
CSC373

Algorithm Design, 
Analysis & Complexity

373F20 - Nisarg Shah 1

Nisarg Shah



Introduction

373F20 - Nisarg Shah 2

• Instructors
➢ Nisarg Shah 
o cs.toronto.edu/~nisarg, nisarg@cs, SF 2301C

o LEC 0101 and 0102

• TAs: Too many to list

• Disclaimer!
➢ First online version of the course, so expect a bumpy ride at the start, but 

hopefully, we’ll get through together

➢ Use any of the feedback mediums (email, Piazza, …) to let me know if you have 
any suggestions for improvement

Totally useless 
this semester!



Course Information

373F20 - Nisarg Shah 3

• Course Page www.cs.toronto.edu/~nisarg/teaching/373f20/

➢ All the information below is in the course information sheet, available on 
Piazza

• Discussion Board piazza.com/utoronto.ca/fall2020/csc373

• Grading – MarkUs
➢ Link will be distributed after about a week or two

➢ LaTeX preferred, scans are OK!

• All times in Eastern time zone, all zoom links on the course page

http://www.cs.toronto.edu/~nisarg/teaching/373f20/
piazza.com/utoronto.ca/fall2020/csc373


Lectures

373F20 - Nisarg Shah 4

• Time & Place: Tue 4-5pm, Thu 1-3pm, Zoom

• Details
➢ Delivered live

➢ 10 minute break after every 50 minutes of lecture

➢ Students can ask questions using Zoom’s chat feature

➢ One TA will be present to continuously answer questions

➢ I might also answer questions once in a while



Tutorials

373F20 - Nisarg Shah 5

• Time & Place: Tue 5-6pm, Zoom

• Details
➢ Delivered live by TAs

➢ Problem sets will be posted early on the course webpage
o Easier problems that are warm-up to assignments/exams

➢ Please try them before coming to the tutorials

➢ TAs will explain the problems, allow you to discuss them in breakout rooms, 
and then go over key parts of the solutions

➢ Solutions will be posted later on the course webpage



Tutorials

373F20 - Nisarg Shah 6

• Further details
➢ Each section is divided into three parts (A,B,C)

➢ Students divided by birth month: A = Jan-Apr, B = May-Aug, C = Sep-Dec

➢ Feel free to attend a different tutorial than the one you’re assigned
o EXCEPT when the tutorial slot is being used for a test

➢ If the attendance is low, the number of tutorials per section may be reduced



Office Hours

373F20 - Nisarg Shah 7

• Time & Place: Wed 4-5pm, Fri 10-11am, Zoom
➢ Do you have conflicts with these slots? Poll!

• Details
➢ I will conduct them

➢ Use the “raise hand” feature

➢ I will call upon the raised hands in order

➢ When called upon, unmute and ask the question

➢ Always phrase your question in a way that doesn’t give away your solutions or 
approach to an assignment problem
o Just like in a physical office



Tests

373F20 - Nisarg Shah 8

• 2 term tests, one end-of-term test (final exam)

• Time & Place: Tue 5-6pm (tutorial slot)
➢ Need to be able to attend live!

➢ I’m considering using part of the Tue 4-5pm lecture slot to give you more time

• Tentative Plan
➢ Open book, closed internet

➢ You may be asked to join a zoom link and keep your video on

➢ If you have a question, you can “raise hand”, and I or a TA can take you to a 
breakout room to answer your question

➢ Upload scanned answer sheet at the end (we’ll do a mock run of this)



Assignments

373F20 - Nisarg Shah 9

• 4 assignments, best 3 out of 4

• Group work
➢ In groups of up to three students

➢ Best way to learn is for each member to try each problem

• Questions will be more difficult
➢ May need to mull them over for several days; do not expect to start and finish 

the assignment on the same day!

