
CSC373

Weeks 9 & 10:
Approximation Algorithms

& Local Search

373F19 - Nisarg Shah & Karan Singh 1

NP-Completeness

373F19 - Nisarg Shah & Karan Singh 2

• We saw that many problems are NP-complete
➢ Unlikely to have polynomial time algorithms to solve them

➢ What can we do?

• One idea:
➢ Instead of solving them exactly, solve them approximately

➢ Sometimes, we might want to use an approximation
algorithm even when we can compute an exact solution in
polynomial time (WHY?)

Approximation Algorithms

373F19 - Nisarg Shah & Karan Singh 3

• We’ll focus on optimization problems

➢ Decision problem: “Is there…where…≥ 𝑘?”
o E.g. “Is there an assignment which satisfies at least 𝑘 clauses of a

given formula 𝜑?”

➢ Optimization problem: “Find…which maximizes…”
o E.g. “Find an assignment which satisfies the maximum possible

number of clauses from a given formula 𝜑.”

➢ Recall that if the decision problem is hard, then the
optimization problem is hard too

Approximation Algorithms

373F19 - Nisarg Shah & Karan Singh 4

• There is a function 𝑃𝑟𝑜𝑓𝑖𝑡 we want to maximize or a
function 𝐶𝑜𝑠𝑡 we want to minimize

• Given input instance 𝐼…
➢ Our algorithm returns a solution 𝐴𝐿𝐺(𝐼)

➢ An optimal solution maximizing 𝑃𝑟𝑜𝑓𝑖𝑡 or minimizing 𝐶𝑜𝑠𝑡
is 𝑂𝑃𝑇(𝐼)

➢ Then, the approximation ratio of 𝐴𝐿𝐺 on instance 𝐼 is

𝑃𝑟𝑜𝑓𝑖𝑡 𝑂𝑃𝑇 𝐼

𝑃𝑟𝑜𝑓𝑖𝑡 𝐴𝐿𝐺 𝐼
or

𝐶𝑜𝑠𝑡 𝐴𝐿𝐺 𝐼

𝐶𝑜𝑠𝑡 𝑂𝑃𝑇 𝐼

Approximation Algorithms

373F19 - Nisarg Shah & Karan Singh 5

• Approximation ratio of 𝐴𝐿𝐺 on instance 𝐼 is

𝑃𝑟𝑜𝑓𝑖𝑡 𝑂𝑃𝑇 𝐼

𝑃𝑟𝑜𝑓𝑖𝑡 𝐴𝐿𝐺 𝐼
or

𝐶𝑜𝑠𝑡 𝐴𝐿𝐺 𝐼

𝐶𝑜𝑠𝑡 𝑂𝑃𝑇 𝐼

➢ Note: These are defined to be ≥ 1 in each case.

o 2-approximation = half the optimal profit / twice the optimal cost

• 𝐴𝐿𝐺 has worst-case 𝑐-approximation if for each
instance 𝐼…

𝑃𝑟𝑜𝑓𝑖𝑡 𝐴𝐿𝐺 𝐼 ≥
1

𝑐
⋅ 𝑃𝑟𝑜𝑓𝑖𝑡 𝑂𝑃𝑇 𝐼 𝑜𝑟

𝐶𝑜𝑠𝑡 𝐴𝐿𝐺 𝐼 ≤ 𝑐 ⋅ 𝐶𝑜𝑠𝑡 𝑂𝑃𝑇 𝐼

Note

373F19 - Nisarg Shah & Karan Singh 6

• By default, when we say 𝑐-approximation, we will
always mean 𝑐-approximation in the worst case
➢ Also interesting to look at approximation in the average

case when your inputs are drawn from some distribution

• Our use of approximation ratios ≥ 1 is just a
convention
➢ Some books and papers use approximation ratios ≤ 1

convention

➢ E.g. they might say 0.5-approximation to mean that the
algorithm generates at least half the optimal profit or has
at most twice the optimal cost

PTAS and FPTAS

373F19 - Nisarg Shah & Karan Singh 7

• Arbitrarily close to 1 approximations

• FPTAS: Fully polynomial time approximation
scheme
➢ For every 𝜖 > 0, there is a 1 + 𝜖 -approximation

algorithm that runs in time 𝑝𝑜𝑙𝑦 𝑛, Τ1 𝜖 on instances of
size 𝑛

• PTAS: Polynomial time approximation scheme
➢ For every 𝜖 > 0, there is a 1 + 𝜖 -approximation

algorithm that runs in time 𝑝𝑜𝑙𝑦 𝑛 on instances of size 𝑛
o Note: Could have exponential dependence on Τ1 𝜖

Approximation Landscape

373F19 - Nisarg Shah & Karan Singh 8

➢ An FPTAS
o E.g. the knapsack problem

➢ A PTAS but no FPTAS
o E.g. the makespan problem (we’ll see)

➢ 𝑐-approximation for a constant 𝑐 > 1 but no PTAS

o E.g. vertex cover and JISP (we’ll see)

➢ Θ log 𝑛 -approximation but no constant approximation

o E.g. set cover

➢ No 𝑛1−𝜖-approximation for any 𝜖 > 0

o E.g. graph coloring and maximum independent set

Impossibility of better approximations
assuming widely held beliefs like P ≠ NP

𝑛 = parameter of problem at hand

373F19 - Nisarg Shah & Karan Singh 9

Makespan Minimization

Makespan

373F19 - Nisarg Shah & Karan Singh 10

• Problem
➢ Input: 𝑚 identical machines, 𝑛 jobs, job 𝑗 requires

processing time 𝑡𝑗
➢ Output: Assign jobs to machines to minimize makespan

➢ Let 𝑆 𝑖 = set of jobs assigned to machine 𝑖 in a solution

➢ Constraints:
o Each job must run contiguously on one machine

o Each machine can process at most one job at a time

➢ Load on machine 𝑖 : 𝐿𝑖 = σ𝑗∈𝑆 𝑖 𝑡𝑗
➢ Goal: minimize makespan 𝐿 = max

𝑖
𝐿𝑖

Makespan

373F19 - Nisarg Shah & Karan Singh 11

• Even the special case of 𝑚 = 2 machines is already
NP-hard by reduction from PARTITION

• PARTITION
➢ Input: Set 𝑆 containing 𝑛 integers

➢ Output: Can we partition 𝑆 into two sets with equal sum (i.e.
𝑆 = 𝑆1 ∩ 𝑆2, 𝑆1 ∩ 𝑆2 = ∅, and σ𝑤∈𝑆1

𝑤 = σ𝑤∈𝑆2
𝑤)?

➢ Exercise!
o Show that PARTITION is NP-complete by reduction from SUBSET-SUM

o Show that if there is a polynomial-time algorithm for solving
MAKESPAN with 2 machines, then you can solve PARTITION in
polynomial-time

Makespan

373F19 - Nisarg Shah & Karan Singh 12

• Greedy list-scheduling algorithm
➢ Consider the 𝑛 jobs in some “nice” sorted order.

