
CSC373

Weeks 9 & 10: 
Approximation Algorithms 

& Local Search

373F19 - Nisarg Shah & Karan Singh 1



NP-Completeness
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• We saw that many problems are NP-complete
➢ Unlikely to have polynomial time algorithms to solve them

➢ What can we do?

• One idea:
➢ Instead of solving them exactly, solve them approximately

➢ Sometimes, we might want to use an approximation 
algorithm even when we can compute an exact solution in 
polynomial time (WHY?)



Approximation Algorithms
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• We’ll focus on optimization problems

➢ Decision problem: “Is there…where…≥ 𝑘?”
o E.g. “Is there an assignment which satisfies at least 𝑘 clauses of a 

given formula 𝜑?”

➢ Optimization problem: “Find…which maximizes…”
o E.g. “Find an assignment which satisfies the maximum possible 

number of clauses from a given formula 𝜑.”

➢ Recall that if the decision problem is hard, then the 
optimization problem is hard too



Approximation Algorithms
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• There is a function 𝑃𝑟𝑜𝑓𝑖𝑡 we want to maximize or a 
function 𝐶𝑜𝑠𝑡 we want to minimize

• Given input instance 𝐼…
➢ Our algorithm returns a solution 𝐴𝐿𝐺(𝐼)

➢ An optimal solution maximizing 𝑃𝑟𝑜𝑓𝑖𝑡 or minimizing 𝐶𝑜𝑠𝑡
is 𝑂𝑃𝑇(𝐼)

➢ Then, the approximation ratio of 𝐴𝐿𝐺 on instance 𝐼 is

𝑃𝑟𝑜𝑓𝑖𝑡 𝑂𝑃𝑇 𝐼

𝑃𝑟𝑜𝑓𝑖𝑡 𝐴𝐿𝐺 𝐼
or   

𝐶𝑜𝑠𝑡 𝐴𝐿𝐺 𝐼

𝐶𝑜𝑠𝑡 𝑂𝑃𝑇 𝐼
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• Approximation ratio of 𝐴𝐿𝐺 on instance 𝐼 is

𝑃𝑟𝑜𝑓𝑖𝑡 𝑂𝑃𝑇 𝐼

𝑃𝑟𝑜𝑓𝑖𝑡 𝐴𝐿𝐺 𝐼
or   

𝐶𝑜𝑠𝑡 𝐴𝐿𝐺 𝐼

𝐶𝑜𝑠𝑡 𝑂𝑃𝑇 𝐼

➢ Note: These are defined to be ≥ 1 in each case.

o 2-approximation = half the optimal profit / twice the optimal cost

• 𝐴𝐿𝐺 has worst-case 𝑐-approximation if for each 
instance 𝐼… 

𝑃𝑟𝑜𝑓𝑖𝑡 𝐴𝐿𝐺 𝐼 ≥
1

𝑐
⋅ 𝑃𝑟𝑜𝑓𝑖𝑡 𝑂𝑃𝑇 𝐼 𝑜𝑟

𝐶𝑜𝑠𝑡 𝐴𝐿𝐺 𝐼 ≤ 𝑐 ⋅ 𝐶𝑜𝑠𝑡 𝑂𝑃𝑇 𝐼



Note
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• By default, when we say 𝑐-approximation, we will 
always mean 𝑐-approximation in the worst case
➢ Also interesting to look at approximation in the average 

case when your inputs are drawn from some distribution

• Our use of approximation ratios ≥ 1 is just a 
convention
➢ Some books and papers use approximation ratios ≤ 1

convention

➢ E.g. they might say 0.5-approximation to mean that the 
algorithm generates at least half the optimal profit or has 
at most twice the optimal cost



PTAS and FPTAS
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• Arbitrarily close to 1 approximations

• FPTAS: Fully polynomial time approximation 
scheme
➢ For every 𝜖 > 0, there is a 1 + 𝜖 -approximation 

algorithm that runs in time 𝑝𝑜𝑙𝑦 𝑛, Τ1 𝜖 on instances of 
size 𝑛

• PTAS: Polynomial time approximation scheme
➢ For every 𝜖 > 0, there is a 1 + 𝜖 -approximation 

algorithm that runs in time 𝑝𝑜𝑙𝑦 𝑛 on instances of size 𝑛
o Note: Could have exponential dependence on Τ1 𝜖



Approximation Landscape
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➢ An FPTAS
o E.g. the knapsack problem

➢ A PTAS but no FPTAS
o E.g. the makespan problem (we’ll see)

➢ 𝑐-approximation for a constant 𝑐 > 1 but no PTAS

o E.g. vertex cover and JISP (we’ll see)

➢ Θ log 𝑛 -approximation but no constant approximation

o E.g. set cover

➢ No 𝑛1−𝜖-approximation for any 𝜖 > 0

o E.g. graph coloring and maximum independent set

Impossibility of better approximations 
assuming widely held beliefs like P ≠ NP

𝑛 = parameter of problem at hand
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Makespan Minimization



Makespan
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• Problem
➢ Input: 𝑚 identical machines, 𝑛 jobs, job 𝑗 requires 

processing time 𝑡𝑗
➢ Output: Assign jobs to machines to minimize makespan

➢ Let 𝑆 𝑖 = set of jobs assigned to machine 𝑖 in a solution

➢ Constraints:
o Each job must run contiguously on one machine

o Each machine can process at most one job at a time

➢ Load on machine 𝑖 : 𝐿𝑖 = σ𝑗∈𝑆 𝑖 𝑡𝑗
➢ Goal: minimize makespan 𝐿 = max

𝑖
𝐿𝑖



Makespan

373F19 - Nisarg Shah & Karan Singh 11

• Even the special case of 𝑚 = 2 machines is already 
NP-hard by reduction from PARTITION

• PARTITION
➢ Input: Set 𝑆 containing 𝑛 integers 

➢ Output: Can we partition 𝑆 into two sets with equal sum (i.e. 
𝑆 = 𝑆1 ∩ 𝑆2, 𝑆1 ∩ 𝑆2 = ∅, and σ𝑤∈𝑆1

𝑤 = σ𝑤∈𝑆2
𝑤 )?