➢ May include bonus questions

• Submission on MarkUs, more details later
➢ May need to compress the PDF



Grading Policy

373F20 - Nisarg Shah 10

• 3 homeworks * 10% = 30%

• 2 term tests * 20% = 40%

• Final exam * 30% = 30%

• NOTE: To pass, you must earn at least 40% on the final exam



Approximate Due Dates

373F20 - Nisarg Shah 11

• Please note the word approximate!
➢ Assignment 1: Apx. Oct 9

➢ Assignment 2: Apx. Oct 30

➢ Assignment 3: Apx. Nov 13

➢ Assignment 4: Apx. Nov 27

➢ Midterm 1: Apx. Oct 20

➢ Midterm 2: Apx. Nov 17

• Conflicts
➢ The tests are during the tutorial slot, so there should ideally be no conflict

➢ That said, if you think you’ll have a conflict, let me know at the earliest



Textbook

373F20 - Nisarg Shah 12

• Primary reference: lecture slides

• Primary textbook (required)
➢ [CLRS] Cormen, Leiserson, Rivest, Stein: Introduction to Algorithms.

• Supplementary textbooks (optional)
➢ [DPV] Dasgupta, Papadimitriou, Vazirani: Algorithms.

➢ [KT] Kleinberg; Tardos: Algorithm Design.



Other Policies

373F20 - Nisarg Shah 13

• Collaboration
➢ Free to discuss with classmates or read online material

➢ Must write solutions in your own words 
o Easier if you do not take any pictures/notes from discussions 

• Citation
➢ For each question, must cite the peer (write the name) or the online sources 

(provide links), if you obtained a significant insight directly pertinent to the 
question

➢ Failing to do this is plagiarism!



Other Policies

373F20 - Nisarg Shah 14

• “No Garbage” Policy

➢ Borrowed from: Prof. Allan Borodin (citation!)

1. Partial marks for viable approaches

2. Zero marks if the answer makes no sense

3. 20% marks if you admit to not knowing how to approach the question (“I do 

not know how to approach this question”)

• 20% > 0% !!



Other Policies

373F20 - Nisarg Shah 15

• Late Days

➢ 4 total late days across all 4 assignments

➢ Managed by MarkUs

➢ At most 2 late days can be applied to a single assignment

➢ Already covers legitimate reasons such as illness, university activities, etc.

o Petitions will only be granted for circumstances which cannot be covered by this



Zoom Features

373F20 - Nisarg Shah 16

• Just to get acquainted, let’s try out the following features:

➢ Polls (already tried)

➢ Chat

➢ Reactions

➢ Raise hand

➢ Yes/No

➢ Breakout rooms



Enough with the 
boring stuff.

373F20 - Nisarg Shah 17



What will we study?

Why will we study it?

373F20 - Nisarg Shah 18



373F20 - Nisarg Shah 19

Muhammad ibn Musa al-Khwarizmi
c. 780 – c. 850



What is this course about?

373F20 - Nisarg Shah 20

• Algorithms
➢ Ubiquitous in the real world
o From your smartphone to self-driving cars

o From graph problems to graphics problems

o …

➢ Important to be able to design and analyze algorithms

➢ For some problems, good algorithms are hard to find

o For some of these problems, we can formally establish complexity results

o We’ll often find that one problem is easy, but its minor variants are suddenly hard



What is this course about?

373F20 - Nisarg Shah 21

• Algorithms
➢ Algorithms in specialized environments or using advanced techniques
o Distributed, parallel, streaming, sublinear time, spectral, genetic…

➢ Other concerns with algorithms
o Fairness, ethics, …

➢ …mostly beyond the scope of this course



What is this course about?

373F20 - Nisarg Shah 22

• Topics in this course
➢ Divide and Conquer

➢ Greedy

➢ Dynamic programming

➢ Network flow

➢ Linear programming

➢ NP-completeness (not really an algorithm design paradigm)

➢ Approximation algorithms (if time permits)

➢ Randomized algorithms (if time permits)



What is this course about?

373F20 - Nisarg Shah 23

• How do we know which paradigm is right for a given problem?
➢ A very interesting question!

➢ Subject of much ongoing research…
o Sometimes, you just know it when you see it…

• How do we analyze an algorithm?
➢ Proof of correctness

➢ Proof of running time
o We’ll try to prove the algorithm is efficient in the worst case

o In practice, average case matters just as much (or even more)



What is this course about?

373F20 - Nisarg Shah 24

• What does it mean for an algorithm to be efficient in the worst case?
➢ Polynomial time

➢ It should use at most poly(n) steps on any n-bit input
o 𝑛, 𝑛2, 𝑛100, 100𝑛6 + 237𝑛2 + 432, …

➢ If the input to an algorithm is a number 𝑥, the number of bits of input is log 𝑥
o This is because it takes log 𝑥 bits to represent the input 𝑥 in binary

o So the running time should be polynomial in log 𝑥, not in 𝑥

➢ How much is too much?