➢ Assign each job 𝑗 to a machine with the smallest load so far

• Note
➢ Implementable in 𝑂 𝑛 log𝑚 using priority queue

• Back to greedy…?
➢ But this time, we can’t hope that greedy will be optimal

➢ We can still hope that it is approximately optimal

• Which order?

Makespan

373F19 - Nisarg Shah & Karan Singh 13

• Theorem [Graham 1966]
➢ Regardless of the order, greedy gives a 2-approximation.

➢ This was the first worst-case approximation analysis

• Let optimal makespan = 𝐿∗

• To show that makespan under greedy solution is not
much worse than 𝐿∗, we need to show that 𝐿∗ isn’t
too low

Makespan

373F19 - Nisarg Shah & Karan Singh 14

• Theorem [Graham 1966]
➢ Regardless of the order, greedy gives a 2-approximation.

• Fact 1: 𝐿∗ ≥ max
𝑗

𝑡𝑗

➢ Some machine must process job with highest processing time

• Fact 2: 𝐿∗ ≥
1

𝑚
σ𝑗 𝑡𝑗

➢ Total processing time is σ𝑗 𝑡𝑗
➢ At least one machine must do at least 1/𝑚 of this work

(pigeonhole principle)

Makespan

373F19 - Nisarg Shah & Karan Singh 15

• Theorem [Graham 1966]
➢ Regardless of the order, greedy gives a 2-approximation.

• Proof:
➢ Suppose machine 𝑖 is bottleneck under greedy (so load = 𝐿𝑖)

➢ Let 𝑗∗ = last job scheduled on 𝑖 by greedy

➢ Right before 𝑗∗ was assigned to 𝑖, 𝑖 had the smallest load
o Load of other machines could have only increased from then

o 𝐿𝑖 − 𝑡𝑗∗ ≤ 𝐿𝑘 , ∀𝑘

➢ Average over all 𝑘 : 𝐿𝑖 − 𝑡𝑗∗ ≤
1

𝑚
σ𝑗 𝑡𝑗

➢ 𝐿𝑖 ≤ 𝑡𝑗∗ +
1

𝑚
σ𝑗 𝑡𝑗 ≤ 𝐿∗ + 𝐿∗ = 2𝐿∗

Fact 1

Fact 2

Makespan

373F19 - Nisarg Shah & Karan Singh 16

• Theorem [Graham 1966]
➢ Regardless of the order, greedy gives a 2-approximation.

• Is our analysis tight?
➢ Essentially.

➢ There is an example where greedy does perform this badly.

➢ Note: In the upcoming example, greedy is only as bad as
2 − 1/𝑚, but you can also improve earlier analysis to show
that greedy always gives 2 − 1/𝑚 approximation.

➢ So 2 − 1/𝑚 is exactly tight.

Makespan

373F19 - Nisarg Shah & Karan Singh 17

• Theorem [Graham 1966]
➢ Regardless of the order, greedy gives a 2-approximation.

• Is our analysis tight?
➢ Example:
o 𝑚(𝑚 − 1) jobs of length 1, followed by one job of length 𝑚

o Greedy evenly distributes unit length jobs on all 𝑚 machines, and
assigning the last heavy job makes makespan 𝑚− 1 +𝑚 = 2𝑚 − 1

o Optimal makespan is 𝑚 by evenly distributing unit length jobs among
𝑚− 1 machines and putting the single heavy job on the remaining

➢ Idea: It seems keeping heavy jobs at the end is bad. So just
start with them first!

Makespan

373F19 - Nisarg Shah & Karan Singh 18

• Longest Processing Time (LPT) First
➢ Run the greedy algorithm but consider jobs in the

decreasing order of their processing time

• Need more facts about what the optimal cannot
beat

• Fact 3: If the bottleneck machine has only one job,
then the solution is optimal.
➢ The optimal solution must schedule that job on some

machine

Makespan

373F19 - Nisarg Shah & Karan Singh 19

• Longest Processing Time (LPT) First
➢ Run the greedy algorithm but consider jobs in the

decreasing order of their processing time

➢ Suppose 𝑡1 ≥ 𝑡2 ≥ ⋯ ≥ 𝑡𝑛

• Fact 4: If there are more than 𝑚 jobs, 𝐿∗ ≥ 2 ⋅ 𝑡𝑚+1

➢ Consider the first 𝑚 + 1 jobs

➢ All of them require processing time at least 𝑡𝑚+1

➢ By pigeonhole principle, in the optimal solution, at least
two of them end up on the same machine

Makespan

373F19 - Nisarg Shah & Karan Singh 20

• Theorem
➢ Greedy with longest processing time first gives 3/2-

approximation

• Proof:
➢ Similar to the proof for arbitrary ordering

➢ Consider bottleneck machine 𝑖 and job 𝑗∗ that was last
scheduled on this machine by greedy

➢ Case 1: Machine 𝑖 has only one job 𝑗∗

o By Fact 3, greedy is optimal in this case (i.e. 1-approximation)

Makespan

373F19 - Nisarg Shah & Karan Singh 21

• Theorem
➢ Greedy with longest processing time first gives 3/2-

approximation

• Proof:
➢ Similar to the proof for arbitrary ordering

➢ Consider bottleneck machine 𝑖 and job 𝑗∗ that was last
scheduled on this machine by greedy

➢ Case 2: Machine 𝑖 has at least two jobs
o Job 𝑗∗ must have 𝑡𝑗∗ ≤ 𝑡𝑚+1

o As before, 𝐿 = 𝐿𝑖 = 𝐿𝑖 − 𝑡𝑗∗ + 𝑡𝑗∗ ≤ 1.5 𝐿∗

Same as before ≤ 𝐿∗ ≤ 𝐿∗/2 𝑡𝑗∗ ≤ 𝑡𝑚+1 and Fact 4

Makespan

373F19 - Nisarg Shah & Karan Singh 22

• Theorem
➢ Greedy with LPT rule gives 3/2-approximation

➢ Is our analysis tight? No!

• Theorem [Graham 1966]
➢ Greedy with LPT rule gives 4/3-approximation

➢ Is Graham’s 4/3 approximation tight?
o Essentially.

o In the upcoming example, greedy is only as bad as
4

3
−

1

3𝑚

o But Graham actually proves
4

3
−

1

3𝑚
upper bound. So this is exactly

tight.

Makespan

373F19 - Nisarg Shah & Karan Singh 23

• Theorem
➢ Greedy with LPT rule gives 3/2-approximation

➢ Is our analysis tight? No!

