CSC373 Fun Asides
Fair Division

[Image and Illustration Credit: Ariel Procaccia]

CSC373 - Nisarg Shah 1

Cake-Cutting

* A heterogeneous, divisible good

> Heterogeneous: it may be valued
differently by different individuals

> Divisible: we can share/divide
it between individuals

* Represented as [0,1]
> Almost without loss of generality

* Set of players N = {1, ..., n}
* Piece of cake X < [0,1]

> A finite union of disjoint intervals

CSC373 - Nisarg Shah

Agent Valuations

* Each player i has a valuation V; that
is very much like a probability
distribution over [0,1]

e Additive: ForX NnY = @,
ViiX) + Vi (V) =V (XUY)

* Normalized: V;([0,1]) = 1

* Divisible: VA € [0,1] and X,
Y € X s.t. VL(Y) — AVL(X)

CSC373 - Nisarg Shah 3

Fairness Goals

* Allocation: disjoint partition A = (44, ..., 4,)
» A; = piece of the cake given to player i

e Desired fairness properties:

> Proportionality (Prop):

1
Vi € N: VL(AL) = E

> Envy-Freeness (EF):
Vl,] € N: VL(AL) = VL(A])

CSC373 - Nisarg Shah 4

Fairness Goals

* Prop: Vi € N:V;(4;) = 1/n
* EF: Vi, j € N:V;(4) = V;(4;)

 Question: What is the relation between
proportionality and EF?
1. Prop = EF

(2. EF = Prop
3. Equivalent

4. Incomparable

CSC373 - Nisarg Shah 5

CUT-AND-CHOOSE

e Algorithm for n = 2 players

(o Player 1 divides the cake into two pieces X, Y s.t. A
Vi(X) =V (Y) =1/2

* Player 2 chooses the piece she prefers.

- J

* This is envy-free and therefore proportional.
> Why?

CSC373 - Nisarg Shah 6

Input Model

* How do we measure the “time complexity” of a
cake-cutting algorithm for n players?

* Typically, time complexity is a function of the
length of input encoded as binary.

* Our input consists of functions V;, which require
infinite bits to encode.

* We want running time as a function of n.

CSC373 - Nisarg Shah 7

Robertson-Webb Model

* We restrict access to valuation I/; through two
types of queries:

> Eval;(x,y) returns a = V;([x, y])

> Cut;(x, a) returns any y such that V;(|x,y]) = «
o fV;([x,1]) < a, return 1.

eval output —— u

I

X y cut output

CSC373 - Nisarg Shah 8

Robertson-Webb Model

* Two types of queries:

> Evali(x) y) — Vi([X, y])
» Cut;(x,a) =y s.t. Vi([x,y]) =«

* Question: How many queries are needed to find an
EF allocation whenn = 27?

e Answer: 2

CSC373 - Nisarg Shah 9

DUBINS-SPANIER

* Protocol for finding a proportional allocation for n

players

KReferee starts at 0, and moves a knife to the right\

* Repeat: When the piece to the left of the knife is
worth 1/n to some player, the player shouts
“stop”, gets that piece, and exits.

* The last player gets the remaining piece.

-

/

CSC373 - Nisarg Shah

DUBINS-SPANIER

)

o

DUBINS-SPANIER

* Robertson-Webb model? Cut-Eval queries?
> Moving knife is not really needed.

* At each stage, we want to find the remaining player
that has value 1/n from the smallest next piece.

> Ask each remaining player a cut query to mark a point
where her value is 1/n from the current point.

> Directly move the knife to the leftmost mark, and give
that piece to that player.

CSC373 - Nisarg Shah

VISUAL PROOF OF PROPORTIONALITY

3 3

CSC373 - Nisarg Shah

VISUAL PROOF OF PROPORTIONALITY

i T |

CSC373 - Nisarg Shah

VISUAL PROOF OF PROPORTIONALITY

CSC373 - Nisarg Shah

VISUAL PROOF OF PROPORTIONALITY

CSC373 - Nisarg Shah

DUBINS-SPANIER

* Question: What is the complexity of the Dubins-
Spanier protocol in the Robertson-Webb model?