➢ Exercise!
o Show that PARTITION is NP-complete by reduction from SUBSET-SUM

o Show that if there is a polynomial-time algorithm for solving 
MAKESPAN with 2 machines, then you can solve PARTITION in 
polynomial-time



Makespan
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• Greedy list-scheduling algorithm
➢ Consider the 𝑛 jobs in some “nice” sorted order.

➢ Assign each job 𝑗 to a machine with the smallest load so far

• Note
➢ Implementable in 𝑂 𝑛 log𝑚 using priority queue

• Back to greedy…?
➢ But this time, we can’t hope that greedy will be optimal

➢ We can still hope that it is approximately optimal

• Which order?



Makespan
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• Theorem [Graham 1966]
➢ Regardless of the order, greedy gives a 2-approximation.

➢ This was the first worst-case approximation analysis 

• Let optimal makespan = 𝐿∗

• To show that makespan under greedy solution is not 
much worse than 𝐿∗, we need to show that 𝐿∗ isn’t 
too low



Makespan
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• Theorem [Graham 1966]
➢ Regardless of the order, greedy gives a 2-approximation.

• Fact 1: 𝐿∗ ≥ max
𝑗

𝑡𝑗

➢ Some machine must process job with highest processing time

• Fact 2: 𝐿∗ ≥
1

𝑚
σ𝑗 𝑡𝑗

➢ Total processing time is σ𝑗 𝑡𝑗
➢ At least one machine must do at least 1/𝑚 of this work 

(pigeonhole principle)



Makespan
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• Theorem [Graham 1966]
➢ Regardless of the order, greedy gives a 2-approximation.

• Proof:
➢ Suppose machine 𝑖 is bottleneck under greedy (so load = 𝐿𝑖)

➢ Let 𝑗∗ = last job scheduled on 𝑖 by greedy

➢ Right before 𝑗∗ was assigned to 𝑖, 𝑖 had the smallest load
o Load of other machines could have only increased from then

o 𝐿𝑖 − 𝑡𝑗∗ ≤ 𝐿𝑘 , ∀𝑘

➢ Average over all 𝑘 : 𝐿𝑖 − 𝑡𝑗∗ ≤
1

𝑚
σ𝑗 𝑡𝑗

➢ 𝐿𝑖 ≤ 𝑡𝑗∗ +
1

𝑚
σ𝑗 𝑡𝑗 ≤ 𝐿∗ + 𝐿∗ = 2𝐿∗

Fact 1

Fact 2



Makespan
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• Theorem [Graham 1966]
➢ Regardless of the order, greedy gives a 2-approximation.

• Is our analysis tight?
➢ Essentially. 

➢ There is an example where greedy does perform this badly.

➢ Note: In the upcoming example, greedy is only as bad as    
2 − 1/𝑚, but you can also improve earlier analysis to show 
that greedy always gives 2 − 1/𝑚 approximation.

➢ So 2 − 1/𝑚 is exactly tight.



Makespan
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• Theorem [Graham 1966]
➢ Regardless of the order, greedy gives a 2-approximation.

• Is our analysis tight?
➢ Example: 
o 𝑚(𝑚 − 1) jobs of length 1, followed by one job of length 𝑚

o Greedy evenly distributes unit length jobs on all 𝑚 machines, and 
assigning the last heavy job makes makespan 𝑚− 1 +𝑚 = 2𝑚 − 1

o Optimal makespan is 𝑚 by evenly distributing unit length jobs among 
𝑚− 1 machines and putting the single heavy job on the remaining

➢ Idea: It seems keeping heavy jobs at the end is bad. So just 
start with them first!



Makespan
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• Longest Processing Time (LPT) First
➢ Run the greedy algorithm but consider jobs in the 

decreasing order of their processing time

• Need more facts about what the optimal cannot 
beat

• Fact 3: If the bottleneck machine has only one job, 
then the solution is optimal.
➢ The optimal solution must schedule that job on some 

machine



Makespan
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• Longest Processing Time (LPT) First
➢ Run the greedy algorithm but consider jobs in the 

decreasing order of their processing time

➢ Suppose 𝑡1 ≥ 𝑡2 ≥ ⋯ ≥ 𝑡𝑛

• Fact 4: If there are more than 𝑚 jobs, 𝐿∗ ≥ 2 ⋅ 𝑡𝑚+1

➢ Consider the first 𝑚 + 1 jobs

➢ All of them require processing time at least 𝑡𝑚+1

➢ By pigeonhole principle, in the optimal solution, at least 
two of them end up on the same machine



Makespan
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• Theorem
➢ Greedy with longest processing time first gives 3/2-

approximation

• Proof:
➢ Similar to the proof for arbitrary ordering

➢ Consider bottleneck machine 𝑖 and job 𝑗∗ that was last 
scheduled on this machine by greedy

➢ Case 1: Machine 𝑖 has only one job 𝑗∗

o By Fact 3, greedy is optimal in this case (i.e. 1-approximation)



Makespan
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• Theorem
➢ Greedy with longest processing time first gives 3/2-

approximation

• Proof:
➢ Similar to the proof for arbitrary ordering

➢ Consider bottleneck machine 𝑖 and job 𝑗∗ that was last 
scheduled on this machine by greedy

➢ Case 2: Machine 𝑖 has at least two jobs
o Job 𝑗∗ must have 𝑡𝑗∗ ≤ 𝑡𝑚+1

o As before, 𝐿 = 𝐿𝑖 = 𝐿𝑖 − 𝑡𝑗∗ + 𝑡𝑗∗ ≤ 1.5 𝐿∗

Same as before ≤ 𝐿∗ ≤ 𝐿∗/2 𝑡𝑗∗ ≤ 𝑡𝑚+1 and Fact 4



Makespan
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• Theorem
➢ Greedy with LPT rule gives 3/2-approximation

➢ Is our analysis tight? No!

• Theorem [Graham 1966]
➢ Greedy with LPT rule gives 4/3-approximation

➢ Is Graham’s 4/3 approximation tight?
o Essentially. 

o In the upcoming example, greedy is only as bad as 
4

3
−

1

3𝑚

o But Graham actually proves 
4

3
−

1

3𝑚
upper bound. So this is exactly 

tight.



Makespan
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• Theorem
➢ Greedy with LPT rule gives 3/2-approximation

➢ Is our analysis tight? No!