What is this course about?

373F20 - Nisarg Shah 25



What is this course about?

373F20 - Nisarg Shah 26



What is this course about?

373F20 - Nisarg Shah 27

• What if we can’t find an efficient algorithm for a problem?
➢ Try to prove that the problem is hard

➢ Formally establish complexity results

➢ NP-completeness, NP-hardness, …

• We’ll often find that one problem may be easy, but its simple variants 
may suddenly become hard
➢ Minimum spanning tree (MST) vs bounded degree MST

➢ 2-colorability vs 3-colorability



I’m not convinced.

Will I really ever need to 
know how to design 
abstract algorithms?

373F20 - Nisarg Shah 28



At the very least…

This will help you prepare for your 
technical job interview!

Real Microsoft interview question:

373F20 - Nisarg Shah 29

• Given an array 𝑎, find indices (𝑖, 𝑗) with 
the largest 𝑗 − 𝑖 such that 𝑎 𝑗 > 𝑎[𝑖]

• Greedy? Divide & conquer?



Disclaimer

373F20 - Nisarg Shah 30

• The course is theoretical in nature
➢ You’ll be working with abstract notations, proving correctness of algorithms, 

analyzing the running time of algorithms, designing new algorithms, and 
proving complexity results. 

• Something for everyone…
➢ If you’re somewhat scared going into the course

➢ If you’re already comfortable with the proofs, and want challenging problems



Related/Follow-up Courses

373F20 - Nisarg Shah 31

• Direct follow-up
➢ CSC473: Advanced Algorithms

➢ CSC438: Computability and Logic

➢ CSC463: Computational Complexity and Computability

• Algorithms in other contexts
➢ CSC304: Algorithmic Game Theory and Mechanism Design (self promotion!)

➢ CSC384: Introduction to Artificial Intelligence

➢ CSC436: Numerical Algorithms

➢ CSC418: Computer Graphics



Divide & Conquer

373F20 - Nisarg Shah 32



History?

373F20 - Nisarg Shah 33

• Maybe you saw a subset of these algorithms?
➢ Mergesort - 𝑂 𝑛 log 𝑛

➢ Karatsuba algorithm for fast multiplication - 𝑂 𝑛log2 3 rather than 𝑂 𝑛2

➢ Largest subsequence sum in 𝑂 𝑛

➢ …

• Have you seen some divide & conquer algorithms before?
➢ Maybe in CSC236/CSC240 and/or CSC263/CSC265

➢ Write “yes”/”no” in chat



Divide & Conquer

373F20 - Nisarg Shah 34

• General framework
➢ Break (a large chunk of) a problem into two smaller subproblems of the same 

type

➢ Solve each subproblem recursively and independently

➢ At the end, quickly combine solutions from the two subproblems and/or solve 
any remaining part of the original problem

• Hard to formally define when a given algorithm is divide-and-
conquer…

• Let’s see some examples!



Master Theorem

373F20 - Nisarg Shah 35

• Here’s the master theorem, as it appears in CLRS
➢ Useful for analyzing divide-and-conquer running time

➢ If you haven’t already seen it, please spend some time understanding it



Master Theorem

373F20 - Nisarg Shah 36

Intuition: Compare f(n) with nlog
b

a. The larger determines the recurrence solution.



Counting Inversions

373F20 - Nisarg Shah 37

• Problem
➢ Given an array 𝑎 of length 𝑛, count the number of pairs (𝑖, 𝑗) such that 𝑖 < 𝑗

but 𝑎 𝑖 > 𝑎[𝑗]

• Applications
➢ Voting theory

➢ Collaborative filtering

➢ Measuring the “sortedness” of an array

➢ Sensitivity analysis of Google's ranking function

➢ Rank aggregation for meta-searching on the Web

➢ Nonparametric statistics (e.g., Kendall's tau distance)



Counting Inversions

373F20 - Nisarg Shah 38

• Problem
➢ Count (𝑖, 𝑗) such that 𝑖 < 𝑗 but 𝑎 𝑖 > 𝑎[𝑗]