• Theorem [Graham 1966]
➢ Greedy with LPT rule gives 4/3-approximation

➢ Tight example:
o 2 jobs of lengths 𝑚,𝑚 + 1,… , 2𝑚 − 1, one more job of length 𝑚

o Greedy-LPT has makespan 4𝑚 − 1 (verify!)

o OPT has makespan 3𝑚 (verify!)

o Thus, approximation ratio is at least as bad as
4𝑚−1

3𝑚
=

4

3
−

1

3𝑚

373F19 - Nisarg Shah & Karan Singh 24

Unweighted Vertex Cover

Unweighted Vertex Cover

373F19 - Nisarg Shah & Karan Singh 25

• Problem
➢ Input: Undirected graph 𝐺 = (𝑉, 𝐸)

➢ Output: Vertex cover 𝑆 of minimum cardinality

➢ Recall: 𝑆 is vertex cover if every edge has at least one
endpoint in 𝑆

➢ We already saw that this problem is NP-hard

• Q: What would be a good greedy algorithm for this
problem?

Unweighted Vertex Cover

373F19 - Nisarg Shah & Karan Singh 26

• Greedy edge-selection algorithm:
➢ Start with 𝑆 = ∅

➢ While there exists an edge whose both endpoints are not
in 𝑆, add both its endpoints to 𝑆

• Hmm…
➢ Why are we selecting edges rather than vertices?

➢ Why are we adding both endpoints?

➢ We’ll see..

Unweighted Vertex Cover

373F19 - Nisarg Shah & Karan Singh 27

Unweighted Vertex Cover

373F19 - Nisarg Shah & Karan Singh 28

• Theorem:
➢ Greedy edge-selection algorithm for unweighted vertex

cover gives 2-approximation.

• Question:
➢ If 𝑆 is any vertex cover (containing 𝑆 vertices), 𝑀 is any

matching (containing |𝑀| edges), then what is the
relation between |𝑆| and 𝑀 ?

➢ Answer: 𝑆 ≥ |𝑀|.

Unweighted Vertex Cover

373F19 - Nisarg Shah & Karan Singh 29

• Theorem:
➢ Greedy edge-selection algorithm for unweighted vertex

cover gives 2-approximation.

• Proof:
➢ Let 𝑆∗ = min vertex cover, 𝑆 = solution returned by greedy

➢ By design, 𝑆 = 2 ⋅ |𝑀|

➢ Because 𝑀 is a matching, 𝑆∗ ≥ |𝑀| (By last slide)

➢ Hence, 𝑆 ≤ 2|𝑆∗| ∎

Unweighted Vertex Cover

373F19 - Nisarg Shah & Karan Singh 30

• Theorem:
➢ Greedy edge-selection algorithm for unweighted vertex

cover gives 2-approximation.

• Corollary:
➢ If 𝑀∗ is maximum matching, then greedy finds matching

𝑀 with 𝑀 ≥
1

2
𝑀∗

• Proof:

➢ By design, 𝑀 =
1

2
|𝑆|

➢ 𝑆 ≥ 𝑀∗ (Same reason again!)

➢ Hence, 𝑀 ≥
1

2
𝑀∗ ∎

This is a so-called maximal matching
which cannot be extended

Unweighted Vertex Cover

373F19 - Nisarg Shah & Karan Singh 31

• What about a greedy vertex selection algorithm?
➢ Start with 𝑆 = ∅

➢ While 𝑆 is not a vertex cover:
o Choose a vertex 𝑣 which maximizes the number of uncovered

edges incident on it

o Add 𝑣 to 𝑆

➢ Interestingly, this only gives log 𝑑max approximation,
where 𝑑max is the maximum degree of any vertex
o But unlike the edge-selection version, this generalizes to set cover,

and gives provably best possible approximation ratio for set cover
in polynomial time (unless P=NP)

Unweighted Vertex Cover

373F19 - Nisarg Shah & Karan Singh 32

• Theorem [Dinur-Safra 2004]:
➢ Unless P = NP, there is no 𝜌-approximation polynomial-

time algorithm for unweighted vertex cover for any 𝜌 <
1.3606.

• Q: How can something like this be proven?
➢ We’ll see later.

➢ Basically, reduce “solving a hard problem” (e.g. 3SAT) to
“finding any good approximation of current problem”

Unweighted Vertex Cover

373F19 - Nisarg Shah & Karan Singh 33

• Theorem [Dinur-Safra 2004]:
➢ Unless P = NP, there is no 𝜌-approximation polynomial-

time algorithm for unweighted vertex cover for any 𝜌 <
1.3606.

• Q: How can something like this be proven?
➢ We’ll see later.

➢ Basically, reduce “solving a hard problem” (e.g. 3SAT) to
“finding any good approximation of current problem”

373F19 - Nisarg Shah & Karan Singh 34

Weighted Vertex Cover

Weighted Vertex Cover

373F19 - Nisarg Shah & Karan Singh 35

• Problem
➢ Input: Undirected graph 𝐺 = (𝑉, 𝐸), weights 𝑤 ∶ 𝑉 → 𝑅≥0
➢ Output: Vertex cover 𝑆 of minimum total weight

• The same greedy algorithm doesn’t work
➢ Gives arbitrarily bad approximation

➢ Obvious modification which try to take weights into
account also don’t work

➢ Need another strategy…

ILP Formulation

373F19 - Nisarg Shah & Karan Singh 36

➢ For each vertex 𝑣, create a binary variable 𝑥𝑣 ∈ {0,1}
indicating whether vertex 𝑣 is chosen in the vertex cover

➢ Then, computing min weight vertex cover is equivalent to
solving the following integer linear program

min Σ𝑣 𝑤𝑣 ⋅ 𝑥𝑣

subject to

𝑥𝑢 + 𝑥𝑣 ≥ 1, ∀ 𝑢, 𝑣 ∈ 𝐸

𝑥𝑣 ∈ 0,1 , ∀𝑣 ∈ 𝑉

LP Relaxation

373F19 - Nisarg Shah & Karan Singh 37

• What if we solve this LP instead of the original ILP?

min Σ𝑣 𝑤𝑣 ⋅ 𝑥𝑣

subject to

𝑥𝑢 + 𝑥𝑣 ≥ 1, ∀ 𝑢, 𝑣 ∈ 𝐸

𝑥𝑣 ∈ 0,1 , ∀𝑣 ∈ 𝑉

min Σ𝑣 𝑤𝑣 ⋅ 𝑥𝑣

subject to

𝑥𝑢 + 𝑥𝑣 ≥ 1, ∀ 𝑢, 𝑣 ∈ 𝐸

𝑥𝑣 ≥ 0, ∀𝑣 ∈ 𝑉

ILP with binary variables LP with real variables

Rounding LP Solution

373F19 - Nisarg Shah & Karan Singh 38

• What if we solve this LP instead of the original ILP?
➢ Minimizes objective over a larger feasible space

➢ Optimal LP objective value ≤ optimal ILP objective value

➢ But optimal LP solution 𝑥∗ is not a binary vector
o Can we round it to some binary vector ො𝑥 without increasing the

objective value too much?

