CSC373

Weeks 9 & 10: Approximation Algorithms & Local Search

NP-Completeness

- We saw that many problems are NP-complete
 - > Unlikely to have polynomial time algorithms to solve them
 - > What can we do?

One idea:

- > Instead of solving them exactly, solve them approximately
- Sometimes, we might want to use an approximation algorithm even when we can compute an exact solution in polynomial time (WHY?)

Approximation Algorithms

- We'll focus on optimization problems
 - \triangleright Decision problem: "Is there...where... $\ge k$?"
 - \circ E.g. "Is there an assignment which satisfies at least k clauses of a given formula ϕ ?"
 - > Optimization problem: "Find...which maximizes..."
 - \circ E.g. "Find an assignment which satisfies the maximum possible number of clauses from a given formula φ ."
 - > Recall that if the decision problem is hard, then the optimization problem is hard too

Approximation Algorithms

- There is a function Profit we want to maximize or a function Cost we want to minimize
- Given input instance *I*...
 - \triangleright Our algorithm returns a solution ALG(I)
 - > An optimal solution maximizing Profit or minimizing Cost is OPT(I)
 - \triangleright Then, the approximation ratio of ALG on instance I is

$$\frac{Profit(OPT(I))}{Profit(ALG(I))}$$
 or $\frac{Cost(ALG(I))}{Cost(OPT(I))}$

Approximation Algorithms

• Approximation ratio of ALG on instance I is

$$\frac{Profit(OPT(I))}{Profit(ALG(I))}$$
 or $\frac{Cost(ALG(I))}{Cost(OPT(I))}$

- \gt Note: These are defined to be ≥ 1 in each case.
 - 2-approximation = half the optimal profit / twice the optimal cost
- *ALG* has worst-case *c*-approximation if for each instance *I*...

$$Profit(ALG(I)) \ge \frac{1}{c} \cdot Profit(OPT(I)) \text{ or}$$

$$Cost(ALG(I)) \le c \cdot Cost(OPT(I))$$

Note

- By default, when we say c-approximation, we will always mean c-approximation in the worst case
 - Also interesting to look at approximation in the average case when your inputs are drawn from some distribution
- Our use of approximation ratios ≥ 1 is just a convention
 - > Some books and papers use approximation ratios ≤ 1 convention
 - ➤ E.g. they might say 0.5-approximation to mean that the algorithm generates at least half the optimal profit or has at most twice the optimal cost

PTAS and FPTAS

- Arbitrarily close to 1 approximations
- FPTAS: Fully polynomial time approximation scheme
 - > For every $\epsilon>0$, there is a $(1+\epsilon)$ -approximation algorithm that runs in time $poly(n,1/\epsilon)$ on instances of size n
- PTAS: Polynomial time approximation scheme
 - > For every $\epsilon > 0$, there is a $(1 + \epsilon)$ -approximation algorithm that runs in time poly(n) on instances of size n
 - \circ Note: Could have exponential dependence on $1/\epsilon$

Approximation Landscape

- > An FPTAS
 - E.g. the knapsack problem
- > A PTAS but no FPTAS
 - E.g. the makespan problem (we'll see)
- $\succ c$ -approximation for a constant c>1 but no PTAS
 - E.g. vertex cover and JISP (we'll see)
- $> \Theta(\log n)$ -approximation but no constant approximation
 - E.g. set cover
- \gt No $n^{1-\epsilon}$ -approximation for any $\epsilon>0$
 - E.g. graph coloring and maximum independent set

Impossibility of better approximations assuming widely held beliefs like $P \neq NP$

n = parameter of problem at hand

Makespan Minimization

Problem

- ightharpoonup Input: m identical machines, n jobs, job j requires processing time t_i
- > Output: Assign jobs to machines to minimize makespan
- \triangleright Let S[i] =set of jobs assigned to machine i in a solution
- > Constraints:
 - Each job must run contiguously on one machine
 - Each machine can process at most one job at a time
- > Load on machine $i: L_i = \sum_{j \in S[i]} t_j$
- ightharpoonup Goal: minimize makespan $L = \max_i L_i$

• Even the special case of m=2 machines is already NP-hard by reduction from PARTITION

PARTITION

- ▶ Input: Set S containing n integers
- ➤ Output: Can we partition S into two sets with equal sum (i.e. $S = S_1 \cap S_2$, $S_1 \cap S_2 = \emptyset$, and $\sum_{w \in S_1} w = \sum_{w \in S_2} w$)?

> Exercise!

- Show that PARTITION is NP-complete by reduction from SUBSET-SUM
- Show that if there is a polynomial-time algorithm for solving MAKESPAN with 2 machines, then you can solve PARTITION in polynomial-time

- Greedy list-scheduling algorithm
 - > Consider the *n* jobs in some "nice" sorted order.
 - > Assign each job *j* to a machine with the smallest load so far
- Note
 - > Implementable in $O(n \log m)$ using priority queue
- Back to greedy...?
 - > But this time, we can't hope that greedy will be optimal
 - > We can still hope that it is approximately optimal
- Which order?

- Theorem [Graham 1966]
 - > Regardless of the order, greedy gives a 2-approximation.
 - > This was the first worst-case approximation analysis
- Let optimal makespan = L^*

• To show that makespan under greedy solution is not much worse than L^{*} , we need to show that L^{*} isn't too low

- Theorem [Graham 1966]
 - > Regardless of the order, greedy gives a 2-approximation.
- Fact 1: $L^* \ge \max_j t_j$
 - > Some machine must process job with highest processing time
- Fact 2: $L^* \ge \frac{1}{m} \sum_j t_j$
 - \succ Total processing time is $\sum_j t_j$
 - > At least one machine must do at least 1/m of this work (pigeonhole principle)

Theorem [Graham 1966]

> Regardless of the order, greedy gives a 2-approximation.

• Proof:

- \triangleright Suppose machine *i* is bottleneck under greedy (so load = L_i)
- \triangleright Let j^* = last job scheduled on i by greedy
- \triangleright Right before j^* was assigned to i, i had the smallest load
 - Load of other machines could have only increased from then

$$0 L_i - t_{j^*} \leq L_k, \forall k$$

> Average over all $k: L_i - t_{j^*} \leq \frac{1}{m} \sum_j t_i$

Fact 1

$$> L_i \le t_{j^*} + \frac{1}{m} \sum_j t_j \le L^* + L^* = 2L^*$$

Fact 2

- Theorem [Graham 1966]
 - > Regardless of the order, greedy gives a 2-approximation.
- Is our analysis tight?
 - > Essentially.
 - > There is an example where greedy does perform this badly.
 - Note: In the upcoming example, greedy is only as bad as 2-1/m, but you can also improve earlier analysis to show that greedy always gives 2-1/m approximation.
 - > So 2 1/m is exactly tight.