• Theorem [Graham 1966]
➢ Greedy with LPT rule gives 4/3-approximation

➢ Tight example:
o 2 jobs of lengths 𝑚,𝑚 + 1,… , 2𝑚 − 1, one more job of length 𝑚

o Greedy-LPT has makespan 4𝑚 − 1 (verify!)

o OPT has makespan 3𝑚 (verify!)

o Thus, approximation ratio is at least as bad as 
4𝑚−1

3𝑚
=

4

3
−

1

3𝑚
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Unweighted Vertex Cover



Unweighted Vertex Cover
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• Problem
➢ Input: Undirected graph 𝐺 = (𝑉, 𝐸)

➢ Output: Vertex cover 𝑆 of minimum cardinality

➢ Recall: 𝑆 is vertex cover if every edge has at least one 
endpoint in 𝑆

➢ We already saw that this problem is NP-hard

• Q: What would be a good greedy algorithm for this 
problem?



Unweighted Vertex Cover
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• Greedy edge-selection algorithm:
➢ Start with 𝑆 = ∅

➢ While there exists an edge whose both endpoints are not 
in 𝑆, add both its endpoints to 𝑆

• Hmm…
➢ Why are we selecting edges rather than vertices?

➢ Why are we adding both endpoints? 

➢ We’ll see..



Unweighted Vertex Cover
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Unweighted Vertex Cover
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• Theorem:
➢ Greedy edge-selection algorithm for unweighted vertex 

cover gives 2-approximation.

• Question: 
➢ If 𝑆 is any vertex cover (containing 𝑆 vertices), 𝑀 is any 

matching (containing |𝑀| edges), then what is the 
relation between |𝑆| and 𝑀 ?

➢ Answer: 𝑆 ≥ |𝑀|.



Unweighted Vertex Cover
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• Theorem:
➢ Greedy edge-selection algorithm for unweighted vertex 

cover gives 2-approximation.

• Proof:
➢ Let 𝑆∗ = min vertex cover, 𝑆 = solution returned by greedy

➢ By design, 𝑆 = 2 ⋅ |𝑀|

➢ Because 𝑀 is a matching, 𝑆∗ ≥ |𝑀| (By last slide)

➢ Hence, 𝑆 ≤ 2|𝑆∗| ∎



Unweighted Vertex Cover
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• Theorem:
➢ Greedy edge-selection algorithm for unweighted vertex 

cover gives 2-approximation.

• Corollary: 
➢ If 𝑀∗ is maximum matching, then greedy finds matching 

𝑀 with 𝑀 ≥
1

2
𝑀∗

• Proof:

➢ By design, 𝑀 =
1

2
|𝑆|

➢ 𝑆 ≥ 𝑀∗ (Same reason again!)

➢ Hence, 𝑀 ≥
1

2
𝑀∗ ∎

This is a so-called maximal matching 
which cannot be extended



Unweighted Vertex Cover
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• What about a greedy vertex selection algorithm?
➢ Start with 𝑆 = ∅

➢ While 𝑆 is not a vertex cover:
o Choose a vertex 𝑣 which maximizes the number of uncovered 

edges incident on it

o Add 𝑣 to 𝑆

➢ Interestingly, this only gives log 𝑑max approximation, 
where 𝑑max is the maximum degree of any vertex
o But unlike the edge-selection version, this generalizes to set cover, 

and gives provably best possible approximation ratio for set cover 
in polynomial time (unless P=NP)



Unweighted Vertex Cover
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• Theorem [Dinur-Safra 2004]:
➢ Unless P = NP, there is no 𝜌-approximation polynomial-

time algorithm for unweighted vertex cover for any 𝜌 <
1.3606.

• Q: How can something like this be proven?
➢ We’ll see later. 

➢ Basically, reduce “solving a hard problem” (e.g. 3SAT) to 
“finding any good approximation of current problem”



Unweighted Vertex Cover
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• Theorem [Dinur-Safra 2004]:
➢ Unless P = NP, there is no 𝜌-approximation polynomial-

time algorithm for unweighted vertex cover for any 𝜌 <
1.3606.

• Q: How can something like this be proven?
➢ We’ll see later. 

➢ Basically, reduce “solving a hard problem” (e.g. 3SAT) to 
“finding any good approximation of current problem”
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Weighted Vertex Cover



Weighted Vertex Cover
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• Problem
➢ Input: Undirected graph 𝐺 = (𝑉, 𝐸), weights 𝑤 ∶ 𝑉 → 𝑅≥0
➢ Output: Vertex cover 𝑆 of minimum total weight

• The same greedy algorithm doesn’t work
➢ Gives arbitrarily bad approximation

➢ Obvious modification which try to take weights into 
account also don’t work

➢ Need another strategy…



ILP Formulation
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➢ For each vertex 𝑣, create a binary variable 𝑥𝑣 ∈ {0,1}
indicating whether vertex 𝑣 is chosen in the vertex cover 

➢ Then, computing min weight vertex cover is equivalent to 
solving the following integer linear program

min Σ𝑣 𝑤𝑣 ⋅ 𝑥𝑣

subject to

𝑥𝑢 + 𝑥𝑣 ≥ 1, ∀ 𝑢, 𝑣 ∈ 𝐸

𝑥𝑣 ∈ 0,1 , ∀𝑣 ∈ 𝑉



LP Relaxation
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• What if we solve this LP instead of the original ILP?

min Σ𝑣 𝑤𝑣 ⋅ 𝑥𝑣

subject to

𝑥𝑢 + 𝑥𝑣 ≥ 1, ∀ 𝑢, 𝑣 ∈ 𝐸

𝑥𝑣 ∈ 0,1 , ∀𝑣 ∈ 𝑉

min Σ𝑣 𝑤𝑣 ⋅ 𝑥𝑣

subject to

𝑥𝑢 + 𝑥𝑣 ≥ 1, ∀ 𝑢, 𝑣 ∈ 𝐸

𝑥𝑣 ≥ 0, ∀𝑣 ∈ 𝑉

ILP with binary variables LP with real variables



Rounding LP Solution
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• What if we solve this LP instead of the original ILP?
➢ Minimizes objective over a larger feasible space

