two literals with equal probability.
 - \circ Flip the variable value so that *C* is satisfied.
- But can't this hurt the other clauses?
 - > In a given step, yes.
 - > But in expectation, we will still make progress.

• Theorem:

> If there is a satisfying assignment τ^* , then this algorithm reaches a satisfying assignment in $O(n^2)$ expected time.

• Proof:

- \succ Fix a satisfying assignment τ^*
- > Let τ_0 be the starting assignment
- > Let τ_i be the assignment after *i* iterations
- \succ Consider the "hamming distance" d_i between τ_i and τ^*

 $\,\circ\,$ Number of coordinates in which the two differ

 $\circ \ d_i \in \{0, 1, \dots, n\}$

> Claim: the algorithm hits $d_i = 0$ in $O(n^2)$ iterations in expectation, unless it stops before that

- Observation: $d_{i+1} = d_i 1$ or $d_{i+1} = d_i + 1$
 - > Because we change one variable in each iteration.
- Claim: $\Pr[d_{i+1} = d_i 1] \ge 1/2$
- Proof:
 - > Iteration *i* considers an unsatisfied clause $C = (x \lor y)$
 - > τ^* satisfies at least one of x or y, while τ_i satisfies neither
 - > Because we pick a literal randomly, w.p. at least $\frac{1}{2}$ we pick one where τ_i and τ^* differ and decrease the distance
 - Q: Why did we need an unsatisfied clause? What if we pick one of n variables randomly and flip it?

• Answer:

- > We want the distance to decrease with probability at least $\frac{1}{2}$ no matter how close or far we are from τ^*
- > If we are already close, choosing a variable at random will likely choose one where τ and τ^* already match
- > Flipping this variable will increase the distance with high probability
- > An unsatisfied clause narrows it down to two variables s.t. τ and τ^* differ on at least one of them

- Observation: $d_{i+1} = d_i 1$ or $d_{i+1} = d_i + 1$
- Claim: $\Pr[d_{i+1} = d_i 1] \ge 1/2$

• How does this help?

- How does this help?
 - Can view this as a "Markov chain" and use known results on "hitting time"
 - > But let's prove it using elementary methods

- For $k > \ell$, define:
 - > $T_{k,\ell}$ = expected number of iterations it takes to hit distance ℓ for the first time when you start at distance k

•
$$T_{i+1,i} \leq \frac{1}{2} * 1 + \frac{1}{2} * (1 + T_{i+2,i})$$

= $\frac{1}{2} * (1) + \frac{1}{2} * (1 + T_{i+2,i+1} + T_{i+1,i})$
Which pillar did we use?

- Simplifying:
 - > $T_{i+1,i} ≤ 2 + T_{i+2,i+1} ≤ 4 + T_{i+3,i+2} ≤ \cdots ≤ O(n) + T_{n,n-1} ≤ O(n)$ Uses $T_{n,n-1} = 1$ (Why?)

•
$$T_{n,0} \le T_{n,n-1} + \dots + T_{1,0} = O(n^2)$$

Random Walk + 2-SAT

- Can view this algorithm as a "drunken local search"
 - > We are searching the local neighborhood
 - > But we don't ensure that we necessarily improve
 - > We just ensure that in expectation, we aren't hurt
 - > Hope to reach a feasible solution in polynomial time
- Schöning extended this technique to k-SAT
 - Schöning's algorithm no longer runs in polynomial time, but this is okay because k-SAT is NP-hard
 - > It still improves upon the naïve 2^n
 - Later derandomized by Moser and Scheder [2011]

Schöning's Algorithm for k-SAT

• Algorithm:

- \succ Choose a random assignment au
- > Repeat 3n times (n =#variables)
 - $\,\circ\,$ If τ satisfies the CNF, stop
 - $\,\circ\,$ Else, pick an arbitrary unsatisfied clause and flip a random literal in the clause

Schöning's Algorithm

- Randomized algorithm with one-sided error
 - > If the CNF is satisfiable, it finds an assignment with probability at least $\left(\frac{1}{2} \cdot \frac{k}{k-1}\right)^n$
 - > If the CNF is unsatisfiable, it never finds an assignment
- Expected #times we need to repeat in order to find a satisfying assignment when one exists: $\left(2\left(1-\frac{1}{k}\right)\right)^n$

For
$$k = 3$$
, this gives $O(1.3333^n)$

> For k = 4, this gives $O(1.5^n)$

Best Known Results

- 3-SAT
- Deterministic
 - > Derandomized Schöning's algorithm: $O(1.3333^n)$
 - > Best known: $O(1.3303^n)$ [HSSW]

• If we are assured that there is a unique satisfying assignment: $O(1.3071^n)$ [PPSZ]

Randomized

- Nothing better known without one-sided error
- > With one-sided error, best known is $O(1.30704^n)$ [Modified PPSZ]

Random Walk + 2-SAT

- Random walks are not only of theoretical interest
 - WalkSAT is a practical SAT algorithm
 - > At each iteration, pick an unsatisfied clause at random
 - > Pick a variable in the unsatisfied clause to flip:
 - \odot With some probability, pick at random.
 - With the remaining probability, pick one that will make the fewest previously satisfied clauses unsatisfied
 - > Restart a few times (avoids being stuck in local minima)
- Faster than "intelligent local search" (GSAT)
 - Flip the variable that satisfies most clauses

Random Walks on Graphs

• Aleliunas et al. [1979]

Let G be a connected undirected graph. Then a random walk starting from any vertex will cover the entire graph (visit each vertex at least once) in O(mn) steps.