- Theorem [Graham 1966]
 - > Regardless of the order, greedy gives a 2-approximation.
- Is our analysis tight?
 - > Example:
 - m(m-1) jobs of length 1, followed by one job of length m
 - Greedy evenly distributes unit length jobs on all m machines, and assigning the last heavy job makes makespan m-1+m=2m-1
 - \circ Optimal makespan is m by evenly distributing unit length jobs among m-1 machines and putting the single heavy job on the remaining
 - Idea: It seems keeping heavy jobs at the end is bad. So just start with them first!

- Longest Processing Time (LPT) First
 - > Run the greedy algorithm but consider jobs in the decreasing order of their processing time
- Need more facts about what the optimal cannot beat
- Fact 3: If the bottleneck machine has only one job, then the solution is optimal.
 - The optimal solution must schedule that job on some machine

- Longest Processing Time (LPT) First
 - Run the greedy algorithm but consider jobs in the decreasing order of their processing time
 - > Suppose $t_1 \ge t_2 \ge \cdots \ge t_n$
- Fact 4: If there are more than m jobs, $L^* \geq 2 \cdot t_{m+1}$
 - \triangleright Consider the first m+1 jobs
 - \triangleright All of them require processing time at least t_{m+1}
 - > By pigeonhole principle, in the optimal solution, at least two of them end up on the same machine

Theorem

Greedy with longest processing time first gives 3/2approximation

Proof:

- > Similar to the proof for arbitrary ordering
- \triangleright Consider bottleneck machine i and job j^* that was last scheduled on this machine by greedy
- \triangleright Case 1: Machine i has only one job j^*
 - \circ By Fact 3, greedy is optimal in this case (i.e. 1-approximation)

Theorem

Greedy with longest processing time first gives 3/2approximation

Proof:

- > Similar to the proof for arbitrary ordering
- \triangleright Consider bottleneck machine i and job j^* that was last scheduled on this machine by greedy
- > Case 2: Machine *i* has at least two jobs
 - Job j^* must have $t_{j^*} \le t_{m+1}$
 - o As before, $L = L_i = (L_i t_{j^*}) + t_{j^*} \le 1.5 L^*$

Same as before

$$- \le L^* \le L^*/2$$

 $t_{i^*} \leq t_{m+1}$ and Fact 4

Theorem

- > Greedy with LPT rule gives 3/2-approximation
- Is our analysis tight? No!

Theorem [Graham 1966]

- > Greedy with LPT rule gives 4/3-approximation
- > Is Graham's 4/3 approximation tight?
 - Essentially.
 - \circ In the upcoming example, greedy is only as bad as $\frac{4}{3} \frac{1}{3m}$
 - \circ But Graham actually proves $\frac{4}{3} \frac{1}{3m}$ upper bound. So this is exactly tight.

Theorem

- > Greedy with LPT rule gives 3/2-approximation
- Is our analysis tight? No!

Theorem [Graham 1966]

- > Greedy with LPT rule gives 4/3-approximation
- Tight example:
 - \circ 2 jobs of lengths m, m + 1, ..., 2m 1, one more job of length m
 - \circ Greedy-LPT has makespan 4m-1 (verify!)
 - \circ OPT has makespan 3m (verify!)
 - \circ Thus, approximation ratio is at least as bad as $\frac{4m-1}{3m} = \frac{4}{3} \frac{1}{3m}$

- Problem
 - ▶ Input: Undirected graph G = (V, E)
 - > Output: Vertex cover S of minimum cardinality
 - > Recall: S is vertex cover if every edge has at least one endpoint in S
 - > We already saw that this problem is NP-hard
- Q: What would be a good greedy algorithm for this problem?

- Greedy edge-selection algorithm:
 - \gt Start with $S = \emptyset$
 - While there exists an edge whose both endpoints are not in S, add both its endpoints to S
- Hmm...
 - Why are we selecting edges rather than vertices?
 - > Why are we adding both endpoints?
 - > We'll see..

Greedy-Vertex-Cover(G)

$$S \leftarrow \emptyset$$
.

$$E' \leftarrow E$$
.

WHILE
$$(E' \neq \emptyset)$$

every vertex cover must take at least one of these; we take both

Let $(u, v) \in E'$ be an arbitrary edge.

$$M \leftarrow M \cup \{(u, v)\}. \leftarrow M$$
 is a matching

$$S \leftarrow S \cup \{u\} \cup \{v\}. \leftarrow$$

Delete from E' all edges incident to either u or v.

RETURN S.

• Theorem:

> Greedy edge-selection algorithm for unweighted vertex cover gives 2-approximation.

• Question:

- > If S is any vertex cover (containing |S| vertices), M is any matching (containing |M| edges), then what is the relation between |S| and |M|?
- \triangleright Answer: $|S| \ge |M|$.

• Theorem:

> Greedy edge-selection algorithm for unweighted vertex cover gives 2-approximation.

Proof:

- \triangleright Let S^* = min vertex cover, S = solution returned by greedy
- \rightarrow By design, $|S| = 2 \cdot |M|$
- \triangleright Because M is a matching, $|S^*| \ge |M|$ (By last slide)
- \rightarrow Hence, $|S| \leq 2|S^*| \blacksquare$

• Theorem:

> Greedy edge-selection algorithm for unweighted vertex cover gives 2-approximation.

Corollary:

> If M^* is maximum matching, then greedy finds matching M with $|M| \ge \frac{1}{2} |M^*|$ This is a so-called *maximal* matching

Proof:

- > By design, $|M| = \frac{1}{2}|S|$
- $> |S| \ge |M^*|$ (Same reason again!)
- > Hence, $|M| \ge \frac{1}{2} |M^*|$ ■

which cannot be extended

- What about a greedy vertex selection algorithm?
 - \triangleright Start with $S = \emptyset$
 - > While S is not a vertex cover:
 - \circ Choose a vertex v which maximizes the number of uncovered edges incident on it
 - \circ Add v to S
 - > Interestingly, this only gives $\log d_{\max}$ approximation, where d_{\max} is the maximum degree of any vertex
 - But unlike the edge-selection version, this generalizes to set cover, and gives provably best possible approximation ratio for set cover in polynomial time (unless P=NP)

- Theorem [Dinur-Safra 2004]:
 - \triangleright Unless P = NP, there is no ρ -approximation polynomial-time algorithm for unweighted vertex cover for any ρ < 1.3606.

