CSC373

Weeks 7 & 8:
Complexity

Recap

* Linear Programming
» Standard formulation
» Slack formulation
> Simplex
> Duality

373F19 - Nisarg Shah & Karan Singh 2

And Now...

e Applications of linear programming
> Shortest path
> Network flow

* A note about integer programming

* Complexity
> Turing machines, computability, efficient computation
> P, NP, and NP-completeness
> Reductions
> ldea behind NP-completeness of SAT and 3SAT
» NP vs co-NP
> Other complexity classes

373F19 - Nisarg Shah & Karan Singh 3

Network Flow via LP

(e Problem A
> Input: directed graph G = (V, E), edge capacities
C. E — RZO
” Output: Value v(f*) of a maximum flow f* p

- e
* Flow f is valid if:

> Capacity constraints: V(u,v) € E: 0 < f(u,v) < c(u, v)
> Flow conservation: Yu: X, yep (W, V) = X, ee f (0, W)

* Maximize v(f) = Z(S,V)EEf(s, V)

Network Flow via LP

maximize Z fsv

(S,V)EE

0< fir < c(u,v) forall (u,v) €E

fuv = z fow forallv € V\{s, t}

(uw,v)EE (v,Ww)EE

\ Exercise: Write the dual of this LP.

What is the dual trying to find?

373F19 - Nisarg Shah & Karan Singh 5

Shortest Path via LP
@

Problem

> Input: directed graph G = (V, E), edge weights
w: E — R, source vertex s, target vertex t

\ > Output: weight of the shortest-weight path fromsto ¢)

* Variables: for each vertex v, we have variable d,,

Exercise: prove formally

M maximize d, that this works!

subject to
d,

d

d, + w(u.v) foreachedge (u.v) € E .
0.

Il TA

If objective was min., then we
could set all variables d,, to 0.

But...but...

* For these problems, we have different
combinatorial algorithms that are much faster and
run in strongly polynomial time

* Why would we use LP?

* For some problems, we don’t have faster
algorithms than solving them via LP

373F19 - Nisarg Shah & Karan Singh 7

Multicommodity-Flow
/'Problem: h

> Input: directed graph ¢ = (V, E), edge capacities c: E —
R, k commodities (s;, t;, d;), where s; is source of
commodity i, t; is sink, and d; is demand.

> Output: valid multicommodity flow (f, f5, ..., fx), where
\ f; has value d; and all f; jointly satisfy the constraints /

k
E :ﬁ'uv < c¢(u,v) foreachu,veV,
i=1

The only known polynomial , , _ . .
time algorithm for this problem Z Jiww = Z Jiw =0 foreachi =1,2,....k and

is based on solving LP! eV vev foreachu € V —{s;. 1;} .
Z Jisiv— Z fivs; = d; foreachi = 1.2.....k .
vel veV

Jiww = 0 for each u,v € V and
foreachi = 1.2..... k.

373F19 - Nisarg Shah & Karan Singh 8

Integer Linear Programming

 Variable values are restricted to be integers

* Example:
> Input: ¢ € R™, b € R™, 4 € R™*"
> Goal:

Maximize c'x
Subjectto Ax < b
x € {0,1}"

* Does this make the problem easier or harder?
» Harder. We'll prove that this is “NP-complete”.

373F19 - Nisarg Shah & Karan Singh 9

LPs are everywhere...

» Microeconomics

> Manufacturing

> VLSI (very large scale integration) design
> Logistics/transportation

> Portfolio optimization

> Bioengineering (flux balance analysis)

> Operations research more broadly: maximize profits or
minimize costs, use linear models for simplicity

> Design of approximation algorithms
> Proving theorems, as a proof technique
> ...

373F19 - Nisarg Shah & Karan Singh

Introduction to Complexity

* You have a problem at hand

* You try every technique known to humankind for
finding a polynomial time algorithm, but fail.

* You try every technique known to humankind for
proving that there cannot exist a polynomial time
algorithm for your problem, but fail.

* What do you do?