min Σ𝑣 𝑤𝑣 ⋅ 𝑥𝑣
subject to
𝑥𝑢 + 𝑥𝑣 ≥ 1, ∀ 𝑢, 𝑣 ∈ 𝐸
𝑥𝑣 ≥ 0, ∀𝑣 ∈ 𝑉

LP with real variables

min Σ𝑣 𝑤𝑣 ⋅ 𝑥𝑣
subject to
𝑥𝑢 + 𝑥𝑣 ≥ 1, ∀ 𝑢, 𝑣 ∈ 𝐸
𝑥𝑣 ∈ 0,1 , ∀𝑣 ∈ 𝑉

ILP with binary variables

Rounding LP Solution

373F19 - Nisarg Shah & Karan Singh 39

• Consider LP optimal solution 𝑥∗

➢ Let ො𝑥𝑣 = 1 whenever 𝑥𝑣
∗ ≥ 0.5 and ො𝑥𝑣 = 0 otherwise

➢ Claim 1: ො𝑥 is a feasible solution of ILP (i.e. a vertex cover)
o For every edge 𝑢, 𝑣 ∈ 𝐸, at least one of 𝑥𝑢

∗ , 𝑥𝑣
∗ is at least 0.5

o So at least one of ො𝑥𝑢, ො𝑥𝑣 is 1 ∎

min Σ𝑣 𝑤𝑣 ⋅ 𝑥𝑣
subject to
𝑥𝑢 + 𝑥𝑣 ≥ 1, ∀ 𝑢, 𝑣 ∈ 𝐸
𝑥𝑣 ≥ 0, ∀𝑣 ∈ 𝑉

LP with real variables

min Σ𝑣 𝑤𝑣 ⋅ 𝑥𝑣
subject to
𝑥𝑢 + 𝑥𝑣 ≥ 1, ∀ 𝑢, 𝑣 ∈ 𝐸
𝑥𝑣 ∈ 0,1 , ∀𝑣 ∈ 𝑉

ILP with binary variables

Rounding LP Solution

373F19 - Nisarg Shah & Karan Singh 40

• Consider LP optimal solution 𝑥∗

➢ Let ො𝑥𝑣 = 1 whenever 𝑥𝑣
∗ ≥ 0.5 and ො𝑥𝑣 = 0 otherwise

➢ Claim 2: σ𝑣𝑤𝑣 ⋅ ො𝑥𝑣 ≤ 2 ∗ σ𝑣𝑤𝑣 ⋅ 𝑥𝑣
∗

o Weight only increases when some 𝑥𝑣
∗ ∈ [0.5,1] is shifted up to 1

o At most doubling the variable, so at least doubling the weight ∎

min Σ𝑣 𝑤𝑣 ⋅ 𝑥𝑣
subject to
𝑥𝑢 + 𝑥𝑣 ≥ 1, ∀ 𝑢, 𝑣 ∈ 𝐸
𝑥𝑣 ≥ 0, ∀𝑣 ∈ 𝑉

LP with real variables

min Σ𝑣 𝑤𝑣 ⋅ 𝑥𝑣
subject to
𝑥𝑢 + 𝑥𝑣 ≥ 1, ∀ 𝑢, 𝑣 ∈ 𝐸
𝑥𝑣 ∈ 0,1 , ∀𝑣 ∈ 𝑉

ILP with binary variables

Rounding LP Solution

373F19 - Nisarg Shah & Karan Singh 41

• Consider LP optimal solution 𝑥∗

➢ Let ො𝑥𝑣 = 1 whenever 𝑥𝑣
∗ ≥ 0.5 and ො𝑥𝑣 = 0 otherwise

➢ Hence, ො𝑥 is a vertex cover with weight at most 2 ∗ LP optimal
value ≤ 2 ∗ ILP optimal value

min Σ𝑣 𝑤𝑣 ⋅ 𝑥𝑣
subject to
𝑥𝑢 + 𝑥𝑣 ≥ 1, ∀ 𝑢, 𝑣 ∈ 𝐸
𝑥𝑣 ≥ 0, ∀𝑣 ∈ 𝑉

LP with real variables

min Σ𝑣 𝑤𝑣 ⋅ 𝑥𝑣
subject to
𝑥𝑢 + 𝑥𝑣 ≥ 1, ∀ 𝑢, 𝑣 ∈ 𝐸
𝑥𝑣 ∈ 0,1 , ∀𝑣 ∈ 𝑉

ILP with binary variables

General LP Relaxation Strategy

373F19 - Nisarg Shah & Karan Singh 42

• Your NP-complete problem amounts to solving
➢ Max 𝑐𝑇𝑥 subject to 𝐴𝑥 ≤ 𝑏, 𝑥 ∈ ℕ (need not be binary)

• Instead, solve:
➢ Max 𝑐𝑇𝑥 subject to 𝐴𝑥 ≤ 𝑏, 𝑥 ∈ ℝ≥0 (LP relaxation)
o LP optimal value ≥ ILP optimal value (for maximization)

➢ 𝑥∗ = LP optimal solution

➢ Round 𝑥∗ to ො𝑥 such that 𝑐𝑇 ො𝑥 ≥
𝑐𝑇𝑥∗

𝜌
≥

ILP optimal value

𝜌

➢ Gives 𝜌-approximation
o Info: Best 𝜌 you can hope to get via this approach for a particular

LP-ILP combination is called the integrality gap

373F19 - Nisarg Shah & Karan Singh 43

𝑘-Center Problem

𝑘-Center Problem

373F19 - Nisarg Shah & Karan Singh 44

• Problem
➢ Input: Set of 𝑛 sites 𝑠1, … , 𝑠𝑛 and an integer 𝑘

➢ Output: Return a set 𝐶 of 𝑘 centers s.t. the maximum
distance of any site from its nearest center is minimized
o Minimize 𝑟 𝐶 = max

𝑖∈ 1,…,𝑛
𝑑(𝑠𝑖 , 𝐶), where 𝑑 𝑠𝑖 , 𝐶 = min

𝑐∈𝐶
𝑑 𝑠𝑖 , 𝑐

➢ Sites are points in some metric space with distance 𝑑
satisfying:
o Identity: 𝑑 𝑥, 𝑥 = 0 for all 𝑥

o Symmetry: 𝑑 𝑥, 𝑦 = 𝑑(𝑦, 𝑥) for all 𝑥, 𝑦

o Triangle inequality: 𝑑 𝑥, 𝑧 ≤ 𝑑 𝑥, 𝑦 + 𝑑 𝑦, 𝑧 for all 𝑥, 𝑦, 𝑧

𝑘-Center Problem

373F19 - Nisarg Shah & Karan Singh 45

• Problem
➢ Input: Set of 𝑛 sites 𝑠1, … , 𝑠𝑛 and an integer 𝑘

➢ Output: Return a set 𝐶 of 𝑘 centers s.t. the maximum
distance of any site from its nearest center is minimized
o Minimize 𝑟 𝐶 = max