On the Hardness of Approximating Minimum Vertex Cover

Irit Dinur* Samuel Safra†
May 26, 2004

Abstract

We prove the Minimum Vertex Cover problem to be NP-hard to approximate to within a factor of 1.3606, extending on previous PCP and hardness of approximation technique. To that end, one needs to develop a new proof framework, and borrow and extend ideas from several fields.

- Theorem [Dinur-Safra 2004]:
 - > Unless P = NP, there is no ρ -approximation polynomial-time algorithm for unweighted vertex cover for any ρ < 1.3606.
- Q: How can something like this be proven?
 - > We'll see later.
 - > Basically, reduce "solving a hard problem" (e.g. 3SAT) to "finding any good approximation of current problem"

- Problem
 - ▶ Input: Undirected graph G = (V, E), weights $w : V \to R_{\geq 0}$
 - > Output: Vertex cover S of minimum total weight
- The same greedy algorithm doesn't work
 - > Gives arbitrarily bad approximation
 - Obvious modification which try to take weights into account also don't work
 - Need another strategy...

ILP Formulation

- > For each vertex v, create a binary variable $x_v \in \{0,1\}$ indicating whether vertex v is chosen in the vertex cover
- > Then, computing min weight vertex cover is equivalent to solving the following integer linear program

$$\min \Sigma_v \ w_v \cdot x_v$$
 subject to
$$x_u + x_v \ge 1, \qquad \forall (u, v) \in E$$

$$x_v \in \{0,1\}, \qquad \forall v \in V$$

LP Relaxation

What if we solve this LP instead of the original ILP?

ILP with binary variables

$$\min \Sigma_v w_v \cdot x_v$$

subject to

$$x_u + x_v \ge 1$$
,

$$\forall (u, v) \in E$$

$$x_v \in \{0,1\},$$

$$\forall v \in V$$

LP with real variables

$$\min \Sigma_v w_v \cdot x_v$$

subject to

$$x_u + x_v \ge 1$$
,

$$\forall (u,v) \in E$$

$$x_v \geq 0$$
,

$$\forall v \in V$$

- What if we solve this LP instead of the original ILP?
 - > Minimizes objective over a larger feasible space
 - ➤ Optimal LP objective value ≤ optimal ILP objective value
 - \triangleright But optimal LP solution x^* is not a binary vector
 - \circ Can we round it to some binary vector \hat{x} without increasing the objective value too much?

ILP with binary variables

$$\begin{aligned} \min \Sigma_v \ w_v \cdot x_v \\ \text{subject to} \\ x_u + x_v &\geq 1, & \forall (u, v) \in E \\ x_v &\in \{0, 1\}, & \forall v \in V \end{aligned}$$

$$\min \Sigma_{v} w_{v} \cdot x_{v}$$
subject to
$$x_{u} + x_{v} \ge 1, \quad \forall (u, v) \in E$$

$$x_{v} \ge 0, \quad \forall v \in V$$

- Consider LP optimal solution x^*
 - \triangleright Let $\hat{x}_v = 1$ whenever $x_v^* \ge 0.5$ and $\hat{x}_v = 0$ otherwise
 - ightharpoonup Claim 1: \hat{x} is a feasible solution of ILP (i.e. a vertex cover)
 - o For every edge $(u, v) \in E$, at least one of $\{x_u^*, x_v^*\}$ is at least 0.5
 - So at least one of $\{\hat{x}_u, \hat{x}_v\}$ is 1 ■

ILP with binary variables

$$\min \Sigma_{v} \ w_{v} \cdot x_{v}$$
 subject to
$$x_{u} + x_{v} \ge 1, \quad \forall (u, v) \in E$$

$$x_{v} \in \{0,1\}, \quad \forall v \in V$$

$$\min \Sigma_{v} w_{v} \cdot x_{v}$$
subject to
$$x_{u} + x_{v} \ge 1, \quad \forall (u, v) \in E$$

$$x_{v} \ge 0, \quad \forall v \in V$$

- Consider LP optimal solution x^*
 - \triangleright Let $\hat{x}_v = 1$ whenever $x_v^* \ge 0.5$ and $\hat{x}_v = 0$ otherwise
 - ightharpoonup Claim 2: $\sum_{v} w_{v} \cdot \hat{x}_{v} \leq 2 * \sum_{v} w_{v} \cdot x_{v}^{*}$
 - \circ Weight only increases when some $x_v^* \in [0.5,1]$ is shifted up to 1
 - At most doubling the variable, so at least doubling the weight ■

ILP with binary variables

$$\begin{aligned} \min \Sigma_v \ w_v \cdot x_v \\ \text{subject to} \\ x_u + x_v &\geq 1, & \forall (u, v) \in E \\ x_v &\in \{0, 1\}, & \forall v \in V \end{aligned}$$

$$\min \Sigma_{v} w_{v} \cdot x_{v}$$
subject to
$$x_{u} + x_{v} \ge 1, \quad \forall (u, v) \in E$$

$$x_{v} \ge 0, \quad \forall v \in V$$

- Consider LP optimal solution x^*
 - \triangleright Let $\hat{x}_v = 1$ whenever $x_v^* \ge 0.5$ and $\hat{x}_v = 0$ otherwise
 - > Hence, \hat{x} is a vertex cover with weight at most 2 * LP optimal value $\leq 2 * ILP$ optimal value

ILP with binary variables

$$\begin{aligned} \min \Sigma_v \ w_v \cdot x_v \\ \text{subject to} \\ x_u + x_v &\geq 1, & \forall (u, v) \in E \\ x_v &\in \{0, 1\}, & \forall v \in V \end{aligned}$$

$$\min \Sigma_{v} w_{v} \cdot x_{v}$$
subject to
$$x_{u} + x_{v} \ge 1, \quad \forall (u, v) \in E$$

$$x_{v} \ge 0, \quad \forall v \in V$$

General LP Relaxation Strategy

- Your NP-complete problem amounts to solving
 - > Max $c^T x$ subject to $Ax \le b$, $x \in \mathbb{N}$ (need not be binary)