➢ Optimal LP objective value ≤ optimal ILP objective value

➢ But optimal LP solution 𝑥∗ is not a binary vector
o Can we round it to some binary vector ො𝑥 without increasing the 

objective value too much?

min Σ𝑣 𝑤𝑣 ⋅ 𝑥𝑣
subject to
𝑥𝑢 + 𝑥𝑣 ≥ 1, ∀ 𝑢, 𝑣 ∈ 𝐸
𝑥𝑣 ≥ 0, ∀𝑣 ∈ 𝑉

LP with real variables

min Σ𝑣 𝑤𝑣 ⋅ 𝑥𝑣
subject to
𝑥𝑢 + 𝑥𝑣 ≥ 1, ∀ 𝑢, 𝑣 ∈ 𝐸
𝑥𝑣 ∈ 0,1 , ∀𝑣 ∈ 𝑉

ILP with binary variables
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• Consider LP optimal solution 𝑥∗

➢ Let ො𝑥𝑣 = 1 whenever 𝑥𝑣
∗ ≥ 0.5 and ො𝑥𝑣 = 0 otherwise

➢ Claim 1: ො𝑥 is a feasible solution of ILP (i.e. a vertex cover)
o For every edge 𝑢, 𝑣 ∈ 𝐸, at least one of 𝑥𝑢

∗ , 𝑥𝑣
∗ is at least 0.5

o So at least one of ො𝑥𝑢, ො𝑥𝑣 is 1 ∎

min Σ𝑣 𝑤𝑣 ⋅ 𝑥𝑣
subject to
𝑥𝑢 + 𝑥𝑣 ≥ 1, ∀ 𝑢, 𝑣 ∈ 𝐸
𝑥𝑣 ≥ 0, ∀𝑣 ∈ 𝑉

LP with real variables

min Σ𝑣 𝑤𝑣 ⋅ 𝑥𝑣
subject to
𝑥𝑢 + 𝑥𝑣 ≥ 1, ∀ 𝑢, 𝑣 ∈ 𝐸
𝑥𝑣 ∈ 0,1 , ∀𝑣 ∈ 𝑉

ILP with binary variables
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• Consider LP optimal solution 𝑥∗

➢ Let ො𝑥𝑣 = 1 whenever 𝑥𝑣
∗ ≥ 0.5 and ො𝑥𝑣 = 0 otherwise

➢ Claim 2: σ𝑣𝑤𝑣 ⋅ ො𝑥𝑣 ≤ 2 ∗ σ𝑣𝑤𝑣 ⋅ 𝑥𝑣
∗

o Weight only increases when some 𝑥𝑣
∗ ∈ [0.5,1] is shifted up to 1

o At most doubling the variable, so at least doubling the weight ∎

min Σ𝑣 𝑤𝑣 ⋅ 𝑥𝑣
subject to
𝑥𝑢 + 𝑥𝑣 ≥ 1, ∀ 𝑢, 𝑣 ∈ 𝐸
𝑥𝑣 ≥ 0, ∀𝑣 ∈ 𝑉

LP with real variables

min Σ𝑣 𝑤𝑣 ⋅ 𝑥𝑣
subject to
𝑥𝑢 + 𝑥𝑣 ≥ 1, ∀ 𝑢, 𝑣 ∈ 𝐸
𝑥𝑣 ∈ 0,1 , ∀𝑣 ∈ 𝑉

ILP with binary variables
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• Consider LP optimal solution 𝑥∗

➢ Let ො𝑥𝑣 = 1 whenever 𝑥𝑣
∗ ≥ 0.5 and ො𝑥𝑣 = 0 otherwise

➢ Hence, ො𝑥 is a vertex cover with weight at most 2 ∗ LP optimal 
value ≤ 2 ∗ ILP optimal value

min Σ𝑣 𝑤𝑣 ⋅ 𝑥𝑣
subject to
𝑥𝑢 + 𝑥𝑣 ≥ 1, ∀ 𝑢, 𝑣 ∈ 𝐸
𝑥𝑣 ≥ 0, ∀𝑣 ∈ 𝑉

LP with real variables

min Σ𝑣 𝑤𝑣 ⋅ 𝑥𝑣
subject to
𝑥𝑢 + 𝑥𝑣 ≥ 1, ∀ 𝑢, 𝑣 ∈ 𝐸
𝑥𝑣 ∈ 0,1 , ∀𝑣 ∈ 𝑉

ILP with binary variables



General LP Relaxation Strategy
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• Your NP-complete problem amounts to solving
➢ Max 𝑐𝑇𝑥 subject to 𝐴𝑥 ≤ 𝑏, 𝑥 ∈ ℕ (need not be binary)

• Instead, solve:
➢ Max 𝑐𝑇𝑥 subject to 𝐴𝑥 ≤ 𝑏, 𝑥 ∈ ℝ≥0 (LP relaxation)
o LP optimal value ≥ ILP optimal value (for maximization)

➢ 𝑥∗ = LP optimal solution

➢ Round 𝑥∗ to ො𝑥 such that 𝑐𝑇 ො𝑥 ≥
𝑐𝑇𝑥∗

𝜌
≥

ILP optimal value

𝜌

➢ Gives 𝜌-approximation
o Info: Best 𝜌 you can hope to get via this approach for a particular 

LP-ILP combination is called the integrality gap
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𝑘-Center Problem
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• Problem
➢ Input: Set of 𝑛 sites 𝑠1, … , 𝑠𝑛 and an integer 𝑘

➢ Output: Return a set 𝐶 of 𝑘 centers s.t. the maximum 
distance of any site from its nearest center is minimized
o Minimize 𝑟 𝐶 = max

𝑖∈ 1,…,𝑛
𝑑(𝑠𝑖 , 𝐶), where 𝑑 𝑠𝑖 , 𝐶 = min

𝑐∈𝐶
𝑑 𝑠𝑖 , 𝑐

➢ Sites are points in some metric space with distance 𝑑
satisfying:
o Identity: 𝑑 𝑥, 𝑥 = 0 for all 𝑥

o Symmetry: 𝑑 𝑥, 𝑦 = 𝑑(𝑦, 𝑥) for all 𝑥, 𝑦

o Triangle inequality: 𝑑 𝑥, 𝑧 ≤ 𝑑 𝑥, 𝑦 + 𝑑 𝑦, 𝑧 for all 𝑥, 𝑦, 𝑧
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• Problem
➢ Input: Set of 𝑛 sites 𝑠1, … , 𝑠𝑛 and an integer 𝑘

