CSC373 Fun Asides

Fair Division

[Image and Illustration Credit: Ariel Procaccia]

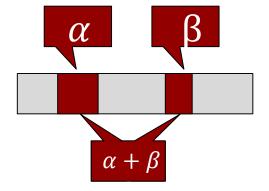
Cake-Cutting

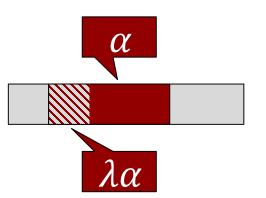
- A heterogeneous, divisible good
 - Heterogeneous: it may be valued differently by different individuals
 - Divisible: we can share/divide it between individuals
- Represented as [0,1]
 - > Almost without loss of generality
- Set of players $N = \{1, ..., n\}$
- Piece of cake $X \subseteq [0,1]$
 - > A finite union of disjoint intervals

Agent Valuations

• Each player i has a valuation V_i that is very much like a probability distribution over [0,1]

- Additive: For $X \cap Y = \emptyset$, $V_i(X) + V_i(Y) = V_i(X \cup Y)$
- Normalized: $V_i([0,1]) = 1$
- Divisible: $\forall \lambda \in [0,1]$ and X, $\exists Y \subseteq X \text{ s.t. } V_i(Y) = \lambda V_i(X)$





Fairness Goals

- Allocation: disjoint partition $A = (A_1, ..., A_n)$
 - $> A_i$ = piece of the cake given to player i

- Desired fairness properties:
 - > Proportionality (Prop):

$$\forall i \in N \colon V_i(A_i) \ge \frac{1}{n}$$

> Envy-Freeness (EF):

$$\forall i, j \in N: V_i(A_i) \ge V_i(A_j)$$

Fairness Goals

- Prop: $\forall i \in N: V_i(A_i) \geq 1/n$
- EF: $\forall i, j \in N: V_i(A_i) \geq V_i(A_j)$
- Question: What is the relation between proportionality and EF?
 - 1. Prop \Rightarrow EF
 - (2.) EF \Rightarrow Prop
 - 3. Equivalent
 - 4. Incomparable

CUT-AND-CHOOSE

• Algorithm for n=2 players

- Player 1 divides the cake into two pieces X,Y s.t. $V_1(X) = V_1(Y) = 1/2$
- Player 2 chooses the piece she prefers.

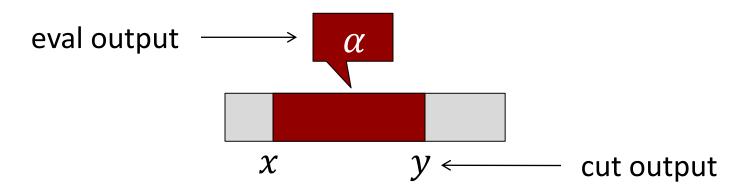
- This is envy-free and therefore proportional.
 - > Why?

Input Model

- How do we measure the "time complexity" of a cake-cutting algorithm for n players?
- Typically, time complexity is a function of the length of input encoded as binary.
- Our input consists of functions V_i , which require infinite bits to encode.
- We want running time as a function of n.

Robertson-Webb Model

- We restrict access to valuation V_i through two types of queries:
 - $\triangleright \text{Eval}_i(x, y) \text{ returns } \alpha = V_i([x, y])$
 - > $\operatorname{Cut}_i(x,\alpha)$ returns any y such that $V_i([x,y]) = \alpha$ o If $V_i([x,1]) < \alpha$, return 1.