> Prove that it is NP-complete, of course!

373F19 - Nisarg Shah & Karan Singh

Turing Machines

* “Which problems can a computer (not) solve in a
certain amount of time?”

> How do we mathematically define what a computer is?

e Alan Turing (“Father of Computer Science”), 1936
» Introduced a mathematical model
> “Turing machine”

> All present-day computers can be simulated by a Turing
machine

> Fun fact: So can all the quantum computers
o But TM might take longer to solve the same problem

373F19 - Nisarg Shah & Karan Singh

Turing Machines

* We won’t formally introduce...but at a high level...

* Turing machine
> Tape

o Input is given on tape
o Intermediate computations can be written there
o Output must to be written there
> Head pointer
o Initially pointing at start of input on tape

» Maintains an internal “state”

> A transition function describes how to change state,
move head pointer, and read/write symbols on tape

373F19 - Nisarg Shah & Karan Singh

Computability

e Church-Turing Hypothesis

> “Everything that is computable can be computed by a
Turing machine”

> Widely accepted, cannot be “proven”

> There are problems which a Turing machine cannot solve,
regardless of the amount of time available

o E.g., the halting problem

* What about the problems we can solve? How do
we define the time required?

> Need to define an encoding of the input and output

373F19 - Nisarg Shah & Karan Singh

Encoding

* What can we write on the tape?
> S = a set of finite symbols
> 5% =U,50S" = set of all finite strings using symbols from S

* [nput: w € §°

» Length of input = |w| = length of w on tape
* Qutput: f(w) € §*

> Length of output = |f (w)|

> Decision problems: output = “YES” or “NO”
o E.g. “does there exist a flow of value at least 7 in this network?”

373F19 - Nisarg Shah & Karan Singh

Encoding

* Example:

> “Given a4, ay, ..., a,, compute >.*; a;”
o Suppose we are told that a; < C for all i

> What |S| should we use?
o S =1{0,1} (|S| = 2, binary representation)
 Length of input = 0(log, a; + :- + log, a,;) = O(nlog, C)
o What about 3-ary (|S| = 3) or 18-ary (|S| = 18)?
* Only changes the length by a constant factor, still O(nlog C)
o What about unary (conceptually, |S| = 1)?
* Length blows up exponentially to O(nC)
o Binary is already good enough, but unary isn’t

373F19 - Nisarg Shah & Karan Singh

Efficient Computability

* Polynomial-time computability

> A TM solves a problem in polynomial time if there is a
polynomial p such that on every instance of n-bit input
and m-bit output, the TM halts in at most p(n, m) steps

> Polynomial: n,n?%, 5n1%° + 100013, nlog!®®
> Non-polynomial; 27, 2V, 2log* n

¢ EXte N d Ed Ch Wl If you ask the Turing machine to write a 2™-bit output, it’s only reasonable
to let it take 2™ time...but usually, we’ll look at problems where output is

> “Everything th O(length of input), so we can ignore this m
a TM in polyno

> Much less widely accepted, especially today

> But in this course, efficient = polynomial-time

373F19 - Nisarg Shah & Karan Singh

P

* P (polynomial time)

> The class of all decision problems computable by a TM in
polynomial time

* Examples
» Addition, multiplication, square root
> Shortest paths
> Network flow
> Fast Fourier transform

> Checking if a given number is a prime
[Agrawal-Kayal-Saxena 2002]

> ..

373F19 - Nisarg Shah & Karan Singh

NP

* NP (nondeterministic polynomial time) intuition

> Subset sum problem:

Given an array {-7, -3, -2, 5, 8}, is there a zero-sum subset?
> Enumerating all subsets is exponential

> BUT given a subset {-7, -2} or {-3, -2, 5}, we can check in
polynomial time whether it has zero sum

> A nondeterministic Turing machine could “guess” the
subset and then test if it has zero sum in polynomial time

373F19 - Nisarg Shah & Karan Singh

NP

* NP (nondeterministic polynomial time)

> The class of all decision problems for which a YES answer
can be verified by a TM in polynomial time given
polynomial length “advice” or “witness”.