• Brute force
➢ Check all Θ 𝑛2 pairs

• Divide & conquer
➢ Divide: break array into two equal halves 𝑥 and 𝑦

➢ Conquer: count inversions in each half recursively

➢ Combine:
o Solve (we’ll see how): count inversions with one entry in 𝑥 and one in 𝑦

o Merge: add all three counts



Counting Inversions

373F20 - Nisarg Shah 39

• From Kevin Wayne’s slides



Counting Inversions

373F20 - Nisarg Shah 40



Counting Inversions

373F20 - Nisarg Shah 41



Counting Inversions

373F20 - Nisarg Shah 42

• How do we formally prove correctness?
➢ Induction on 𝑛 is usually very helpful

➢ Allows you to assume correctness of subproblems

• Running time analysis
➢ Suppose 𝑇(𝑛) is the running time for inputs of size 𝑛

➢ Our algorithm satisfies 𝑇 𝑛 = 2 𝑇 Τ𝑛
2 + 𝑂(𝑛)

➢ Master theorem says this is 𝑇 𝑛 = 𝑂(𝑛 log 𝑛)



Without Master Theorem

373F20 - Nisarg Shah 43

Let’s say 𝑇 𝑛 = 2 𝑇 Τ𝑛
2 + 2𝑛



Closest Pair in ℝ2

373F20 - Nisarg Shah 44

• Problem:
➢ Given 𝑛 points of the form (𝑥𝑖 , 𝑦𝑖) in the plane, find the closest pair of points.

• Applications:
➢ Basic primitive in graphics and computer vision

➢ Geographic information systems, molecular modeling, air traffic control

➢ Special case of nearest neighbor

• Brute force: Θ 𝑛2



Intuition from 1D?

373F20 - Nisarg Shah 45

• In 1D, the problem would be easily 𝑂(𝑛 log 𝑛)
➢ Sort and check!

• Sorting attempt in 2D
➢ Find closest points by x coordinate

➢ Find closest points by y coordinate

• Non-degeneracy assumption
➢ No two points have the same x or y coordinate



Intuition from 1D?

373F20 - Nisarg Shah 46

• Sorting attempt in 2D
➢ Find closest points by x or y coordinate

➢ Doesn’t work!

1 + 𝜖

1

1 + 𝜖1

2



Closest Pair in ℝ2

373F20 - Nisarg Shah 47

• Let’s try divide-and-conquer!
➢ Divide: points in equal halves by drawing a vertical line 𝐿

➢ Conquer: solve each half recursively

➢ Combine: find closest pair with one point on each side of 𝐿

➢ Return the best of 3 solutions
Seems like Ω(𝑛2)



Closest Pair in ℝ2

373F20 - Nisarg Shah 48

• Combine
➢ We can restrict our attention to points within 𝛿 of 𝐿 on each side, where 𝛿 = 

best of the solutions in two halves



Closest Pair in ℝ2

373F20 - Nisarg Shah 49

• Combine (let 𝛿 = best of solutions in two halves)
➢ Only need to look at points within 𝛿 of 𝐿 on each side, 

➢ Sort points on the strip by 𝑦 coordinate

➢ Only need to check each point with next 11 points in sorted list!

Wait, what? Why 11?



Why 11?

373F20 - Nisarg Shah 50

• Claim: 
➢ If two points are at least 12 positions apart in the 

sorted list, their distance is at least 𝛿

• Proof:
➢ No two points lie in the same 

𝛿/2 × 𝛿/2 box

➢ Two points that are more than two rows apart are 
at distance at least 𝛿



Recap: Karatsuba’s Algorithm

373F20 - Nisarg Shah 51

• Fast way to multiply two 𝑛 digit integers 𝑥 and 𝑦

• Brute force: 𝑂(𝑛2) operations

• Karatsuba’s observation:
➢ Divide each integer into two parts
o 𝑥 = 𝑥1 ∗ 10 Τ𝑛

2 + 𝑥2, 𝑦 = 𝑦1 ∗ 10 Τ𝑛
2 + 𝑦2

o 𝑥𝑦 = 𝑥1𝑦1 ∗ 10𝑛 + 𝑥1𝑦2 + 𝑥2𝑦1 ∗ 10 Τ𝑛
2 + (𝑥2𝑦2)