𝑖∈ 1,…,𝑛
𝑑(𝑠𝑖 , 𝐶), where 𝑑 𝑠𝑖 , 𝐶 = min

𝑐∈𝐶
𝑑 𝑠𝑖 , 𝑐

➢ Given 𝐶, note that 𝑟(𝐶) is the minimum radius 𝑟 such
that if we draw a ball of radius 𝑟 around every center in
𝐶, then the balls collectively cover all the sites

373F19 - Nisarg Shah & Karan Singh 46

𝑘-Center Problem

Objective value

Bad Greedy

373F19 - Nisarg Shah & Karan Singh 47

• Bad greedy (forget about running time)
➢ Put the first center at the optimal location for 𝑘 = 1

➢ Put every next center to reduce the objective value as
much as possible given the centers already placed

• Arbitrarily bad approximation

Good Greedy

373F19 - Nisarg Shah & Karan Singh 48

• Good greedy
➢ Put the first center at an arbitrary site

➢ Put every next center at a site whose distance to its
nearest center is maximum among all sites

❑ Good Greedy

➢ 𝐶1 ← 𝑠1 (arbitrary site works)

➢ For 𝑗 = 2,… , 𝑘:

➢ 𝑠𝑖 ← argmax
𝑠

𝑑(𝑠, 𝐶𝑗−1); Δ𝑗 = 𝑑 𝑠𝑖 , 𝐶𝑗−1

➢ 𝐶j ← 𝐶j−1 ∪ 𝑠𝑖
➢ Return 𝐶k

Good Greedy

373F19 - Nisarg Shah & Karan Singh 49

• For reasons that will soon become clear…
➢ Imagine that we run good greedy for 𝑘 + 1 steps rather

than 𝑘 steps, and obtain 𝐶𝑘+1
➢ Note: The 𝑘 + 1 points in 𝐶𝑘+1 are sites

❑ Good Greedy

➢ 𝐶1 ← 𝑠1 (arbitrary site works)

➢ For 𝑗 = 2, … , 𝑘:

➢ 𝑠𝑖 ← argmax
𝑠

𝑑(𝑠, 𝐶𝑗−1); Δ𝑗 = 𝑑 𝑠𝑖 , 𝐶𝑗−1

➢ 𝐶j ← 𝐶j−1 ∪ 𝑠𝑖
➢ Return 𝐶k

Good Greedy

373F19 - Nisarg Shah & Karan Singh 50

• Claim: 𝑑 𝑠𝑖 , 𝑠𝑗 ≥ 𝑟 𝐶𝑘 for all 𝑠𝑖 , 𝑠𝑗 ∈ 𝐶𝑘+1
➢ Proof: By construction of the algorithm.
o At each iteration 𝑗, we add a new center that is at least Δ𝑗 far from

all previous centers

o Δ𝑗 decreases as 𝑗 increases (Why?)

o Δ𝑘+1 = 𝑟 𝐶𝑘

❑ Good Greedy

➢ 𝐶1 ← 𝑠1 (arbitrary site works)

➢ For 𝑗 = 2, … , 𝑘:

➢ 𝑠𝑖 ← argmax
𝑠

𝑑(𝑠, 𝐶𝑗−1); Δ𝑗 = 𝑑 𝑠𝑖 , 𝐶𝑗−1

➢ 𝐶j ← 𝐶j−1 ∪ 𝑠𝑖
➢ Return 𝐶k

373F19 - Nisarg Shah & Karan Singh 51

𝑘-Center Problem

373F19 - Nisarg Shah & Karan Singh 52

𝑘-Center Problem

373F19 - Nisarg Shah & Karan Singh 53

𝑘-Center Problem

373F19 - Nisarg Shah & Karan Singh 54

𝑘-Center Problem

373F19 - Nisarg Shah & Karan Singh 55

𝑘-Center Problem

Good Greedy

373F19 - Nisarg Shah & Karan Singh 56

• Theorem: If 𝐶∗ is the optimal set of 𝑘 centers, then
𝑟 𝐶𝑘 ≤ 2 ⋅ 𝑟 𝐶∗

• Proof:
➢ Draw a ball of radius 𝑟(𝐶∗) from each center in 𝐶∗

➢ By pigeonhole principle, at least two 𝑠𝑖 , 𝑠𝑗 ∈ 𝐶𝑘+1 must
belong to the same ball (say centered at 𝑐∗ ∈ 𝐶∗)
o Hence, 𝑑 𝑠𝑖 , 𝑐

∗ , 𝑑 𝑠𝑗 , 𝑐
∗ ≤ 𝑟 𝐶∗

➢ But by our claim:
𝑟 𝐶𝑘 ≤ 𝑑 𝑠𝑖 , 𝑠𝑗 ≤ 𝑑 𝑠𝑖 , 𝑐

∗ + 𝑑 𝑠𝑗 , 𝑐
∗ ≤ 2 ⋅ 𝑟 𝐶∗

➢ Done!

Hardness of Approximation

373F19 - Nisarg Shah & Karan Singh 57

• Best polynomial time approximation?
➢ Good greedy gives 2-approximation in polynomial time

➢ Can we get a better approximation?

• Theorem: Unless P=NP, there is no polynomial time
algorithm which gives 𝜌-approximation for the 𝑘-
center problem for 𝜌 < 2.

• How do we prove this?

Hardness of Approximation

373F19 - Nisarg Shah & Karan Singh 58

• Theorem: Unless P=NP, there is no polynomial time
algorithm which gives 𝜌-approximation for the 𝑘-
center problem for 𝜌 < 2.

• How do we prove this?

➢ Same reduction idea:

o Show that if there is a polytime algorithm which gives 𝜌-apx to 𝑘-
center for some 𝜌 < 2, then using this algorithm, we can solve a
known NP-complete problem in polytime.

o Hmm. Which NP-complete problem should we use?

• How about FriendlyRepresentatives problem from assignment 3?

Hardness of Approximation

373F19 - Nisarg Shah & Karan Singh 59

• Theorem: Unless P=NP, there is no polynomial time
algorithm which gives 𝜌-approximation for the 𝑘-
center problem for 𝜌 < 2.

• Proof:
➢ Consider an instance of FriendlyRepresentatives
o Given a set of people 𝑁, a friendship relation 𝐹, and an integer 𝑚,

we want to check if there exists a subset 𝑆 ⊆ 𝑁 of 𝑚 people such
that every person not in 𝑆 is friends with someone in 𝑆.

o Denote this by (𝑁, 𝐹,𝑚)

Hardness of Approximation

373F19 - Nisarg Shah & Karan Singh 60

• Theorem: Unless P=NP, there is no polynomial time
algorithm which gives 𝜌-approximation for the 𝑘-
center problem for 𝜌 < 2.