➢ Output: Return a set 𝐶 of 𝑘 centers s.t. the maximum 
distance of any site from its nearest center is minimized
o Minimize 𝑟 𝐶 = max

𝑖∈ 1,…,𝑛
𝑑(𝑠𝑖 , 𝐶), where 𝑑 𝑠𝑖 , 𝐶 = min

𝑐∈𝐶
𝑑 𝑠𝑖 , 𝑐

➢ Given 𝐶, note that 𝑟(𝐶) is the minimum radius 𝑟 such 
that if we draw a ball of radius 𝑟 around every center in 
𝐶, then the balls collectively cover all the sites
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𝑘-Center Problem

Objective value
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• Bad greedy (forget about running time)
➢ Put the first center at the optimal location for 𝑘 = 1

➢ Put every next center to reduce the objective value as 
much as possible given the centers already placed

• Arbitrarily bad approximation
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• Good greedy
➢ Put the first center at an arbitrary site

➢ Put every next center at a site whose distance to its 
nearest center is maximum among all sites

❑ Good Greedy

➢ 𝐶1 ← 𝑠1 (arbitrary site works)

➢ For 𝑗 = 2,… , 𝑘:

➢ 𝑠𝑖 ← argmax
𝑠

𝑑(𝑠, 𝐶𝑗−1); Δ𝑗 = 𝑑 𝑠𝑖 , 𝐶𝑗−1

➢ 𝐶j ← 𝐶j−1 ∪ 𝑠𝑖
➢ Return 𝐶k
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• For reasons that will soon become clear…
➢ Imagine that we run good greedy for 𝑘 + 1 steps rather 

than 𝑘 steps, and obtain 𝐶𝑘+1
➢ Note: The 𝑘 + 1 points in 𝐶𝑘+1 are sites

❑ Good Greedy

➢ 𝐶1 ← 𝑠1 (arbitrary site works)

➢ For 𝑗 = 2, … , 𝑘:

➢ 𝑠𝑖 ← argmax
𝑠

𝑑(𝑠, 𝐶𝑗−1); Δ𝑗 = 𝑑 𝑠𝑖 , 𝐶𝑗−1

➢ 𝐶j ← 𝐶j−1 ∪ 𝑠𝑖
➢ Return 𝐶k
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• Claim: 𝑑 𝑠𝑖 , 𝑠𝑗 ≥ 𝑟 𝐶𝑘 for all 𝑠𝑖 , 𝑠𝑗 ∈ 𝐶𝑘+1
➢ Proof: By construction of the algorithm.
o At each iteration 𝑗, we add a new center that is at least Δ𝑗 far from 

all previous centers

o Δ𝑗 decreases as 𝑗 increases (Why?)

o Δ𝑘+1 = 𝑟 𝐶𝑘

❑ Good Greedy

➢ 𝐶1 ← 𝑠1 (arbitrary site works)

➢ For 𝑗 = 2, … , 𝑘:

➢ 𝑠𝑖 ← argmax
𝑠

𝑑(𝑠, 𝐶𝑗−1); Δ𝑗 = 𝑑 𝑠𝑖 , 𝐶𝑗−1

➢ 𝐶j ← 𝐶j−1 ∪ 𝑠𝑖
➢ Return 𝐶k
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𝑘-Center Problem



373F19 - Nisarg Shah & Karan Singh 52

𝑘-Center Problem
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𝑘-Center Problem
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𝑘-Center Problem
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𝑘-Center Problem
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• Theorem: If 𝐶∗ is the optimal set of 𝑘 centers, then 
𝑟 𝐶𝑘 ≤ 2 ⋅ 𝑟 𝐶∗

• Proof:
➢ Draw a ball of radius 𝑟(𝐶∗) from each center in 𝐶∗

➢ By pigeonhole principle, at least two 𝑠𝑖 , 𝑠𝑗 ∈ 𝐶𝑘+1 must 
belong to the same ball (say centered at 𝑐∗ ∈ 𝐶∗)
o Hence, 𝑑 𝑠𝑖 , 𝑐

∗ , 𝑑 𝑠𝑗 , 𝑐
∗ ≤ 𝑟 𝐶∗

➢ But by our claim: 
𝑟 𝐶𝑘 ≤ 𝑑 𝑠𝑖 , 𝑠𝑗 ≤ 𝑑 𝑠𝑖 , 𝑐

∗ + 𝑑 𝑠𝑗 , 𝑐
∗ ≤ 2 ⋅ 𝑟 𝐶∗

➢ Done!



Hardness of Approximation
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• Best polynomial time approximation?
➢ Good greedy gives 2-approximation in polynomial time

➢ Can we get a better approximation?

• Theorem: Unless P=NP, there is no polynomial time 
algorithm which gives 𝜌-approximation for the 𝑘-
center problem for 𝜌 < 2.

• How do we prove this?
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• Theorem: Unless P=NP, there is no polynomial time 
algorithm which gives 𝜌-approximation for the 𝑘-
center problem for 𝜌 < 2.

• How do we prove this?

➢ Same reduction idea: 

o Show that if there is a polytime algorithm which gives 𝜌-apx to 𝑘-
center for some 𝜌 < 2, then using this algorithm, we can solve a 
known NP-complete problem in polytime.

o Hmm. Which NP-complete problem should we use?

• How about FriendlyRepresentatives problem from assignment 3?
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• Theorem: Unless P=NP, there is no polynomial time 
algorithm which gives 𝜌-approximation for the 𝑘-
center problem for 𝜌 < 2.

• Proof:
➢ Consider an instance of FriendlyRepresentatives
o Given a set of people 𝑁, a friendship relation 𝐹, and an integer 𝑚, 

we want to check if there exists a subset 𝑆 ⊆ 𝑁 of 𝑚 people such 
that every person not in 𝑆 is friends with someone in 𝑆.

o Denote this by (𝑁, 𝐹,𝑚)
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• Theorem: Unless P=NP, there is no polynomial time 
algorithm which gives 𝜌-approximation for the 𝑘-
center problem for 𝜌 < 2.