1. O(n)
2. O(nlogn)

(3) 0(n?)
1. ©(n?logn)

CSC373 - Nisarg Shah

EVEN-PAZ (RECURSIVE)

mput: Interval [x, y], number of players n \

> For simplicity, assume n = 2% for some k

* If n = 1, give |x, y] to the single player.

* Otherwise, let each player i mark z; s.t.

1
Vi([x! Zi]) = E Vl([x'y])

* Let z" be mark n/2 from the left.
* Recurse on [x, z*] with the left n/2 players, and on [z, y]
with the right n/2 players.

CSC373 - Nisarg Shah

EVEN-PAZ

3 8 B

L S — $

CSC373 - Nisarg Shah

EVEN-PAZ

 Theorem: EVEN-PAZ returns a Prop allocation.

* Inductive Proof:

> Hypothesis: With n players, EVEN-PAZ ensures that for
each player i, V;(4;) = (1/n) - V;(Ix, y])
o Prop follows because initially V;([x, y]) = V;([0,1]) = 1
> Base case: n = 1 is trivial.
> Suppose it holds for n = 2%~1, We prove for n = 2*.
> Take the 2%~1 |eft players.
o Every left player i has V;([x,z*]) = (1/2) V;([x, y])

o If it gets A;, by induction, V;(4;) = Zk_l—l Vi(lx,z*]) = Zik V:([x,v])

CSC373 - Nisarg Shah

EVEN-PAZ

* Theorem: EVEN-PAZ uses O(nlogn) queries.

e Simple Proof:
> Protocol runs for log n rounds.

> In each round, each player is asked one cut query.
> QED!

CSC373 - Nisarg Shah

Complexity of Proportionality

* Theorem [Edmonds and Pruhs, 2006]: Any
proportional protocol needs ((n logn) operations
in the Robertson-Webb model.

* Thus, the EVEN-PAZ protocol is (asymptotically)
provably optimal!

CSC373 - Nisarg Shah

Envy-Freeness?

* “| suppose you are also going to give such cute
algorithms for finding envy-free allocations?”

* Bad luck. For n-player EF cake-cutting:
> [Brams and Taylor, 1995] give an unbounded EF protocol.
> [Procaccia 2009] shows Q(n?) lower bound for EF.
> Last year, the long-standing major open question of
“bounded EF protocol” was resolved!

n
nTL

> [Aziz and Mackenzie, 2016]: O(n™) protocol!

o Yes, it’s not a typo!

CSC373 - Nisarg Shah

Pareto Optimality

e Pareto Optimality

> We say that A is Pareto optimal if for any other allocation
B, it cannot be that V;(B;) = V;(4;) for all i and V;(B;)
> V;(A;) for some .

* Q: Isit PO to give the entire cake to player 1?

* A: Not necessarily. But yes if player 1 values “every
part of the cake positively”.

CSC373 - Nisarg Shah

PO + EF

* Theorem [Weller ‘85]:

> There always exists an allocation of the cake that is both
envy-free and Pareto optimal.

* One way to achieve PO+EF:
> Nash-optimal allocation: argmax 4 [1;en Vi(4;)
> Obviously, this is PO. The fact that it is EF is non-trivial.

» This is named after John Nash.
o Nash social welfare = product of utilities
o Different from utilitarian social welfare = sum of utilities

CSC373 - Nisarg Shah

Nash-Optimal Allocation

2/3
0 : 1

* Example:
> Green player has value 1 distributed evenly over [0, ?/5]
> Blue player has value 1 distributed evenly over [0,1]

> Without loss of generality (why?) suppose:
o Green player gets [0, x] for x < %/,
o Blue player gets [x,?/5] U [%/5,1] = [x,1]

> Green’s utility = %, blue’s utility =1 — x
3
» Maximize: %x 1-x) =2x=1,

. 3
1/2 Green has utl|ltyz

Allocation 0 * 1 Blue has utility%

CSC373 - Nisarg Shah

Indivisible Goods

* Goods cannot be shared / divided among players
> E.g., house, painting, car, jewelry, ...