• Proof:
➢ Consider an instance (𝑁, 𝐹,𝑚) of FriendlyRepresentatives

➢ Create an instance of 𝑘-Center as follows
o Create a site 𝑠𝑖 for each person 𝑖 ∈ 𝑁

o Define 𝑑 𝑠𝑖 , 𝑠𝑗 = 1 if 𝑖, 𝑗 ∈ 𝐹 and 2 if 𝑖, 𝑗 ∉ 𝐹

• Check that this satisfies triangle inequality

o Set 𝑘 = 𝑚

o Note: There are no other points in this metric space, so you must
place centers on sites.

Hardness of Approximation

373F19 - Nisarg Shah & Karan Singh 61

• Theorem: Unless P=NP, there is no polynomial time
algorithm which gives 𝜌-approximation for the 𝑘-
center problem for 𝜌 < 2.

• Proof:
➢ 𝐶 is a set of friendly representatives if and only if 𝑟 𝐶 = 1
o Every center is obviously at distance 0 from itself

o Every non-center 𝑠𝑗 is at distance at most 1 from some 𝑠𝑖 ∈ 𝐶 if and
only if every person not in 𝐶 is friends with someone in 𝐶

➢ There are only two possibilities:
o YES: There exists 𝐶 with 𝑟 𝐶 = 1

o NO: Every 𝐶 has 𝑟 𝐶 = 2

Hardness of Approximation

373F19 - Nisarg Shah & Karan Singh 62

• Theorem: Unless P=NP, there is no polynomial time
algorithm which gives 𝜌-approximation for the 𝑘-
center problem for 𝜌 < 2.

• Proof:
➢ YES: There exists 𝐶 with 𝑟 𝐶 = 1
o Since our algorithm gives 𝜌-approximation with 𝜌 < 2, it must

return a set 𝐶 with 𝑟 𝐶 < 2

o But 𝑟 𝐶 < 2 means that 𝑟 𝐶 = 1

o So the algorithm returns 𝐶 with 𝑟 𝐶 = 1

➢ NO: Our algorithm returns a 𝐶 with 𝑟 𝐶 = 2

➢ So checking 𝑟(𝐶) of the 𝐶 returned by algorithm allows
solving FriendlyRepresentatives!

373F19 - Nisarg Shah & Karan Singh 63

Weighted Set Packing

Weighted Set Packing

373F19 - Nisarg Shah & Karan Singh 64

• Problem
➢ Input: A collection of sets 𝒮 = 𝑆1, … , 𝑆𝑛 with values
𝑣1, … , 𝑣𝑛 ≥ 0. There are m set elements.

➢ Output: Pick disjoint sets with maximum total value, i.e.
pick 𝑊 ⊆ {1,… , 𝑛} to maximize σ𝑖∈𝑊 𝑣𝑖 subject to the
constraint that for all 𝑖, 𝑗 ∈ 𝑊, 𝑆𝑖 ∩ 𝑆𝑗 = ∅.

➢ This is known to be an NP-hard problem

➢ It is also known that for any constant 𝜖 > 0, you cannot
get 𝑂 𝑚 Τ1 2−𝜖 approximation in polynomial time unless
NP=ZPP (widely believed to be not true)

Greedy Template

CSC304 - Nisarg Shah 65

• Sort the sets in some order, consider them one-by-
one, and take any set that you can along the way.

• Greedy Algorithm:
➢ Sort the sets in a specific order.

➢ Relabel them as 1,2,… , 𝑛 in this order.

➢𝑊 ← ∅

➢ For 𝑖 = 1,… , 𝑛:
o If 𝑆𝑖 ∩ 𝑆𝑗 = ∅ for every 𝑗 ∈ 𝑊, then 𝑊 ←𝑊 ∪ {𝑖}

➢ Return 𝑊.

Greedy Algorithm

CSC304 - Nisarg Shah 66

• What order should we sort the sets by?

• We want to take sets with high values.
➢ 𝑣1 ≥ 𝑣2 ≥ ⋯ ≥ 𝑣𝑛? Only 𝑚-approximation 

• We don’t want to exhaust many items too soon.

➢

𝑣1

𝑆1
≥

𝑣2

𝑆2
≥ ⋯

𝑣𝑛

𝑆𝑛
? Also 𝑚-approximation 

• 𝑚-approximation :
𝑣1

𝑆1
≥

𝑣2

𝑆2
≥ ⋯

𝑣𝑛

𝑆𝑛
?

[Lehmann et al. 2011]

Proof of Approximation

CSC2556 - Nisarg Shah 67

• Definitions
➢ 𝑂𝑃𝑇 = Some optimal solution
➢ 𝑊 = Solution returned by our greedy algorithm
➢ For 𝑖 ∈ 𝑊,

𝑂𝑃𝑇𝑖 = 𝑗 ∈ 𝑂𝑃𝑇, 𝑗 ≥ 𝑖 ∶ 𝑆𝑖 ∩ 𝑆𝑗 ≠ ∅
OPTi has future j in OPT blocked for inclusion in greedy W because of choosing I (i is also in OPTi).

• Claim 1: 𝑂𝑃𝑇 ⊆ 𝑖∈𝑊𝑂𝑃𝑇𝑖ڂ
If j from OPT is in W => j in OPTj, else j must be in some OPTi or the greedy algorithm would have chosen it.

• Claim 2: It is enough to show that ∀𝑖 ∈ 𝑊
𝑚 ⋅ 𝑣𝑖 ≥ Σ𝑗∈𝑂𝑃𝑇𝑖 𝑣𝑗

The value of greedy choice i is at least as good 1/ 𝑚 * the values from the optimal solution it blocks,
and all elements of OPT will be accounted for by the union of OPTi’s.

• Observation: For 𝑗 ∈ 𝑂𝑃𝑇𝑖, 𝑣𝑗 ≤ 𝑣𝑖 ⋅
𝑆𝑗

𝑆𝑖
Greedy ordering.

Proof of Approximation

CSC2556 - Nisarg Shah 68

• Summing over all 𝑗 ∈ 𝑂𝑃𝑇𝑖 :

Σ𝑗∈𝑂𝑃𝑇𝑖 𝑣𝑗 ≤
𝑣𝑖

𝑆𝑖
⋅ Σ𝑗∈𝑂𝑃𝑇𝑖 𝑆𝑗

• Using Cauchy-Schwarz (Σ𝑖 𝑥𝑖𝑦𝑖 ≤ Σ𝑖 𝑥𝑖
2 ⋅ Σ𝑖 𝑦𝑖

2)

Σ𝑗∈𝑂𝑃𝑇𝑖 1. 𝑆𝑗 ≤ 𝑂𝑃𝑇𝑖 ⋅ Σ𝑗∈𝑂𝑃𝑇𝑖 𝑆𝑗

≤ 𝑆𝑖 ⋅ 𝑚
Every element in Si can block at most one set in OPT => OPTi <= Si.

Also note every Sj in OPTi is disjoint because it belongs to OPT. so the sum of these Sj’s is at most m.