➢ Four Τ𝑛
2-digit multiplications can be replaced by three

o 𝑥1𝑦2 + 𝑥2𝑦1 = 𝑥1 + 𝑥2 𝑦1 + 𝑦2 − 𝑥1𝑦1 − 𝑥2𝑦2

➢ Running time
o 𝑇 𝑛 = 3 𝑇 Τ𝑛

2 + 𝑂(𝑛) ⇒ 𝑇 𝑛 = 𝑂 𝑛log2 3



Strassen’s Algorithm

373F20 - Nisarg Shah 52

• Generalizes Karatsuba’s insight to design a fast algorithm for 
multiplying two 𝑛 × 𝑛 matrices
➢ Call 𝑛 the “size” of the problem

𝐶11 𝐶12

𝐶21 𝐶22
=

𝐴11 𝐴12

𝐴21 𝐴22
∗

𝐵11 𝐵12

𝐵21 𝐵22

➢ Naively, this requires 8 multiplications of size 𝑛/2
o 𝐴11 ∗ 𝐵11, 𝐴12 ∗ 𝐵21, 𝐴11 ∗ 𝐵12, 𝐴12 ∗ 𝐵22, …

➢ Strassen’s insight: replace 8 multiplications by 7
o Running time: 𝑇 𝑛 = 7 𝑇 Τ𝑛

2 + 𝑂(𝑛2) ⇒ 𝑇 𝑛 = 𝑂 𝑛log2 7



Strassen’s Algorithm

373F20 - Nisarg Shah 53

𝐶11 𝐶12

𝐶21 𝐶22
=

𝐴11 𝐴12

𝐴21 𝐴22
∗

𝐵11 𝐵12

𝐵21 𝐵22



Median & Selection

373F20 - Nisarg Shah 54

• Selection: 
➢ Given array 𝐴 of 𝑛 comparable elements, find 𝑘th smallest
➢ 𝑘 = 1 is min, 𝑘 = 𝑛 is max, 𝑘 = Τ𝑛 + 1 2 is median
➢ 𝑂 𝑛 is easy for min/max

• What about 𝑘-selection?
➢ 𝑂(𝑛𝑘) by modifying bubble sort
➢ 𝑂 𝑛 log 𝑛 by sorting
➢ 𝑂 𝑛 + 𝑘 log 𝑛 using min-heap
➢ 𝑂(𝑘 + 𝑛 log 𝑘) using max-heap

• Q: What about just 𝑂(𝑛)?
• A: Yes! Selection is easier than sorting.



QuickSelect

373F20 - Nisarg Shah 55

• Find a pivot 𝑝

• Divide 𝐴 into two sub-arrays
➢ 𝐴𝑙𝑒𝑠𝑠 = elements ≤ 𝑝, 𝐴𝑚𝑜𝑟𝑒 = elements > 𝑝

➢ If 𝐴𝑙𝑒𝑠𝑠 ≥ 𝑘, return 𝑘th smallest in 𝐴𝑙𝑒𝑠𝑠, otherwise return (𝑘 − 𝐴𝑙𝑒𝑠𝑠 )th
smallest in 𝐴𝑚𝑜𝑟𝑒

• Problem?
➢ If pivot is close to the min or the max, then we basically get 

𝑇 𝑛 ≤ 𝑇 𝑛 − 1 + 𝑂(𝑛), which only gives 𝑇 𝑛 = 𝑂 𝑛2

➢ Want to reduce 𝑛 − 1 to a fraction of 𝑛 (like 𝑛/2, 5𝑛/6, etc)



Finding a Good Pivot

373F20 - Nisarg Shah 56

• Divide 𝑛 elements into Τ𝑛
5 groups of 5 each



Finding a Good Pivot

373F20 - Nisarg Shah 57

• Divide 𝑛 elements into Τ𝑛
5 groups of 5 each

• Find the median of each group



Finding a Good Pivot

373F20 - Nisarg Shah 58

• Divide 𝑛 elements into Τ𝑛
5 groups of 5 each

• Find the median of each group

• Find the median of 𝑛/5 medians



Finding a Good Pivot

373F20 - Nisarg Shah 59

• Divide 𝑛 elements into Τ𝑛
5 groups of 5 each

• Find the median of each group

• Find the median of 𝑛/5 medians

• Use this median of medians as the pivot in quickselect

• Q: Why does this work?