* Problem: Envy-free allocations may not exist!

N

;

CSC373 - Nisarg Shah

Indivisible Goods: Setting

11 12 3

10 18 3

[Y D

Given such a matrix of numbers, assign each good to a player.
We assume additive values. So, e.g.,,V ({H ,=}) =8+ 7 =15

CSC373 - Nisarg Shah

Indivisible Goods

CSC373 - Nisarg Shah

Indivisible Goods

CSC373 - Nisarg Shah

Indivisible Goods

CSC373 - Nisarg Shah

Indivisible Goods

CSC373 - Nisarg Shah

Indivisible Goods

* Envy-freeness up to one good (EF1):
Vi,j € N,3g € 4; : V;(4) = Vi(4;\{g})

> Technically, 3g € A; only applied if A; # .

> “If i envies j, there must be some good in j’s bundle such
that removing it would make i envy-free of j.”

* Does there always exist an EF1 allocation?

CSC373 - Nisarg Shah

EF1

* Yes! We can use Round Robin.

> Agents take turns in a cyclic order, say
1,2,..,n,1,2,...,n, ...

> An agent, in her turn, picks the good that she likes the
most among the goods still not picked by anyone.

> [Assignment Problem] This yields an EF1 allocation
regardless of how you order the agents.

 Sadly, the allocation returned may not be Pareto
optimal.

CSC373 - Nisarg Shah

EF1+PO?

* Nash welfare to the rescue!

 Theorem [Caragiannis et al. ‘16]:
» Maximizing Nash welfare achieves both EF1 and PO.

> But what if there are two goods and three players?
o All allocations have zero Nash welfare (product of utilities).
o But we cannot give both goods to a single player.

> Algorithm in detail:

o Step 1: Choose a subset of players S € N with the largest |S| such
that it is possible to give every player in S positive utility
simultaneously.

o Step 2: Choose argmax, [[;c¢ Vi (4;)

CSC373 - Nisarg Shah

Integral Nash Allocation

CSC373 - Nisarg Shah

20 * 8 * (9+10) = 3040

CSC373 - Nisarg Shah

(8+7) * 8 * 18 = 2160

CSC373 - Nisarg Shah

8 *(12+8) * 10 =1600

CSC373 - Nisarg Shah

20 * (11+8) * 9 =3420

CSC373 - Nisarg Shah

Computation

* For indivisible goods, Nash-optimal solution is
strongly NP-hard to compute

> That is, remains NP-hard even if all values are bounded.

* Open Question: Can we find an allocation that is
both EF1 and PO in polynomial time?

> A recent paper provides a pseudo-polynomial time
algorithm, i.e., its time is polynomial in n, m, and
max Vi(ig}).

CSC373 - Nisarg Shah

Stronger Fairness Guarantees

* Envy-freeness up to the least valued good (EFx):
>Vi,j €N, Vg € A;: Vi(4) =V (4\{g})

> “If i envies j, then removing any good from j’s bundle
eliminates the envy.”

> Open question: Is there always an EFx allocation?

e Contrast this with EF1:
>Vi,j €N,3g €4 : Vi(4) =V, (4\{g})

> “If i envies j, then removing some good from j’s bundle
eliminates the envy.”

> We know there is always an EF1 allocation that is also PO.

CSC373 - Nisarg Shah

Stronger Fairness

* Difference between EF1 and EFx:
> Suppose there are two players
> They are dividing one diamond and two rocks

S vimond | ockt | Rock2
P1 100 1 1
P2 100 1 1

> Giving a diamond and a rock to P1 and only a rock to P2
satisfies EF1, but seems unfair

> The only way to get EFx is to give diamond to one player
and both rocks to the other

CSC373 - Nisarg Shah