373F19 - Nisarg Shah & Karan Singh 69

Local Search Paradigm

Local Search

373F19 - Nisarg Shah & Karan Singh 70

• A heuristic paradigm for solving complex problems
➢ Sometimes it might provably return an optimal solution

➢ But even if not, it might give a good approximation

• Idea:
➢ Start with some solution 𝑆

➢ While there is a “better” solution 𝑆′ in the local neighborhood of 𝑆

➢ Switch to 𝑆’

• Need to define what is “better” and what is a “local
neighborhood”

Local Search

373F19 - Nisarg Shah & Karan Singh 71

• Sometimes local search provably returns an
optimal solution

• We already saw such an example: network flow
➢ Start with zero flow

➢ “Local neighborhood”
o Set of all flows which can be obtained by augmenting the current

flow along a path in the residual graph

➢ “Better”
o Higher flow value

Local Search

373F19 - Nisarg Shah & Karan Singh 72

• But sometimes it doesn’t return an optimal
solution, and “gets stuck” in a local maxima

Local Search

373F19 - Nisarg Shah & Karan Singh 73

• In that case, we want to bound the ratio between
the optimal solution and the worst solution local
search might return

Worst
ratio

373F19 - Nisarg Shah & Karan Singh 74

Max-Cut

Max-Cut

373F19 - Nisarg Shah & Karan Singh 75

• Problem
➢ Input: An undirected graph 𝐺 = (𝑉, 𝐸)

➢ Output: A partition (𝐴, 𝐵) of 𝑉 that maximizes the
number of edges going across the cut, i.e., maximizes |𝐸′|
where 𝐸′ = 𝑢, 𝑣 ∈ 𝐸 𝑢 ∈ 𝐴, 𝑣 ∈ 𝐵}

➢ This is also known to be an NP-hard problem

➢ What is a natural local search algorithm for this problem?
o Given a current partition, what small change can you do to

improve the objective value?

Max-Cut

373F19 - Nisarg Shah & Karan Singh 76

• Local Search
➢ Initialize (𝐴, 𝐵) arbitrarily.

➢ While there is a vertex 𝑢 such that moving 𝑢 to the other
side improves the objective value:
o Move 𝑢 to the other side.

➢ When does moving 𝑢, say from 𝐴 to 𝐵, improve the
objective value?
o When 𝑢 has more incident edges going within the cut than across

the cut, i.e., when 𝑢, 𝑣 ∈ 𝐸 𝑣 ∈ 𝐴 > 𝑢, 𝑣 ∈ 𝐸 𝑣 ∈ 𝐵

Max-Cut

373F19 - Nisarg Shah & Karan Singh 77

• Local Search
➢ Initialize (𝐴, 𝐵) arbitrarily.

➢ While there is a vertex 𝑢 such that moving 𝑢 to the other
side improves the objective value:
o Move 𝑢 to the other side.

➢ Why does the algorithm stop?
o Every iteration increases the number of edges across the cut by at

least 1, so the algorithm must stop in at most |𝐸| iterations

Max-Cut

373F19 - Nisarg Shah & Karan Singh 78

• Local Search
➢ Initialize (𝐴, 𝐵) arbitrarily.

➢ While there is a vertex 𝑢 such that moving 𝑢 to the other
side improves the objective value:
o Move 𝑢 to the other side.

➢ Approximation ratio?
o At the end, every vertex has at least as many edges going across

the cut as within the cut

o Hence, at least half of all edges must be going across the cut

• Exercise: Prove this formally by writing equations.

Weighted Max-Cut

373F19 - Nisarg Shah & Karan Singh 79

• Variant
➢ Now we’re given integral edge weights 𝑤:𝐸 → ℕ

➢ The goal is to maximize the total weight of edges going
across the cut

• Algorithm
➢ The same algorithm works, but now we move 𝑢 to the

other side if the total weight of its incident edges going
within the cut is greater than the total weight of its
incident edges going across the cut

Weighted Max-Cut

373F19 - Nisarg Shah & Karan Singh 80

• Number of iterations?
➢ In the unweighted case, we said that the number of

edges going across the cut must increase by at least 1, so
it takes at most |𝐸| iterations

➢ In the weighted case, the total weight of edges going
across the cut increases by at least 1, but this could take
up to σ𝑒∈𝐸𝑤𝑒 iterations, which is exponential in the input
length
o There are examples where the local search actually takes

exponentially many steps

Weighted Max-Cut

373F19 - Nisarg Shah & Karan Singh 81

• Number of iterations?
➢ But we can find a 2 + 𝜖 approximation in time polynomial

in the input length and
1

𝜖

➢ The idea is to only move vertices when it “sufficiently
improves” the objective value

Weighted Max-Cut

373F19 - Nisarg Shah & Karan Singh 82

• Better approximations?

➢ Theorem [Goemans-Williamson]: There exists a
polynomial time algorithm for max-cut with

approximation ratio
2

𝜋
⋅ min
0≤𝜃≤𝜋

𝜃

1−cos 𝜃
≈ 0.878

o Uses “semidefinite programming” and “randomized rounding”

o Note: The literature from here on uses approximation ratios ≤ 1,
so we will follow that convention in the remaining slides.

➢ If the unique games conjecture is true, then this is tight

373F19 - Nisarg Shah & Karan Singh 83

Exact Max-𝑘-SAT

Exact Max-𝑘-SAT

373F19 - Nisarg Shah & Karan Singh 84

• Problem
➢ Input: An exact 𝑘-SAT formula 𝜑 = 𝐶1 ∧ 𝐶2 ∧ ⋯∧ 𝐶𝑚,

where each clause 𝐶𝑖 has exactly 𝑘 literals, and a weight
𝑤𝑖 ≥ 0 of each clause 𝐶𝑖

➢ Output: A truth assignment 𝜏 maximizing the number (or
total weight) of clauses satisfied under 𝜏

➢ Let us denote by 𝑊(𝜏) the total weight of clauses
satisfied under 𝜏

➢ What is a good definition of “local neighborhood”?

Exact Max-𝑘-SAT

373F19 - Nisarg Shah & Karan Singh 85

• Local neighborhood:
➢ 𝑁𝑑(𝜏) = set of all truth assignments which can be

obtained by changing the value of at most 𝑑 variables in 𝜏

• Theorem: The local search with 𝑑 = 1 gives a Τ2 3
approximation to Exact Max-2-SAT.

Exact Max-𝑘-SAT

373F19 - Nisarg Shah & Karan Singh 86

• Theorem: The local search with 𝑑 = 1 gives a Τ2 3
approximation to Exact Max-2-SAT.

• Proof:
➢ Let 𝜏 be a local optimum
o 𝑆0 = set of clauses not satisfied under 𝜏

o 𝑆1 = set of clauses from which exactly one literal is true under 𝜏

o 𝑆2 = set of clauses from which both literals are true under 𝜏

o 𝑊 𝑆0 ,𝑊 𝑆1 ,𝑊 𝑆2 be the corresponding total weights

o Goal: 𝑊 𝑆1 +𝑊 𝑆2 ≥ Τ2 3 ⋅ 𝑊 𝑆0 +𝑊 𝑆1 +𝑊 𝑆2

• Equivalently, 𝑊 𝑆0 ≤ Τ1 3 ⋅ 𝑊 𝑆0 +𝑊 𝑆1 +𝑊 𝑆2

Exact Max-𝑘-SAT

373F19 - Nisarg Shah & Karan Singh 87

• Theorem: The local search with 𝑑 = 1 gives a Τ2 3
approximation to Exact Max-2-SAT.