• Proof:
➢ Consider an instance (𝑁, 𝐹,𝑚) of FriendlyRepresentatives

➢ Create an instance of 𝑘-Center as follows
o Create a site 𝑠𝑖 for each person 𝑖 ∈ 𝑁

o Define 𝑑 𝑠𝑖 , 𝑠𝑗 = 1 if 𝑖, 𝑗 ∈ 𝐹 and 2 if 𝑖, 𝑗 ∉ 𝐹

• Check that this satisfies triangle inequality

o Set 𝑘 = 𝑚

o Note: There are no other points in this metric space, so you must 
place centers on sites.
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• Theorem: Unless P=NP, there is no polynomial time 
algorithm which gives 𝜌-approximation for the 𝑘-
center problem for 𝜌 < 2.

• Proof:
➢ 𝐶 is a set of friendly representatives if and only if 𝑟 𝐶 = 1
o Every center is obviously at distance 0 from itself

o Every non-center 𝑠𝑗 is at distance at most 1 from some 𝑠𝑖 ∈ 𝐶 if and 
only if every person not in 𝐶 is friends with someone in 𝐶

➢ There are only two possibilities:
o YES: There exists 𝐶 with 𝑟 𝐶 = 1

o NO: Every 𝐶 has 𝑟 𝐶 = 2
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• Theorem: Unless P=NP, there is no polynomial time 
algorithm which gives 𝜌-approximation for the 𝑘-
center problem for 𝜌 < 2.

• Proof:
➢ YES: There exists 𝐶 with 𝑟 𝐶 = 1
o Since our algorithm gives 𝜌-approximation with 𝜌 < 2, it must 

return a set 𝐶 with 𝑟 𝐶 < 2

o But 𝑟 𝐶 < 2 means that 𝑟 𝐶 = 1

o So the algorithm returns 𝐶 with 𝑟 𝐶 = 1

➢ NO: Our algorithm returns a 𝐶 with 𝑟 𝐶 = 2

➢ So checking 𝑟(𝐶) of the 𝐶 returned by algorithm allows 
solving FriendlyRepresentatives!
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Weighted Set Packing
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• Problem
➢ Input: A collection of sets 𝒮 = 𝑆1, … , 𝑆𝑛 with values 
𝑣1, … , 𝑣𝑛 ≥ 0. There are m set elements.

➢ Output: Pick disjoint sets with maximum total value, i.e. 
pick 𝑊 ⊆ {1,… , 𝑛} to maximize σ𝑖∈𝑊 𝑣𝑖 subject to the 
constraint that for all 𝑖, 𝑗 ∈ 𝑊, 𝑆𝑖 ∩ 𝑆𝑗 = ∅.

➢ This is known to be an NP-hard problem

➢ It is also known that for any constant 𝜖 > 0, you cannot 
get 𝑂 𝑚 Τ1 2−𝜖 approximation in polynomial time unless 
NP=ZPP (widely believed to be not true)
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• Sort the sets in some order, consider them one-by-
one, and take any set that you can along the way. 

• Greedy Algorithm:
➢ Sort the sets in a specific order.

➢ Relabel them as 1,2,… , 𝑛 in this order.

➢𝑊 ← ∅

➢ For 𝑖 = 1,… , 𝑛:
o If 𝑆𝑖 ∩ 𝑆𝑗 = ∅ for every 𝑗 ∈ 𝑊, then 𝑊 ←𝑊 ∪ {𝑖}

➢ Return 𝑊.
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• What order should we sort the sets by?

• We want to take sets with high values.
➢ 𝑣1 ≥ 𝑣2 ≥ ⋯ ≥ 𝑣𝑛? Only 𝑚-approximation 

• We don’t want to exhaust many items too soon.

➢

𝑣1

𝑆1
≥

𝑣2

𝑆2
≥ ⋯

𝑣𝑛

𝑆𝑛
?  Also 𝑚-approximation 

• 𝑚-approximation : 
𝑣1

𝑆1
≥

𝑣2

𝑆2
≥ ⋯

𝑣𝑛

𝑆𝑛
? 

[Lehmann et al. 2011]
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• Definitions
➢ 𝑂𝑃𝑇 = Some optimal solution
➢ 𝑊 = Solution returned by our greedy algorithm
➢ For 𝑖 ∈ 𝑊, 

𝑂𝑃𝑇𝑖 = 𝑗 ∈ 𝑂𝑃𝑇, 𝑗 ≥ 𝑖 ∶ 𝑆𝑖 ∩ 𝑆𝑗 ≠ ∅
OPTi has future j in OPT blocked for inclusion in greedy W because of choosing I (i is also in OPTi).

• Claim 1: 𝑂𝑃𝑇 ⊆ 𝑖∈𝑊𝑂𝑃𝑇𝑖ڂ
If j  from OPT is in W => j in OPTj, else j must be in some OPTi or the greedy algorithm would have chosen it.

• Claim 2: It is enough to show that ∀𝑖 ∈ 𝑊
𝑚 ⋅ 𝑣𝑖 ≥ Σ𝑗∈𝑂𝑃𝑇𝑖 𝑣𝑗

The value of greedy choice i is at least as good 1/ 𝑚 * the values from the optimal solution it blocks, 
and all elements of OPT will be accounted for by the union of OPTi’s.

• Observation: For 𝑗 ∈ 𝑂𝑃𝑇𝑖, 𝑣𝑗 ≤ 𝑣𝑖 ⋅
𝑆𝑗

𝑆𝑖
Greedy ordering.
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• Summing over all 𝑗 ∈ 𝑂𝑃𝑇𝑖 : 

Σ𝑗∈𝑂𝑃𝑇𝑖 𝑣𝑗 ≤
𝑣𝑖

𝑆𝑖
⋅ Σ𝑗∈𝑂𝑃𝑇𝑖 𝑆𝑗

• Using Cauchy-Schwarz (Σ𝑖 𝑥𝑖𝑦𝑖 ≤ Σ𝑖 𝑥𝑖
2 ⋅ Σ𝑖 𝑦𝑖

2)

Σ𝑗∈𝑂𝑃𝑇𝑖 1. 𝑆𝑗 ≤ 𝑂𝑃𝑇𝑖 ⋅ Σ𝑗∈𝑂𝑃𝑇𝑖 𝑆𝑗

≤ 𝑆𝑖 ⋅ 𝑚
Every element in Si can block at most one set in OPT => OPTi <= Si. 