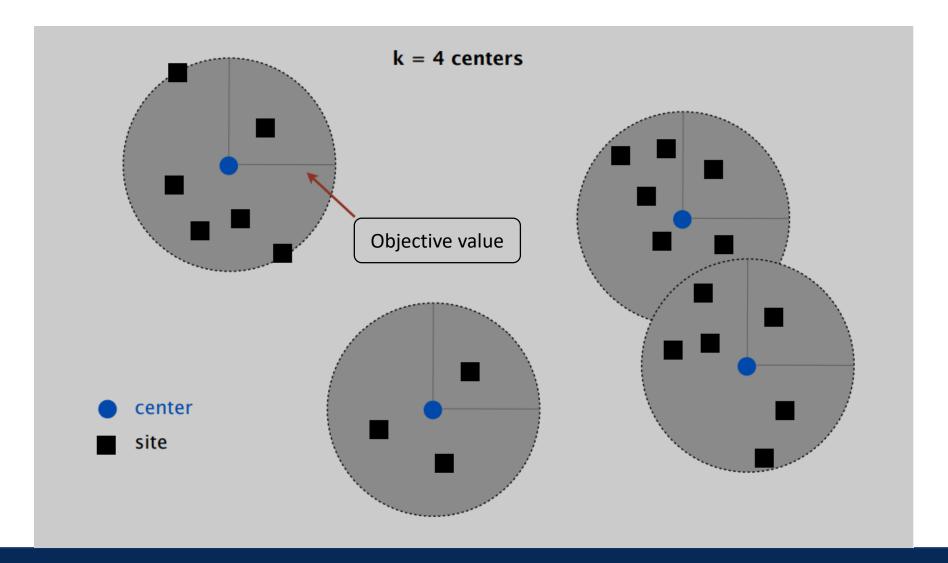
• Instead, solve:

- \triangleright Max $c^T x$ subject to $Ax \le b$, $x \in \mathbb{R}_{\ge 0}$ (LP relaxation)
 - \circ LP optimal value \geq ILP optimal value (for maximization)
- $\rightarrow x^*$ = LP optimal solution
- > Round x^* to \hat{x} such that $c^T \hat{x} \ge \frac{c^T x^*}{\rho} \ge \frac{\text{ILP optimal value}}{\rho}$
- \triangleright Gives ρ -approximation
 - \circ Info: Best ρ you can hope to get via this approach for a particular LP-ILP combination is called the *integrality gap*

- Problem
 - ▶ Input: Set of n sites $s_1, ..., s_n$ and an integer k
 - \triangleright Output: Return a set C of k centers s.t. the maximum distance of any site from its nearest center is minimized
 - Minimize $r(C) = \max_{i \in \{1,...,n\}} d(s_i, C)$, where $d(s_i, C) = \min_{c \in C} d(s_i, c)$
 - > Sites are points in some metric space with distance *d* satisfying:
 - o Identity: d(x,x) = 0 for all x
 - Symmetry: d(x, y) = d(y, x) for all x, y
 - Triangle inequality: $d(x,z) \le d(x,y) + d(y,z)$ for all x,y,z

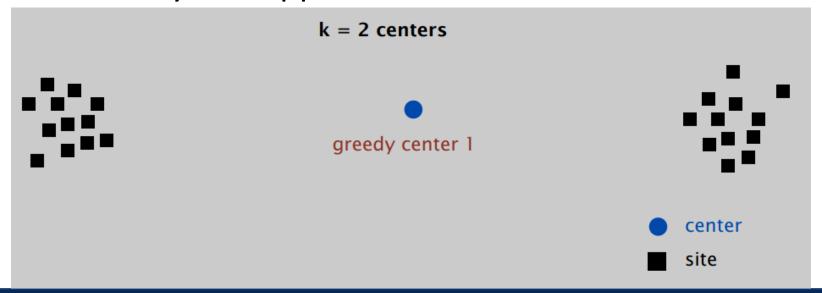
Problem

- ▶ Input: Set of n sites $s_1, ..., s_n$ and an integer k
- ightharpoonup Output: Return a set C of k centers s.t. the maximum distance of any site from its nearest center is minimized
 - Minimize $r(C) = \max_{i \in \{1,...,n\}} d(s_i, C)$, where $d(s_i, C) = \min_{c \in C} d(s_i, c)$
- \triangleright Given C, note that r(C) is the minimum radius r such that if we draw a ball of radius r around every center in C, then the balls collectively cover all the sites



Bad Greedy

- Bad greedy (forget about running time)
 - \triangleright Put the first center at the optimal location for k=1
 - > Put every next center to reduce the objective value as much as possible given the centers already placed
- Arbitrarily bad approximation



Good greedy

- > Put the first center at an arbitrary site
- Put every next center at a site whose distance to its nearest center is maximum among all sites

Good Greedy

- $\succ C_1 \leftarrow S_1$ (arbitrary site works)
- > For j = 2, ..., k:
 - $> s_i \leftarrow \operatorname{argmax}_{s} d(s, C_{j-1}); \Delta_j = d(s_i, C_{j-1})$
 - $\succ C_{j} \leftarrow C_{j-1} \cup \{s_i\}$
- \triangleright Return $C_{\mathbf{k}}$

```
Good Greedy

C_1 \leftarrow s_1 \qquad \text{(arbitrary site works)}
For j = 2, ..., k:
S_i \leftarrow \underset{s}{\text{argmax}} d(s, C_{j-1}); \Delta_j = d(s_i, C_{j-1})
C_j \leftarrow C_{j-1} \cup \{s_i\}
Return C_k
```