• Proof:
➢ Let 𝜏 be a local optimum
o 𝑆0 = set of clauses not satisfied under 𝜏

o 𝑆1 = set of clauses from which exactly one literal is true under 𝜏

o 𝑆2 = set of clauses from which both literals are true under 𝜏

o 𝑊 𝑆0 ,𝑊 𝑆1 ,𝑊 𝑆2 be the corresponding total weights

o Goal: 𝑊 𝑆1 +𝑊 𝑆2 ≥ Τ2 3 ⋅ 𝑊 𝑆0 +𝑊 𝑆1 +𝑊 𝑆2

• Equivalently, 𝑊 𝑆0 ≤ Τ1 3 ⋅ 𝑊 𝑆0 +𝑊 𝑆1 +𝑊 𝑆2

Exact Max-𝑘-SAT

373F19 - Nisarg Shah & Karan Singh 88

• Theorem: The local search with 𝑑 = 1 gives a Τ2 3
approximation to Exact Max-2-SAT.

• Proof:
➢ Clause 𝐶 involves variable 𝑗 if it contains 𝑥𝑗 or ഥ𝑥𝑗
o 𝐴𝑗 = set of clauses in 𝑆0 involving variable 𝑗

o 𝐵𝑗 = set of clauses in 𝑆1 involving variable 𝑗 such that it is the
literal of variable 𝑗 that is true under 𝜏

o 𝐶𝑗 = set of clauses in 𝑆2 involving variable 𝑗

o 𝑊 𝐴𝑗 ,𝑊 𝐵𝑗 ,𝑊 𝐶𝑗 be the corresponding total weights

Exact Max-𝑘-SAT

373F19 - Nisarg Shah & Karan Singh 89

• Theorem: The local search with 𝑑 = 1 gives a Τ2 3
approximation to Exact Max-2-SAT.

• Proof:
➢ 2𝑊 𝑆0 = σ𝑗𝑊 𝐴𝑗
o Every clause in 𝑆0 is counted twice on the RHS

➢𝑊 𝑆1 = σ𝑗𝑊 𝐵𝑗
o Every clause in 𝑆1 is only counted once on the RHS for the variable

whose literal was true under 𝜏

➢ For each 𝑗 : 𝑊 𝐴𝑗 ≤ 𝑊 𝐵𝑗
o From local optimality of 𝜏, since otherwise flipping the truth value

of variable 𝑗 would have increased the total weight

Exact Max-𝑘-SAT

373F19 - Nisarg Shah & Karan Singh 90

• Theorem: The local search with 𝑑 = 1 gives a Τ2 3
approximation to Exact Max-2-SAT.

• Proof:
➢ 2𝑊 𝑆0 ≤ 𝑊 𝑆1
o Summing the third equation on the last slide over all 𝑗, and then

using the first two equations on the last slide

➢ Hence:
o 3𝑊 𝑆0 ≤ 𝑊 𝑆0 +𝑊 𝑆1 ≤ 𝑊 𝑆0 +𝑊 𝑆1 +𝑊 𝑆2
o Precisely the condition we wanted to prove…

Exact Max-𝑘-SAT

373F19 - Nisarg Shah & Karan Singh 91

• Higher 𝑑?
➢ Searches over a larger neighborhood

➢ May get a better approximation ratio, but increases the
running time as we now need to check if any neighbor in
a large neighborhood provides a better objective

➢ The bound is still 2/3 for 𝑑 = 𝑜(𝑛)

➢ It is no better than 4/5 for 𝑑 < Τ𝑛 2

➢ It can be shown that with 𝑑 = Τ𝑛 2, the algorithm always
terminates at an optimal solution

Exact Max-𝑘-SAT

373F19 - Nisarg Shah & Karan Singh 92

• Better approximation?
➢ We can learn something from our proof

➢ Note that we did not use anything about 𝑊 𝑆2 , and
simply added it at the end

➢ If we could also guarantee that 𝑊 𝑆0 ≤ 𝑊 𝑆2 …
o Then we would get 4𝑊 𝑆0 ≤ 𝑊 𝑆0 +𝑊 𝑆1 +𝑊 𝑆2 , which

would give a Τ3 4 approximation

➢ Result (without proof): This can be done by including just
one more assignment in the neighborhood: 𝑁 𝜏 =
𝑁1 𝜏 ∪ 𝜏𝑐 , where 𝜏𝑐 = complement of 𝜏

Exact Max-𝑘-SAT

373F19 - Nisarg Shah & Karan Singh 93

• What if we do not want to modify the
neighborhood?
➢ A slightly different tweak also works

➢ We want to weigh clauses in 𝑊(𝑆2) more because when
we get a clause through 𝑆2, we get more robustness (it
can withstand changes in single variables)

• Modified local search:
➢ Start at arbitrary 𝜏

➢ While there is an assignment in 𝑁1 𝜏 that improves the
potential 1.5 𝑊 𝑆1 + 2𝑊(𝑆2)
o Switch to that assignment

Exact Max-𝑘-SAT

373F19 - Nisarg Shah & Karan Singh 94

• Modified local search:
➢ Start at arbitrary 𝜏

➢ While there is an assignment in 𝑁1 𝜏 that improves the
potential 1.5 𝑊 𝑆1 + 2𝑊(𝑆2)
o Switch to that assignment

• Note:
➢ This is the first time that we’re using a definition of

“better” in local search paradigm that does not quite
align with the ultimate objective we want to maximize

➢ This is called “non-oblivious local search”

Exact Max-𝑘-SAT

373F19 - Nisarg Shah & Karan Singh 95

• Modified local search:
➢ Start at arbitrary 𝜏

➢ While there is an assignment in 𝑁1 𝜏 that improves the
potential 1.5 𝑊 𝑆1 + 2𝑊(𝑆2)
o Switch to that assignment

• Result (without proof):
➢ Modified local search gives Τ3 4-approximation to Exact

Max-2-SAT

Exact Max-𝑘-SAT

373F19 - Nisarg Shah & Karan Singh 96

• More generally:
➢ The same technique works for higher values of 𝑘

➢ Gives
2𝑘−1

2𝑘
approximation for Exact Max-𝑘-SAT

o We’ll see how to achieve the same approximation using a much
simpler technique

• Note: This is Τ7 8 for Exact Max-3-SAT
➢ Theorem [Håstad]: Achieving Τ7 8+ 𝜖 approximation

where 𝜖 > 0 is NP-hard.
o Uses PCP (probabilistically checkable proofs) technique