Robertson-Webb Model

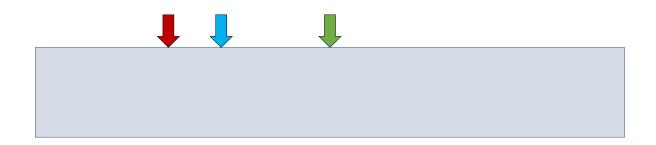
- Two types of queries:
 - $\triangleright \text{Eval}_i(x, y) = V_i([x, y])$
 - $ightharpoonup \operatorname{Cut}_i(x,\alpha) = y \text{ s.t. } V_i([x,y]) = \alpha$
- Question: How many queries are needed to find an EF allocation when n=2?
- Answer: 2

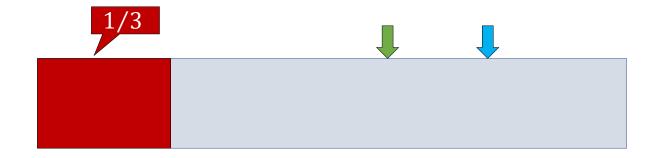
ullet Protocol for finding a proportional allocation for n players

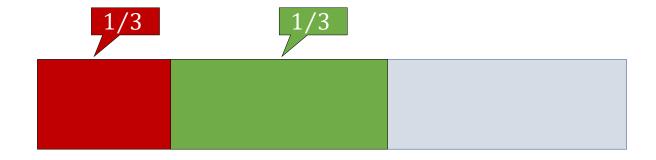
- Referee starts at 0, and moves a knife to the right.
- Repeat: When the piece to the left of the knife is worth 1/n to some player, the player shouts "stop", gets that piece, and exits.
- The last player gets the remaining piece.

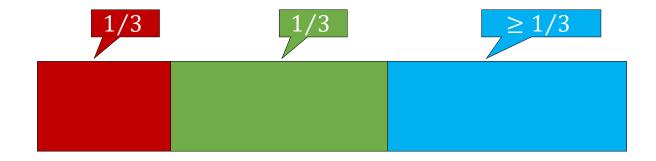


- Robertson-Webb model? Cut-Eval queries?
 - Moving knife is not really needed.
- At each stage, we want to find the remaining player that has value 1/n from the smallest next piece.
 - \gt Ask each remaining player a cut query to mark a point where her value is 1/n from the current point.
 - > Directly move the knife to the leftmost mark, and give that piece to that player.









• Question: What is the complexity of the Dubins-Spanier protocol in the Robertson-Webb model?

- 1. $\Theta(n)$
- 2. $\Theta(n \log n)$
- $\Theta(n^2)$
- 4. $\Theta(n^2 \log n)$

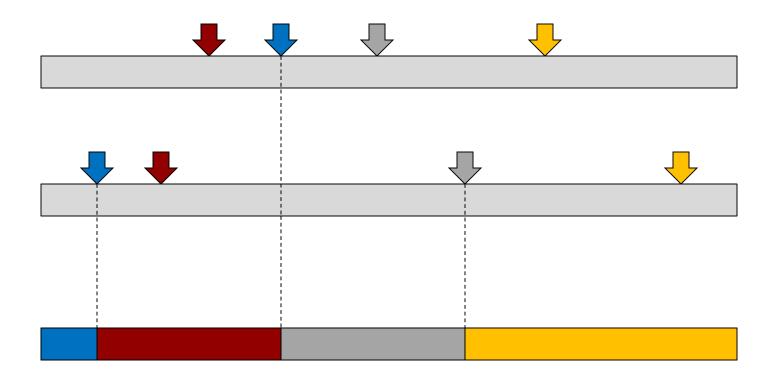
EVEN-PAZ (RECURSIVE)

- Input: Interval [x, y], number of players n> For simplicity, assume $n = 2^k$ for some k
- If n = 1, give [x, y] to the single player.
- Otherwise, let each player i mark z_i s.t.

$$V_i([x, z_i]) = \frac{1}{2} V_i([x, y])$$

- Let z^* be mark n/2 from the left.
- Recurse on $[x, z^*]$ with the left n/2 players, and on $[z^*, y]$ with the right n/2 players.