Also note every Sj in OPTi is disjoint because it belongs to OPT. so the sum of these Sj’s is at most m.
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Local Search Paradigm
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• A heuristic paradigm for solving complex problems
➢ Sometimes it might provably return an optimal solution

➢ But even if not, it might give a good approximation

• Idea:
➢ Start with some solution 𝑆

➢ While there is a “better” solution 𝑆′ in the local neighborhood of 𝑆

➢ Switch to 𝑆’

• Need to define what is “better” and what is a “local 
neighborhood”
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• Sometimes local search provably returns an 
optimal solution

• We already saw such an example: network flow
➢ Start with zero flow

➢ “Local neighborhood”
o Set of all flows which can be obtained by augmenting the current 

flow along a path in the residual graph

➢ “Better”
o Higher flow value
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• But sometimes it doesn’t return an optimal 
solution, and “gets stuck” in a local maxima



Local Search

373F19 - Nisarg Shah & Karan Singh 73

• In that case, we want to bound the ratio between 
the optimal solution and the worst solution local 
search might return

Worst 
ratio
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Max-Cut
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• Problem
➢ Input: An undirected graph 𝐺 = (𝑉, 𝐸)

➢ Output: A partition (𝐴, 𝐵) of 𝑉 that maximizes the 
number of edges going across the cut, i.e., maximizes |𝐸′|
where 𝐸′ = 𝑢, 𝑣 ∈ 𝐸 𝑢 ∈ 𝐴, 𝑣 ∈ 𝐵}

➢ This is also known to be an NP-hard problem

➢ What is a natural local search algorithm for this problem?
o Given a current partition, what small change can you do to 

improve the objective value?
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• Local Search
➢ Initialize (𝐴, 𝐵) arbitrarily.

➢ While there is a vertex 𝑢 such that moving 𝑢 to the other 
side improves the objective value:
o Move 𝑢 to the other side. 

➢ When does moving 𝑢, say from 𝐴 to 𝐵, improve the 
objective value?
o When 𝑢 has more incident edges going within the cut than across 

the cut, i.e., when 𝑢, 𝑣 ∈ 𝐸 𝑣 ∈ 𝐴 > 𝑢, 𝑣 ∈ 𝐸 𝑣 ∈ 𝐵
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• Local Search
➢ Initialize (𝐴, 𝐵) arbitrarily.

➢ While there is a vertex 𝑢 such that moving 𝑢 to the other 
side improves the objective value:
o Move 𝑢 to the other side. 

➢ Why does the algorithm stop?
o Every iteration increases the number of edges across the cut by at 

least 1, so the algorithm must stop in at most |𝐸| iterations
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• Local Search
➢ Initialize (𝐴, 𝐵) arbitrarily.

➢ While there is a vertex 𝑢 such that moving 𝑢 to the other 
side improves the objective value:
o Move 𝑢 to the other side. 

➢ Approximation ratio?
o At the end, every vertex has at least as many edges going across 

the cut as within the cut

o Hence, at least half of all edges must be going across the cut

• Exercise: Prove this formally by writing equations.
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• Variant
➢ Now we’re given integral edge weights 𝑤:𝐸 → ℕ

➢ The goal is to maximize the total weight of edges going 
across the cut

• Algorithm
➢ The same algorithm works, but now we move 𝑢 to the 

other side if the total weight of its incident edges going 
within the cut is greater than the total weight of its 
incident edges going across the cut
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• Number of iterations?
➢ In the unweighted case, we said that the number of 

edges going across the cut must increase by at least 1, so 
it takes at most |𝐸| iterations

➢ In the weighted case, the total weight of edges going 
across the cut increases by at least 1, but this could take 
up to σ𝑒∈𝐸𝑤𝑒 iterations, which is exponential in the input 
length
o There are examples where the local search actually takes 

exponentially many steps
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• Number of iterations?
➢ But we can find a 2 + 𝜖 approximation in time polynomial 

in the input length and 
1

𝜖

➢ The idea is to only move vertices when it “sufficiently 
improves” the objective value
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• Better approximations?

➢ Theorem [Goemans-Williamson]: There exists a 
polynomial time algorithm for max-cut with 

approximation ratio  
2

𝜋
⋅ min
0≤𝜃≤𝜋

𝜃

1−cos 𝜃
≈ 0.878

o Uses “semidefinite programming” and “randomized rounding”

o Note: The literature from here on uses approximation ratios ≤ 1, 
so we will follow that convention in the remaining slides.

➢ If the unique games conjecture is true, then this is tight
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Exact Max-𝑘-SAT
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• Problem
➢ Input: An exact 𝑘-SAT formula 𝜑 = 𝐶1 ∧ 𝐶2 ∧ ⋯∧ 𝐶𝑚,

where each clause 𝐶𝑖 has exactly 𝑘 literals, and a weight 
𝑤𝑖 ≥ 0 of each clause 𝐶𝑖

➢ Output: A truth assignment 𝜏 maximizing the number (or 
total weight) of clauses satisfied under  𝜏

➢ Let us denote by 𝑊(𝜏) the total weight of clauses 
satisfied under 𝜏

➢ What is a good definition of “local neighborhood”?
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• Local neighborhood:
➢ 𝑁𝑑(𝜏) = set of all truth assignments which can be 

obtained by changing the value of at most 𝑑 variables in 𝜏

• Theorem: The local search with 𝑑 = 1 gives a Τ2 3
approximation to Exact Max-2-SAT.
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• Theorem: The local search with 𝑑 = 1 gives a Τ2 3
approximation to Exact Max-2-SAT.