- For reasons that will soon become clear...
 - > Imagine that we run good greedy for k+1 steps rather than k steps, and obtain \mathcal{C}_{k+1}
 - Note: The k+1 points in C_{k+1} are sites

```
Good Greedy

> C_1 \leftarrow s_1 (arbitrary site works)

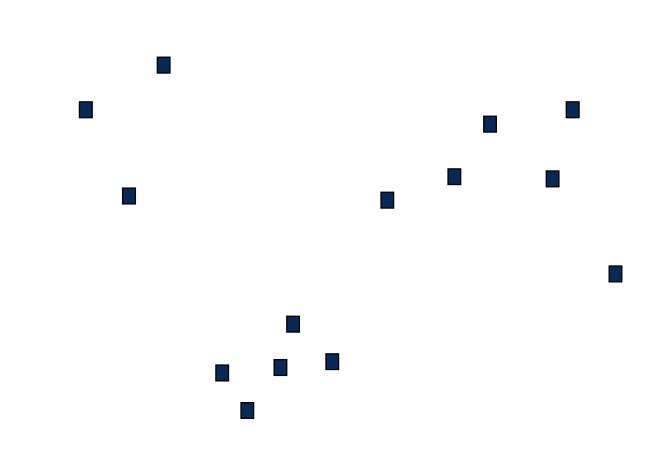
> For j = 2, ..., k:

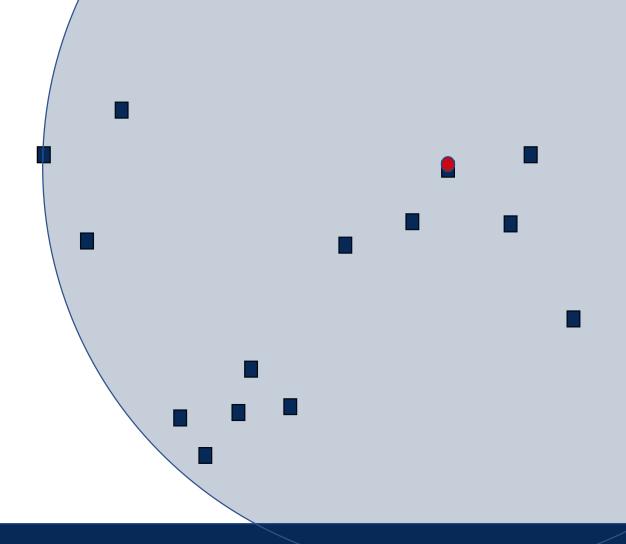
> s_i \leftarrow \operatorname*{argmax}_s d(s, C_{j-1}); \Delta_j = d(s_i, C_{j-1})

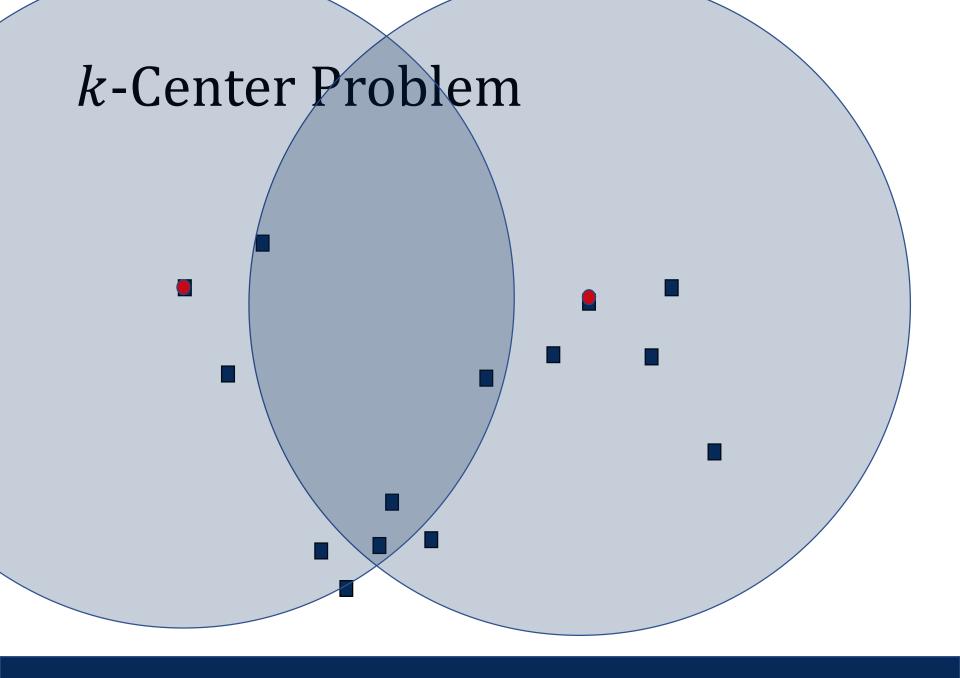
> C_j \leftarrow C_{j-1} \cup \{s_i\}

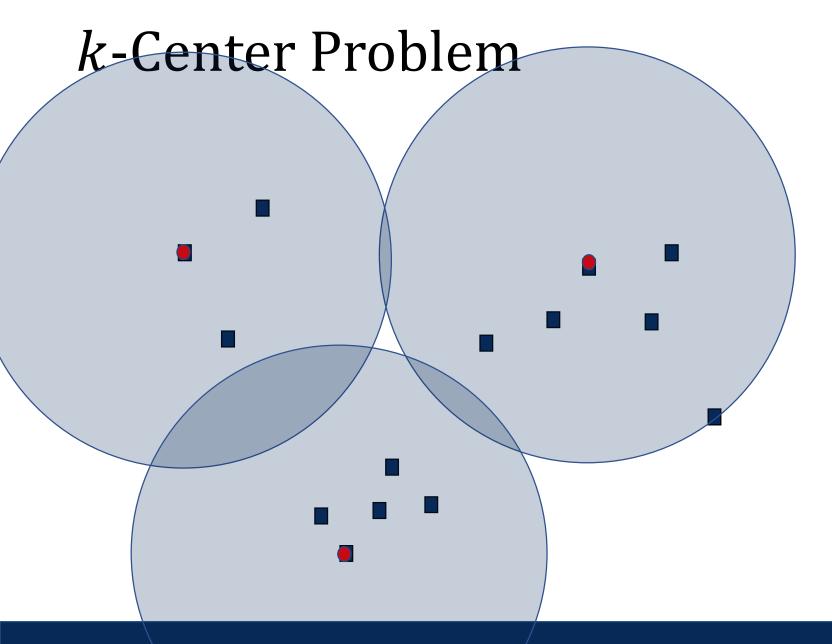
> Return C_k
```

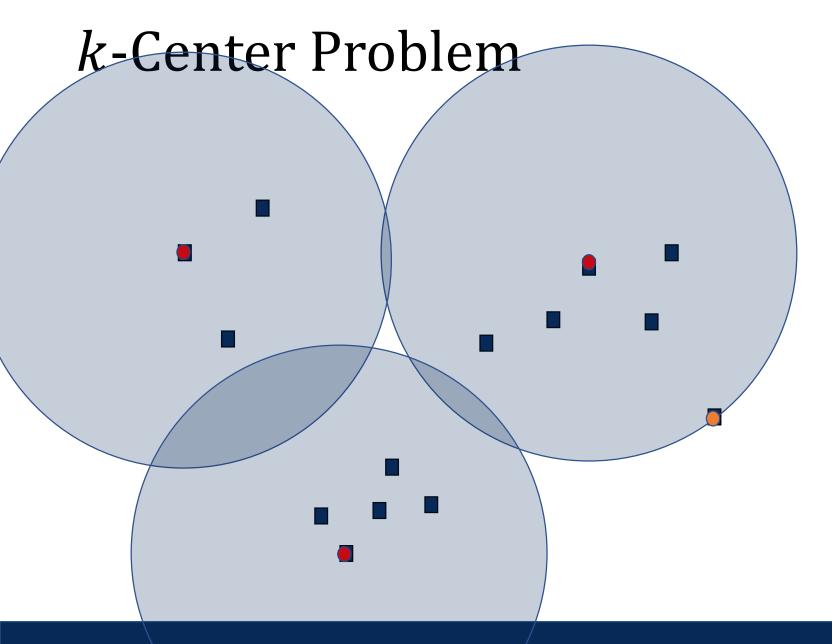
- Claim: $d(s_i, s_j) \ge r(C_k)$ for all $s_i, s_j \in C_{k+1}$
 - Proof: By construction of the algorithm.
 - \circ At each iteration j, we add a new center that is at least Δ_j far from all previous centers
 - $\circ \Delta_j$ decreases as j increases (Why?)
 - $\circ \Delta_{k+1} = r(C_k)$