Analysis

373F20 - Nisarg Shah 60

• How many elements can be ≤ 𝑝∗? 
➢ Out of 𝑛/5 medians, 𝑛/10 are > 𝑝∗



Analysis

373F20 - Nisarg Shah 61

• How many elements can be ≤ 𝑝∗? 
➢ Out of 𝑛/5 medians, 𝑛/10 are > 𝑝∗



Analysis

373F20 - Nisarg Shah 62

• Τ𝑛
10 of the Τ𝑛

5 medians are ≤ 𝑝∗

➢ For each such median, there are 3 elements ≤ 𝑝∗

➢ So there can be at most Τ7𝑛
10 elements that can be > 𝑝∗



Analysis

373F20 - Nisarg Shah 63

• Thus, 𝐴𝑚𝑜𝑟𝑒 ≤ Τ7𝑛
10

➢ Similarly, 𝐴𝑙𝑒𝑠𝑠 ≤ Τ7𝑛
10

➢ (These are rough calculations…)

• How does this factor into overall algorithm analysis?



Analysis

373F20 - Nisarg Shah 64

• Divide 𝑛 elements into Τ𝑛
5 groups of 5 each

• Find the median of each group

• Find 𝑝∗ = median of Τ𝑛
5 medians

• Create 𝐴𝑙𝑒𝑠𝑠 and 𝐴𝑚𝑜𝑟𝑒 according to 𝑝∗

• Run selection on one of 𝐴𝑙𝑒𝑠𝑠 or 𝐴𝑚𝑜𝑟𝑒

• 𝑇 𝑛 ≤ 𝑇 Τ𝑛
5 + 𝑇 Τ7𝑛

10 + 𝑂(𝑛)

• Note: Τ𝑛
5 + Τ7𝑛

10 = Τ9𝑛
10

➢ Only a fraction of 𝑛, so by the Master theorem, 𝑇 𝑛 = 𝑂(𝑛)

𝑂(𝑛)

𝑂(𝑛)

𝑇(𝑛/5)

𝑇(7𝑛/10)



Residual Notes

373F20 - Nisarg Shah 65

• Best algorithm for a problem?
➢ Typically hard to determine

➢ We still don’t know best algorithms for multiplying two 𝑛-digit integers or two 
𝑛 × 𝑛 matrices
o Integer multiplication

• Breakthrough in March 2019: first 𝑂(𝑛 log 𝑛) time algorithm

• It is conjectured that this is asymptotically optimal

o Matrix multiplication

• 1969 (Strassen): 𝑂(𝑛2.807)

• 1990: 𝑂(𝑛2.376)

• 2013: 𝑂(𝑛2.3729)

• 2014: 𝑂(𝑛2.3728639)



Residual Notes

373F20 - Nisarg Shah 66

• Best algorithm for a problem?
➢ Usually, we design an algorithm and then analyze its running time

➢ Sometimes we can do the reverse:

o E.g., if you know you want an 𝑂(𝑛2 log 𝑛) algorithm

o Master theorem suggests that you can get it by 
𝑇 𝑛 = 4 𝑇 ൗ𝑛

2 + 𝑂 𝑛2

o So maybe you want to break your problem into 4 problems of size 𝑛/2 each, and then do 
𝑂(𝑛2) computation to combine



Residual Notes

373F20 - Nisarg Shah 67

• Access to input
➢ For much of this analysis, we are assuming random access to elements of input

➢ So we’re ignoring underlying data structures (e.g. doubly linked list, binary 
tree, etc.)

• Machine operations
➢ We’re only counting the number of comparison or arithmetic operations

➢ So we’re ignoring issues like how real numbers are stored in the closest pair 
problem

➢ When we get to P vs NP, representation will matter



Residual Notes

373F20 - Nisarg Shah 68

• Size of the problem
➢ Can be any reasonable parameter of the problem

➢ E.g., for matrix multiplication, we used 𝑛 as the size 

➢ But an input consists of two matrices with 𝑛2 entries

➢ It doesn’t matter whether we call 𝑛 or 𝑛2 the size of the problem

➢ The actual running time of the algorithm won’t change