> There is a polynomial-time verifier TM IV and another
polynomial p such that

o For all YES inputs x, there exists y with |y| = p(]x]) on which
V(x,y) returns YES

o For all NO inputs x, V' (x, y) returns NO for every y

> Informally: “Whenever the answer is YES, there’s a short
proof of it.”

373F19 - Nisarg Shah & Karan Singh

co-NP

* co-NP
> Same as NP, except whenever the answer is NO, we want
there to be a short proof of it

* Open questions
> NP = co-NP?
> P=NP N co-NP?
> And...drum roll please...

P = NP?

373F19 - Nisarg Shah & Karan Singh

P versus NP

e Lance Fortnow in his article on P and NP in
Communications of the ACM, Sept 2009

ﬂ The P versus NP problem has gone \
from an interesting problem related to
logic to perhaps the most fundamental
and important mathematical question of
our time, whose importance only grows
as computers become more powerful

Qnd widespread.” /

373F19 - Nisarg Shah & Karan Singh

Millenium Problems

* Award of $1,000,000 for each problem by Clay
Math institute

Birch and Swinnerton-Dyer Conjecture

Hodge Conjecture

Navier-Stokes Equations

P NP e D
Poincare Conjecture (Solved)?

Riemann Hypothesis

N o U A W NhNPRE

Yang-Mills Theory

1Solved by Grigori Perelman (2003): Prize unclaimed

373F19 - Nisarg Shah & Karan Singh 23

Cook’s Conjecture

e Cook’s conjecture

> (And every sane person’s belief...)
> P is likely not equal to NP

* Why do we believe this?
> There is a large class of problems (NP-complete)
» By now, contains thousands and thousands of problems
» Each problem is the “hardest problem in NP”

> If you can efficiently solve any one of them, you can
efficiently solve every problem in NP

o Despite decades of effort, no polynomial time solution has been
found for any of them

373F19 - Nisarg Shah & Karan Singh

Reductions

* Problem A is p-reducible to problem B if an
“oracle” (subrouting) for B can be used to
efficiently solve A

» You can solve A by making polynomially many calls to the
oracle and doing additional polynomial computation

* Question: If A is p-reducible to B, then which of
the following is true?
a) If A cannot be solved efficiently, then neither can B.
b) If B cannot be solved efficiently, then neither can A.
c) Both.
d) None.

373F19 - Nisarg Shah & Karan Singh

Reductions

* Problem A is p-reducible to problem B (denoted
A <, B)if an “oracle” (subrouting) for B can be
used to efficiently solve A

> You can solve A by making polynomially many calls to the
oracle and doing additional polynomial computation

* Question: If | want to prove that my problem X is
“hard”, | should:
a) Reduce my problem to a known hard problem.
b) Reduce a known hard problem to my problem.
c) Both.
d) None.

373F19 - Nisarg Shah & Karan Singh

NP-completeness

 NP-completeness

> A problem B is NP-complete if it is in NP and every
problem A in NP is p-reducible to B

> Hardest problems in NP

> If one of them can be solved efficiently, every problem in
NP can be solved efficiently, implying P=NP

* Observation:
> If A isin NP, and some NP-complete problem B is p-
reducible to A4, then A is NP-complete too

o “If | could solve A, then | could solve B, then | could solve any
problem in NP”

373F19 - Nisarg Shah & Karan Singh

NP-completeness

e But this uses an already known NP-complete
problem to prove another problem is NP-complete

* How do we find the first NP-complete problem?

> How do we know there are any NP-complete problems at
all?