• Theorem: If C^* is the optimal set of k centers, then $r(C_k) \leq 2 \cdot r(C^*)$

Proof:

- \triangleright Draw a ball of radius $r(C^*)$ from each center in C^*
- \triangleright By pigeonhole principle, at least two $s_i, s_j \in C_{k+1}$ must belong to the same ball (say centered at $c^* \in C^*$)
 - Hence, $d(s_i, c^*), d(s_i, c^*) \le r(C^*)$
- > But by our claim:

$$r(C_k) \le d(s_i, s_j) \le d(s_i, c^*) + d(s_j, c^*) \le 2 \cdot r(C^*)$$

> Done!

- Best polynomial time approximation?
 - > Good greedy gives 2-approximation in polynomial time
 - > Can we get a better approximation?

• Theorem: Unless P=NP, there is no polynomial time algorithm which gives ρ -approximation for the k-center problem for $\rho < 2$.

How do we prove this?

- Theorem: Unless P=NP, there is no polynomial time algorithm which gives ρ -approximation for the k-center problem for $\rho < 2$.
- How do we prove this?
 - > Same reduction idea:
 - \circ Show that if there is a polytime algorithm which gives ρ -apx to k-center for some $\rho < 2$, then using this algorithm, we can solve a known NP-complete problem in polytime.
 - O Hmm. Which NP-complete problem should we use?
 - How about FriendlyRepresentatives problem from assignment 3?

• Theorem: Unless P=NP, there is no polynomial time algorithm which gives ρ -approximation for the k-center problem for $\rho < 2$.

- > Consider an instance of FriendlyRepresentatives
 - \circ Given a set of people N, a friendship relation F, and an integer m, we want to check if there exists a subset $S \subseteq N$ of m people such that every person not in S is friends with someone in S.
 - \circ Denote this by (N, F, m)

• Theorem: Unless P=NP, there is no polynomial time algorithm which gives ρ -approximation for the k-center problem for $\rho < 2$.

- \triangleright Consider an instance (N, F, m) of FriendlyRepresentatives
- > Create an instance of k-Center as follows
 - \circ Create a site s_i for each person $i \in N$
 - Define $d(s_i, s_j) = 1$ if $(i, j) \in F$ and 2 if $(i, j) \notin F$
 - Check that this satisfies triangle inequality
 - \circ Set k=m
 - Note: There are no other points in this metric space, so you must place centers on sites.

• Theorem: Unless P=NP, there is no polynomial time algorithm which gives ρ -approximation for the k-center problem for $\rho < 2$.

- > C is a set of friendly representatives if and only if r(C) = 1
 - Every center is obviously at distance 0 from itself
 - Every non-center s_j is at distance at most 1 from some $s_i \in C$ if and only if every person not in C is friends with someone in C
- > There are only two possibilities:
 - \circ YES: There exists C with r(C)=1
 - \circ NO: Every C has r(C) = 2

• Theorem: Unless P=NP, there is no polynomial time algorithm which gives ρ -approximation for the k-center problem for $\rho < 2$.

- > YES: There exists C with r(C) = 1
 - \circ Since our algorithm gives ρ -approximation with $\rho < 2$, it must return a set C with r(C) < 2
 - \circ But $r(\mathcal{C}) < 2$ means that $r(\mathcal{C}) = 1$
 - \circ So the algorithm returns C with r(C)=1
- ightharpoonup NO: Our algorithm returns a C with r(C)=2
- > So checking r(C) of the C returned by algorithm allows solving FriendlyRepresentatives!

Weighted Set Packing

Weighted Set Packing

Problem

- > Input: A collection of sets $S = \{S_1, ..., S_n\}$ with values $v_1, ..., v_n \ge 0$. There are m set elements.
- ▶ Output: Pick disjoint sets with maximum total value, i.e. pick $W \subseteq \{1, ..., n\}$ to maximize $\sum_{i \in W} v_i$ subject to the constraint that for all $i, j \in W$, $S_i \cap S_j = \emptyset$.
- > This is known to be an NP-hard problem
- > It is also known that for any constant $\epsilon > 0$, you cannot get $O(m^{1/2}-\epsilon)$ approximation in polynomial time unless NP=ZPP (widely believed to be not true)

Greedy Template

 Sort the sets in some order, consider them one-byone, and take any set that you can along the way.

- Greedy Algorithm:
 - > Sort the sets in a specific order.
 - \triangleright Relabel them as 1,2, ..., n in this order.
 - $> W \leftarrow \emptyset$
 - > For i = 1, ..., n:
 - If $S_i \cap S_j = \emptyset$ for every $j \in W$, then $W \leftarrow W \cup \{i\}$
 - > Return W.

CSC304 - Nisarg Shah 65

Greedy Algorithm

- What order should we sort the sets by?
- We want to take sets with high values.

>
$$v_1 \ge v_2 \ge \cdots \ge v_n$$
? Only m -approximation \odot

- We don't want to exhaust many items too soon.
 - $\Rightarrow \frac{v_1}{|S_1|} \ge \frac{v_2}{|S_2|} \ge \cdots \frac{v_n}{|S_n|}$? Also m-approximation \odot
- \sqrt{m} -approximation : $\frac{v_1}{\sqrt{|S_1|}} \ge \frac{v_2}{\sqrt{|S_2|}} \ge \cdots \frac{v_n}{\sqrt{|S_n|}}$?

[Lehmann et al. 2011]

CSC304 - Nisarg Shah 66

Proof of Approximation

- Definitions
 - > OPT = Some optimal solution
 - > W = Solution returned by our greedy algorithm
 - \succ For $i \in W$, $OPT_i = \{ j \in OPT, j \ge i : S_i \cap S_i \ne \emptyset \}$

OPTi has future i in OPT blocked for inclusion in greedy W because of choosing I (i is also in OPTi).