EVEN-PAZ



EVEN-PAZ

- Theorem: EVEN-PAZ returns a Prop allocation.
- Inductive Proof:
 - > Hypothesis: With n players, EVEN-PAZ ensures that for each player $i, V_i(A_i) \ge (1/n) \cdot V_i([x, y])$
 - o Prop follows because initially $V_i([x,y]) = V_i([0,1]) = 1$
 - > Base case: n=1 is trivial.
 - > Suppose it holds for $n = 2^{k-1}$. We prove for $n = 2^k$.
 - > Take the 2^{k-1} left players.
 - Every left player i has $V_i([x, z^*]) \ge (1/2) V_i([x, y])$
 - If it gets A_i , by induction, $V_i(A_i) \ge \frac{1}{2^{k-1}} V_i([x, z^*]) \ge \frac{1}{2^k} V_i([x, y])$

EVEN-PAZ

- Theorem: EVEN-PAZ uses $O(n \log n)$ queries.
- Simple Proof:
 - \triangleright Protocol runs for $\log n$ rounds.
 - > In each round, each player is asked one cut query.
 - > QED!

Complexity of Proportionality

• Theorem [Edmonds and Pruhs, 2006]: Any proportional protocol needs $\Omega(n \log n)$ operations in the Robertson-Webb model.

 Thus, the EVEN-PAZ protocol is (asymptotically) provably optimal!

Envy-Freeness?

- "I suppose you are also going to give such cute algorithms for finding envy-free allocations?"
- Bad luck. For *n*-player EF cake-cutting:
 - > [Brams and Taylor, 1995] give an unbounded EF protocol.
 - \triangleright [Procaccia 2009] shows $\Omega(n^2)$ lower bound for EF.
 - > Last year, the long-standing major open question of "bounded EF protocol" was resolved!

Pareto Optimality

- Pareto Optimality
 - We say that A is Pareto optimal if for any other allocation B, it cannot be that $V_i(B_i) \ge V_i(A_i)$ for all i and $V_i(B_i) \ge V_i(A_i)$ for some i.

- Q: Is it PO to give the entire cake to player 1?
- A: Not necessarily. But yes if player 1 values "every part of the cake positively".

PO + EF

- Theorem [Weller '85]:
 - > There always exists an allocation of the cake that is both envy-free and Pareto optimal.
- One way to achieve PO+EF:
 - ▶ Nash-optimal allocation: $\operatorname{argmax}_A \prod_{i \in N} V_i(A_i)$
 - > Obviously, this is PO. The fact that it is EF is non-trivial.
 - > This is named after John Nash.
 - Nash social welfare = product of utilities
 - Different from utilitarian social welfare = sum of utilities

Nash-Optimal Allocation

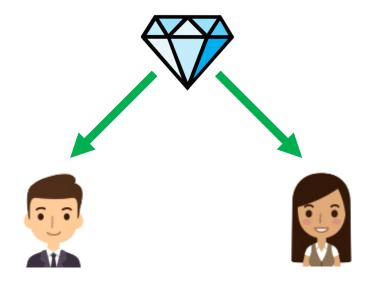
Example:

- > Green player has value 1 distributed evenly over $[0, \frac{2}{3}]$
- > Blue player has value 1 distributed evenly over [0,1]
- > Without loss of generality (why?) suppose:
 - Green player gets [0, x] for $x \le \frac{2}{3}$
 - Blue player gets $[x, \frac{2}{3}] \cup [\frac{2}{3}, 1] = [x, 1]$
- > Green's utility = $\frac{x}{2/3}$, blue's utility = 1 x
- > Maximize: $\frac{3}{2}x \cdot (1-x) \Rightarrow x = \frac{1}{2}$

Allocation
$$0$$
 1

Green has utility $\frac{3}{4}$ Blue has utility $\frac{1}{2}$

- Goods cannot be shared / divided among players
 - > E.g., house, painting, car, jewelry, ...
- Problem: Envy-free allocations may not exist!