Limiting probability distribution

> In the limit, the random walk will visit a vertex with degree d_i in $\frac{d_i}{2m}$ fraction of the steps

Markov chains

 Generalize to directed (possibly infinite) graphs with unequal edge traversal probabilities

Randomization for Sublinear Running Time

Sublinear Running Time

- Given an input of length n, we want an algorithm that runs in time o(n)
 - > o(n) examples: $\log n$, \sqrt{n} , $n^{0.999}$, $\frac{n}{\log n}$, ...
 - > The algorithm doesn't even get to read the full input!
- There are four possibilities:
 - Exact vs inexact: whether the algorithm always returns the correct/optimal solution or only does so with high probability (or gives some approximation)
 - Worst-case versus expected running time: whether the algorithm always takes o(n) time or only does so in expectation (but still on every instance)

Exact algorithms, expected sublinear time

- Input: A sorted doubly linked list with *n* elements.
 - > Imagine you have an array A with O(1) access to A[i]
 - > A[i] is a tuple (x_i, p_i, n_i)
 - \circ Value, index of previous element, index of next element.
 - > Sorted: $x_{p_i} \le x_i \le x_{n_i}$
- Task: Given x, check if there exists i s.t. $x = x_i$
- Goal: We will give a randomized + exact algorithm with expected running time $O(\sqrt{n})!$

• Motivation:

- Often we deal with large datasets that are stored in a large file on disk, or possibly broken into multiple files
- > Creating a new, sorted version of the dataset is expensive
- It is often preferred to "implicitly sort" the data by simply adding previous-next pointers along with each element
- Would like algorithms that can operate on such implicitly sorted versions and yet achieve sublinear running time
 Just like binary search achieves for an explicitly sorted array

Algorithm:

- > Select \sqrt{n} random indices R
- ≻ Access x_j for each $j \in R$
- > Find "accessed x_i nearest to x in either direction"

 \circ either the largest among all $x_j \leq x$...

 \circ or the smallest among all $x_i \ge x$

- > If you take the largest $x_j \le x$, start from there and keep going "next" until you find x or go past its value
- > If you take the smallest $x_j \ge x$, start from there and keep going "previous" until you find x or go past its value

• Analysis sketch:

- > Suppose you find the largest $x_i \leq x$ and keep going "next"
- > Let x_i be smallest value $\ge x$
- > Algorithm stops when it hits x_i
- > Algorithm throws \sqrt{n} random "darts" on the sorted list
- > Chernoff bound:
 - Expected distance of x_i to the closest dart to its left is $O(\sqrt{n})$
 - We'll assume this without proof!
- > Hence, the algorithm only does "next" $O(\sqrt{n})$ times in expectation

• Note:

- > We don't *really* require the list to be doubly linked. Just "next" pointer suffices if we have a pointer to the first element of the list (a.k.a. "anchored list").
- This algorithm is optimal!
- Theorem: No algorithm that always returns the correct answer can run in $o(\sqrt{n})$ expected time.
 - > Can be proved using "Yao's minimax principle"
 - Beyond the scope of the course, but this is a fundamental result with wide-ranging applications

Sublinear Geometric Algorithms

- Chazelle, Liu, and Magen [2003] proved the $\Theta(\sqrt{n})$ bound for searching in a sorted linked list
 - Their main focus was to generalize these ideas to come up with sublinear algorithms for geometric problems
 - Polygon intersection: Given two convex polyhedra, check if they intersect.
 - Point location: Given a Delaunay triangulation (or Voronoi diagram) and a point, find the cell in which the point lies.
 - > They provided optimal $O(\sqrt{n})$ algorithms for both these problems.

Inexact algorithms, expected sublinear time

Estimating Avg Degree in Graph

• Input:

- > Undirected graph G with n vertices
- > O(1) access to the degree of any queried vertex

• Output:

- Estimate the average degree of all vertices
- > More precisely, we want to find a $(2 + \epsilon)$ -approximation in expected time $O(\epsilon^{-O(1)}\sqrt{n})$

• Wait!

- > Isn't this equivalent to "given an array of n numbers between 1 and n-1, estimate their average"?
- > No! That requires $\Omega(n)$ time for any constant approximation!
 - \circ Consider an instance with constantly many n-1's, and all other 1's: you may not discover any n-1 until you query $\Omega(n)$ numbers

Estimating Avg Degree in Graph

- Why are degree sequences more special?
- Erdős–Gallai theorem:
 - > $d_1 \ge \cdots \ge d_n$ is a degree sequence iff their sum is even and $\sum_{i=1}^k d_i \le k(k-1) + \sum_{i=k+1}^n d_i$
- Intuitively, we will sample $O(\sqrt{n})$ vertices
 - > We may not discover the few high degree vertices but we'll find their neighbors and thus account for their edges anyway!

Estimating Avg Degree in Graph

• Algorithm:

- > Take $\frac{8}{\epsilon}$ random subsets $S_i \subseteq V$ with $|S_i| = O\left(\frac{\sqrt{n}}{\epsilon}\right)$
- > Compute the average degree d_{S_i} in each S_i .
- > Return $\widehat{d} = \min_i d_{S_i}$

Analysis beyond the scope of this course

- > This gets the approximation right with probability at least $\frac{5}{6}$
- By repeating the experiment Ω(log n) times and reporting the median answer, we can get the approximation right with probability at least 1 − 1/O(n) and a bad approximation with the other 1/O(n) probability cannot hurt much