• Claim 1: $OPT \subseteq \bigcup_{i \in W} OPT_i$

If j from OPT is in W => j in OPTj, else j must be in some OPTi or the greedy algorithm would have chosen it.

• Claim 2: It is enough to show that $\forall i \in W$ $\sqrt{m} \cdot v_i \geq \Sigma_{i \in OPT_i} v_i$

The value of greedy choice i is at least as good 1/ \sqrt{m} * the values from the optimal solution it blocks, and all elements of OPT will be accounted for by the union of OPTi's.____

• Observation: For $j \in OPT_i$, $v_j \leq v_i \cdot \frac{\sqrt{|S_j|}}{\sqrt{|C_i|}}$

Greedy ordering.

CSC2556 - Nisarg Shah 67

Proof of Approximation

• Summing over all $j \in OPT_i$:

$$\sum_{j \in OPT_i} v_j \le \frac{v_i}{\sqrt{|S_i|}} \cdot \sum_{j \in OPT_i} \sqrt{|S_j|}$$

• Using Cauchy-Schwarz ($\Sigma_i x_i y_i \leq \sqrt{\Sigma_i x_i^2 \cdot \sqrt{\Sigma_i y_i^2}}$)

$$\sum_{j \in OPT_i} \sqrt{1. |S_j|} \le \sqrt{|OPT_i|} \cdot \sqrt{\sum_{j \in OPT_i} |S_j|}$$

$$\le \sqrt{|S_i|} \cdot \sqrt{m}$$

Every element in Si can block at most one set in OPI => OPII <= SI.

Also note every Sj in OPTi is disjoint because it belongs to OPT. so the sum of these Sj's is at most m.

CSC2556 - Nisarg Shah

Local Search Paradigm

Local Search

- A heuristic paradigm for solving complex problems
 - > Sometimes it might provably return an optimal solution
 - > But even if not, it might give a good approximation

• Idea:

- > Start with some solution S
- \triangleright While there is a "better" solution S' in the local neighborhood of S
- \triangleright Switch to S'
- Need to define what is "better" and what is a "local neighborhood"

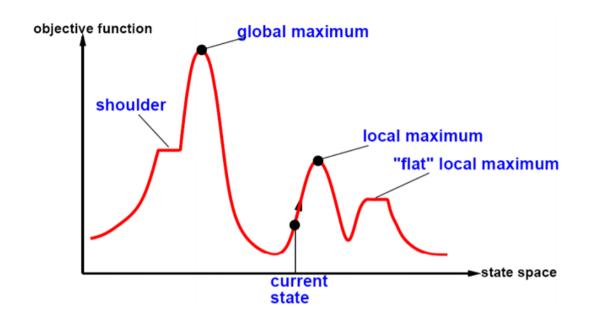
Local Search

Sometimes local search provably returns an optimal solution

- We already saw such an example: network flow
 - > Start with zero flow
 - "Local neighborhood"
 - Set of all flows which can be obtained by augmenting the current flow along a path in the residual graph
 - > "Better"
 - Higher flow value

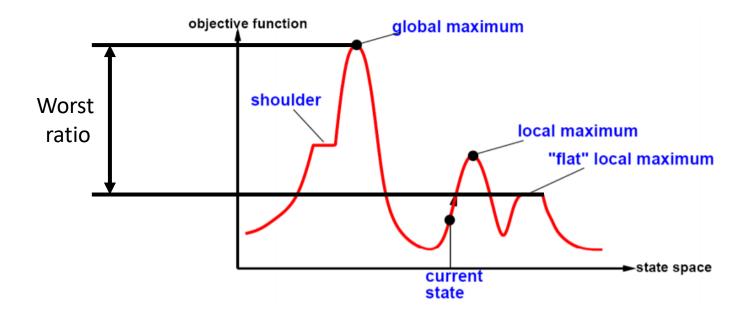
Local Search

 But sometimes it doesn't return an optimal solution, and "gets stuck" in a local maxima



Local Search

 In that case, we want to bound the ratio between the optimal solution and the worst solution local search might return



- Problem
 - ▶ Input: An undirected graph G = (V, E)
 - **Output:** A partition (A, B) of V that maximizes the number of edges going across the cut, i.e., maximizes |E'| where $E' = \{(u, v) \in E \mid u \in A, v \in B\}$
 - > This is also known to be an NP-hard problem
 - > What is a natural local search algorithm for this problem?
 - O Given a current partition, what small change can you do to improve the objective value?

- Local Search
 - \triangleright Initialize (A, B) arbitrarily.
 - \triangleright While there is a vertex u such that moving u to the other side improves the objective value:
 - Move u to the other side.

- > When does moving u, say from A to B, improve the objective value?
 - O When u has more incident edges going within the cut than across the cut, i.e., when $|\{(u,v) \in E \mid v \in A\}| > |\{(u,v) \in E \mid v \in B\}|$

Local Search

- \triangleright Initialize (A, B) arbitrarily.
- \triangleright While there is a vertex u such that moving u to the other side improves the objective value:
 - Move u to the other side.

- > Why does the algorithm stop?
 - \circ Every iteration increases the number of edges across the cut by at least 1, so the algorithm must stop in at most |E| iterations

Local Search

- \triangleright Initialize (A, B) arbitrarily.
- \triangleright While there is a vertex u such that moving u to the other side improves the objective value:
 - Move u to the other side.

> Approximation ratio?

- At the end, every vertex has at least as many edges going across the cut as within the cut
- Hence, at least half of all edges must be going across the cut
 - Exercise: Prove this formally by writing equations.

Variant

- > Now we're given integral edge weights $w: E \to \mathbb{N}$
- > The goal is to maximize the total weight of edges going across the cut

Algorithm

> The same algorithm works, but now we move u to the other side if the total *weight* of its incident edges going within the cut is greater than the total *weight* of its incident edges going across the cut

Number of iterations?

- \triangleright In the unweighted case, we said that the number of edges going across the cut must increase by at least 1, so it takes at most |E| iterations
- > In the weighted case, the total weight of edges going across the cut increases by at least 1, but this could take up to $\sum_{e \in E} w_e$ iterations, which is *exponential* in the input length
 - There are examples where the local search actually takes exponentially many steps

Number of iterations?