Indivisible Goods: Setting

8	7	20	5
9	11	12	8
9	10	18	3

Given such a matrix of numbers, assign each good to a player. We assume additive values. So, e.g., $V_{\bullet}(\{\{\{ \ \ \ \ \ \ \ \}\})=8+7=15$

8	7	20	5
9	11	12	8
9	10	18	3

8	7	20	5
9	11	12	8
9	10	18	3

8	7	20	5
9	11	12	8
9	10	18	3

8	7	20	5
9	11	12	8
9	10	18	3

Envy-freeness up to one good (EF1):

$$\forall i, j \in N, \exists g \in A_j : V_i(A_i) \ge V_i(A_j \setminus \{g\})$$

- \triangleright Technically, $\exists g \in A_i$ only applied if $A_i \neq \emptyset$.
- \succ "If i envies j, there must be some good in j's bundle such that removing it would make i envy-free of j."

Does there always exist an EF1 allocation?

EF1

- Yes! We can use Round Robin.
 - > Agents take turns in a cyclic order, say 1,2,...,n,1,2,...,n,...
 - > An agent, in her turn, picks the good that she likes the most among the goods still not picked by anyone.
 - [Assignment Problem] This yields an EF1 allocation regardless of how you order the agents.
- Sadly, the allocation returned may not be Pareto optimal.

EF1+PO?

- Nash welfare to the rescue!
- Theorem [Caragiannis et al. '16]:
 - Maximizing Nash welfare achieves both EF1 and PO.
 - > But what if there are two goods and three players?
 - All allocations have zero Nash welfare (product of utilities).
 - But we cannot give both goods to a single player.
 - > Algorithm in detail:
 - Step 1: Choose a subset of players $S \subseteq N$ with the largest |S| such that it is possible to give every player in S positive utility simultaneously.
 - Step 2: Choose $\operatorname{argmax}_A \prod_{i \in S} V_i(A_i)$

Integral Nash Allocation

8	7	20	5
9	11	12	8
9	10	18	3

20 * 8 * (9+10) = 3040

8	7	20	5
9	11	12	8
9	10	18	3

(8+7) * 8 * 18 = 2160

8	7	20	5
9	11	12	8
9	10	18	3

8 * (12+8) * 10 = 1600

8	7	20	5
9	11	12	8
9	10	18	3

20 * (11+8) * 9 = 3420

8	7	20	5
9	11	12	8
9	10	18	3

Computation

- For indivisible goods, Nash-optimal solution is strongly NP-hard to compute
 - > That is, remains NP-hard even if all values are bounded.

- Open Question: Can we find an allocation that is both EF1 and PO in polynomial time?
 - > A recent paper provides a pseudo-polynomial time algorithm, i.e., its time is polynomial in n, m, and $\max_{i,g} V_i(\{g\})$.

Stronger Fairness Guarantees

- Envy-freeness up to the least valued good (EFx):
 - $\Rightarrow \forall i, j \in N, \forall g \in A_j : V_i(A_i) \ge V_i(A_j \setminus \{g\})$
 - \succ "If i envies j, then removing any good from j's bundle eliminates the envy."
 - Open question: Is there always an EFx allocation?
- Contrast this with EF1:
 - $\Rightarrow \forall i, j \in N, \exists g \in A_j : V_i(A_i) \ge V_i(A_j \setminus \{g\})$
 - \succ "If i envies j, then removing some good from j's bundle eliminates the envy."
 - > We know there is always an EF1 allocation that is also PO.

Stronger Fairness

- Difference between EF1 and EFx:
 - > Suppose there are two players
 - > They are dividing one diamond and two rocks

	Diamond	Rock 1	Rock 2
P1	100	1	1
P2	100	1	1

- Giving a diamond and a rock to P1 and only a rock to P2 satisfies EF1, but seems unfair
- The only way to get EFx is to give diamond to one player and both rocks to the other