• Proof:
➢ Let 𝜏 be a local optimum
o 𝑆0 = set of clauses not satisfied under 𝜏

o 𝑆1 = set of clauses from which exactly one literal is true under 𝜏

o 𝑆2 = set of clauses from which both literals are true under 𝜏

o 𝑊 𝑆0 ,𝑊 𝑆1 ,𝑊 𝑆2 be the corresponding total weights

o Goal: 𝑊 𝑆1 +𝑊 𝑆2 ≥ Τ2 3 ⋅ 𝑊 𝑆0 +𝑊 𝑆1 +𝑊 𝑆2

• Equivalently, 𝑊 𝑆0 ≤ Τ1 3 ⋅ 𝑊 𝑆0 +𝑊 𝑆1 +𝑊 𝑆2
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• Theorem: The local search with 𝑑 = 1 gives a Τ2 3
approximation to Exact Max-2-SAT.

• Proof:
➢ Let 𝜏 be a local optimum
o 𝑆0 = set of clauses not satisfied under 𝜏

o 𝑆1 = set of clauses from which exactly one literal is true under 𝜏

o 𝑆2 = set of clauses from which both literals are true under 𝜏

o 𝑊 𝑆0 ,𝑊 𝑆1 ,𝑊 𝑆2 be the corresponding total weights

o Goal: 𝑊 𝑆1 +𝑊 𝑆2 ≥ Τ2 3 ⋅ 𝑊 𝑆0 +𝑊 𝑆1 +𝑊 𝑆2

• Equivalently, 𝑊 𝑆0 ≤ Τ1 3 ⋅ 𝑊 𝑆0 +𝑊 𝑆1 +𝑊 𝑆2
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• Theorem: The local search with 𝑑 = 1 gives a Τ2 3
approximation to Exact Max-2-SAT.

• Proof:
➢ Clause 𝐶 involves variable 𝑗 if it contains 𝑥𝑗 or ഥ𝑥𝑗
o 𝐴𝑗 = set of clauses in 𝑆0 involving variable 𝑗

o 𝐵𝑗 = set of clauses in 𝑆1 involving variable 𝑗 such that it is the 
literal of variable 𝑗 that is true under 𝜏

o 𝐶𝑗 = set of clauses in 𝑆2 involving variable 𝑗

o 𝑊 𝐴𝑗 ,𝑊 𝐵𝑗 ,𝑊 𝐶𝑗 be the corresponding total weights
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• Theorem: The local search with 𝑑 = 1 gives a Τ2 3
approximation to Exact Max-2-SAT.

• Proof:
➢ 2𝑊 𝑆0 = σ𝑗𝑊 𝐴𝑗
o Every clause in 𝑆0 is counted twice on the RHS

➢𝑊 𝑆1 = σ𝑗𝑊 𝐵𝑗
o Every clause in 𝑆1 is only counted once on the RHS for the variable 

whose literal was true under 𝜏

➢ For each 𝑗 : 𝑊 𝐴𝑗 ≤ 𝑊 𝐵𝑗
o From local optimality of 𝜏, since otherwise flipping the truth value 

of variable 𝑗 would have increased the total weight
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• Theorem: The local search with 𝑑 = 1 gives a Τ2 3
approximation to Exact Max-2-SAT.

• Proof:
➢ 2𝑊 𝑆0 ≤ 𝑊 𝑆1
o Summing the third equation on the last slide over all 𝑗, and then 

using the first two equations on the last slide

➢ Hence:
o 3𝑊 𝑆0 ≤ 𝑊 𝑆0 +𝑊 𝑆1 ≤ 𝑊 𝑆0 +𝑊 𝑆1 +𝑊 𝑆2
o Precisely the condition we wanted to prove…
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• Higher 𝑑? 
➢ Searches over a larger neighborhood

➢ May get a better approximation ratio, but increases the 
running time as we now need to check if any neighbor in 
a large neighborhood provides a better objective

➢ The bound is still 2/3 for 𝑑 = 𝑜(𝑛)

➢ It is no better than 4/5 for 𝑑 < Τ𝑛 2

➢ It can be shown that with 𝑑 = Τ𝑛 2, the algorithm always 
terminates at an optimal solution
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• Better approximation?
➢ We can learn something from our proof

➢ Note that we did not use anything about 𝑊 𝑆2 , and 
simply added it at the end

➢ If we could also guarantee that 𝑊 𝑆0 ≤ 𝑊 𝑆2 …
o Then we would get 4𝑊 𝑆0 ≤ 𝑊 𝑆0 +𝑊 𝑆1 +𝑊 𝑆2 , which 

would give a Τ3 4 approximation

➢ Result (without proof): This can be done by including just 
one more assignment in the neighborhood: 𝑁 𝜏 =
𝑁1 𝜏 ∪ 𝜏𝑐 , where 𝜏𝑐 = complement of 𝜏
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• What if we do not want to modify the 
neighborhood?
➢ A slightly different tweak also works

➢ We want to weigh clauses in 𝑊(𝑆2) more because when 
we get a clause through 𝑆2, we get more robustness (it 
can withstand changes in single variables)

• Modified local search:
➢ Start at arbitrary 𝜏

➢ While there is an assignment in 𝑁1 𝜏 that improves the 
potential 1.5 𝑊 𝑆1 + 2𝑊(𝑆2)
o Switch to that assignment
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• Modified local search:
➢ Start at arbitrary 𝜏

➢ While there is an assignment in 𝑁1 𝜏 that improves the 
potential 1.5 𝑊 𝑆1 + 2𝑊(𝑆2)
o Switch to that assignment

• Note:
➢ This is the first time that we’re using a definition of 

“better” in local search paradigm that does not quite 
align with the ultimate objective we want to maximize

➢ This is called “non-oblivious local search”
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• Modified local search:
➢ Start at arbitrary 𝜏

➢ While there is an assignment in 𝑁1 𝜏 that improves the 
potential 1.5 𝑊 𝑆1 + 2𝑊(𝑆2)
o Switch to that assignment

• Result (without proof):
➢ Modified local search gives Τ3 4-approximation to Exact 

Max-2-SAT
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• More generally:
➢ The same technique works for higher values of 𝑘

➢ Gives 
2𝑘−1

2𝑘
approximation for Exact Max-𝑘-SAT

o We’ll see how to achieve the same approximation using a much 
simpler technique

• Note: This is Τ7 8 for Exact Max-3-SAT
➢ Theorem [Håstad]: Achieving Τ7 8+ 𝜖 approximation 

where 𝜖 > 0 is NP-hard.
o Uses PCP (probabilistically checkable proofs) technique