- > But we can find a $2+\epsilon$ approximation in time polynomial in the input length and $\frac{1}{\epsilon}$
- > The idea is to only move vertices when it "sufficiently improves" the objective value

- Better approximations?
 - > Theorem [Goemans-Williamson]: There exists a polynomial time algorithm for max-cut with approximation ratio $\frac{2}{\pi} \cdot \min_{0 \le \theta \le \pi} \frac{\theta}{1 \cos \theta} \approx 0.878$
 - Uses "semidefinite programming" and "randomized rounding"
 - \circ Note: The literature from here on uses approximation ratios ≤ 1 , so we will follow that convention in the remaining slides.
 - > If the unique games conjecture is true, then this is tight

Problem

- ▶ Input: An exact k-SAT formula $\varphi = C_1 \land C_2 \land \cdots \land C_m$, where each clause C_i has exactly k literals, and a weight $w_i \ge 0$ of each clause C_i
- ightharpoonup Output: A truth assignment au maximizing the number (or total weight) of clauses satisfied under au
- > Let us denote by $W(\tau)$ the total weight of clauses satisfied under τ
- What is a good definition of "local neighborhood"?

- Local neighborhood:
 - > $N_d(\tau)$ = set of all truth assignments which can be obtained by changing the value of at most d variables in τ
- Theorem: The local search with d=1 gives a $^2/_3$ approximation to Exact Max-2-SAT.

- Theorem: The local search with d=1 gives a $^2/_3$ approximation to Exact Max-2-SAT.
- Proof:
 - \triangleright Let τ be a local optimum
 - \circ S_0 = set of clauses not satisfied under τ
 - \circ S_1 = set of clauses from which exactly one literal is true under τ
 - \circ S_2 = set of clauses from which both literals are true under au
 - $\circ W(S_0), W(S_1), W(S_2)$ be the corresponding total weights
 - o Goal: $W(S_1) + W(S_2) \ge \frac{2}{3} \cdot (W(S_0) + W(S_1) + W(S_2))$
 - Equivalently, $W(S_0) \le \frac{1}{3} \cdot (W(S_0) + W(S_1) + W(S_2))$

- Theorem: The local search with d=1 gives a $^2/_3$ approximation to Exact Max-2-SAT.
- Proof:
 - \triangleright Let τ be a local optimum
 - \circ S_0 = set of clauses not satisfied under τ
 - \circ S_1 = set of clauses from which exactly one literal is true under τ
 - \circ S_2 = set of clauses from which both literals are true under au
 - $\otimes W(S_0), W(S_1), W(S_2)$ be the corresponding total weights
 - o Goal: $W(S_1) + W(S_2) \ge \frac{2}{3} \cdot (W(S_0) + W(S_1) + W(S_2))$
 - Equivalently, $W(S_0) \le \frac{1}{3} \cdot (W(S_0) + W(S_1) + W(S_2))$

- Theorem: The local search with d=1 gives a $^2/_3$ approximation to Exact Max-2-SAT.
- Proof:
 - \succ Clause C involves variable j if it contains x_j or $\overline{x_j}$
 - \circ A_j = set of clauses in S_0 involving variable j
 - \circ B_j = set of clauses in S_1 involving variable j such that it is the literal of variable j that is true under τ
 - \circ C_j = set of clauses in S_2 involving variable j
 - $\circ W(A_j), W(B_j), W(C_j)$ be the corresponding total weights

- Theorem: The local search with d=1 gives a $^2/_3$ approximation to Exact Max-2-SAT.
- Proof:
 - $> 2 W(S_0) = \sum_j W(A_j)$
 - \circ Every clause in S_0 is counted twice on the RHS
 - $> W(S_1) = \sum_j W(B_j)$
 - \circ Every clause in S_1 is only counted once on the RHS for the variable whose literal was true under au
 - \succ For each $j:W(A_j) \leq W(B_j)$
 - \circ From local optimality of τ , since otherwise flipping the truth value of variable j would have increased the total weight

- Theorem: The local search with d=1 gives a $^2/_3$ approximation to Exact Max-2-SAT.
- Proof:
 - $> 2 W(S_0) \leq W(S_1)$
 - \circ Summing the third equation on the last slide over all j, and then using the first two equations on the last slide
 - > Hence:
 - $0.3 W(S_0) \le W(S_0) + W(S_1) \le W(S_0) + W(S_1) + W(S_2)$
 - Precisely the condition we wanted to prove...

• Higher *d*?

- > Searches over a larger neighborhood
- May get a better approximation ratio, but increases the running time as we now need to check if any neighbor in a large neighborhood provides a better objective
- > The bound is still 2/3 for d = o(n)
- \triangleright It is no better than 4/5 for d < n/2
- > It can be shown that with d = n/2, the algorithm always terminates at an optimal solution

- Better approximation?
 - > We can learn something from our proof
 - > Note that we did not use anything about $W(S_2)$, and simply added it at the end
 - > If we could also guarantee that $W(S_0) \leq W(S_2)$...
 - Then we would get $4W(S_0) \le W(S_0) + W(S_1) + W(S_2)$, which would give a 3/4 approximation
 - > Result (without proof): This can be done by including just one more assignment in the neighborhood: $N(\tau) = N_1(\tau) \cup \{\tau^c\}$, where τ^c = complement of τ

- What if we do not want to modify the neighborhood?
 - > A slightly different tweak also works
 - \triangleright We want to weigh clauses in $W(S_2)$ more because when we get a clause through S_2 , we get more robustness (it can withstand changes in single variables)

Modified local search:

- \gt Start at arbitrary au
- > While there is an assignment in $N_1(\tau)$ that improves the potential 1.5 $W(S_1) + 2 W(S_2)$
 - Switch to that assignment

Modified local search:

- \gt Start at arbitrary au
- > While there is an assignment in $N_1(\tau)$ that improves the potential 1.5 $W(S_1) + 2 W(S_2)$
 - Switch to that assignment

Note:

- > This is the first time that we're using a definition of "better" in local search paradigm that does not quite align with the ultimate objective we want to maximize
- > This is called "non-oblivious local search"

Modified local search:

- \gt Start at arbitrary au
- > While there is an assignment in $N_1(\tau)$ that improves the potential 1.5 $W(S_1)$ + 2 $W(S_2)$
 - Switch to that assignment

Result (without proof):

 \rightarrow Modified local search gives $^3/_4$ -approximation to Exact Max-2-SAT

- More generally:
 - \triangleright The same technique works for higher values of k
 - > Gives $\frac{2^k-1}{2^k}$ approximation for Exact Max-k-SAT
 - We'll see how to achieve the same approximation using a much simpler technique
- Note: This is $\frac{7}{8}$ for Exact Max-3-SAT
 - ➤ Theorem [Håstad]: Achieving $^7/_8 + \epsilon$ approximation where $\epsilon > 0$ is NP-hard.
 - Uses PCP (probabilistically checkable proofs) technique