> Key result by Cook

> First NP-complete problem: SAT
o By a reduction from an arbitrary problem in NP to SAT
o “From first principles”

373F19 - Nisarg Shah & Karan Singh

CNF Formulas

e Conjunctive normal form (CNF)
» Boolean variables x4, x5, ..., X,
» Their negations X1, X, ..., X,,
> Literal £: a variable or its negation
> Clause C =¥, VL, V- -V L, isadisjunction of literals

> CNF formula ¢ = C; A C, A -+ A C,y, is @ conjunction of clauses
o kCNF: Each clause has at most k literals

* WEe’'ll abuse notation a little and assume there are exactly k
 Example of 3CNF

@ =0 VX, Vx3) AN VX, Vx3) AV, V) AN(X3 VX,V xg)

373F19 - Nisarg Shah & Karan Singh

SAT and 3SAT

* Example of 3CNF

QY = (fl VXZ VX3)/\(.X'1 V.’)EZ Vx3)/\(f1 sz Vx4)/\(f3 Vf4Vx1)

* SAT

» A CNF formula ¢ is satisfiable if there is an assignment of
truth values (TRUE/FALSE) to variables under which the
formula evaluates to TRUE

o That means, in each clause, at least one literal is TRUE
> SAT: “Given a CNF formula ¢, is it satisfiable?”
» 3SAT: “Given a 3CNF formula ¢, is it satisfiable?”

373F19 - Nisarg Shah & Karan Singh

SAT and 3SAT

e Cook-Levin Theorem
> SAT (and even 3SAT) is NP-complete

* Doesn’t use any known NP-complete problem
> Directly reduces any NP problem to SAT

> Reduction is a bit complex, so we’ll defer it until a bit
later, after we’ve seen some other reductions and are
more comfortable with the reduction framework

> But for now, let’s assume SAT is NP-complete, and reduce
it to a bunch of other problems (and then those problems
to other problems...)

373F19 - Nisarg Shah & Karan Singh

NP-Complete Examples

 NP-complete problems
> SAT = first NP complete problem

> Decision TSP: Is there a route visiting all n cities with total
distance at most k?

> 3-Colorabitility: Can the vertices of a graph be colored
with at most 3 colors such that no two adjacent vertices
have the same color?

> Karp’s 21 NP-complete problems

* co-NP-complete
> Tautology problem (“negation” of SAT)

373F19 - Nisarg Shah & Karan Singh

Complexity

NP-Hard

NP—hard coNP—hard NP-Hard

NP-Complete

P=NP=
NP-Complete

Complexity

By Behnam Esfahbod, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=3532181

373F19 - Nisarg Shah & Karan Singh

Journal of Computational and Applied

Mathematics
18, 15 June 2011, Pages 4851-4865

Wolume 235,

Survey of polynomial transformations between
NP-complete problems

Jorge A. Ruiz-Vanoye * & B, Joaquin Pérez-Ortega "B, Rodolfo A. Pazos R. “B, Ocotlén Diaz-Parrz 48, Juan

Frausto-Salis *E, Hector J. Fraire Huacuja B, Laura Cruz-Reyes *, José A. Martinez F. °&

Number Name of problem Number Name of problem

1 Satisfiability (SAT) 2 3-Satishability (35AT)
3 Clique (clique cover) 4 Vertex cover
5 Subset sum 6 Hitting string
7 Chinese postman for mixed graphs 1 Graph colorability
9 Three-Dimensionzl matching (3DM) 10 Rectilinear picture
compression
11 Tableau equivalence 12 Consistency of databases
frequency tables
13 Hamiltonian Circuit (Directed Hamiltonian path, 14 Independent set
Undirected Hamiltonian pat
15 Setbasis 16 Hitting set
17 Comparative contasinment 18 Multiple copy file
allocation
19 Shortest common supersequence 20 Longest common
subsequence
21 Minimum cardinality key 22 Partition
23 Kth largest subset 24 Capacity assignment
25 Conjunctive Boolean query 26 Exact cover by 3-sets (X3C)
27 Minimum test set 28 3-Matroid intersection
29 3-Partition 30 Numerical three-
dimensional matching
[] []
[] []
[] []

373F19 - Nisarg Shah & Karan Singh

Polynomial-Time Reductions

constraint satisfaction

o vl

o Dick Karp (1972)
oK .;ed‘::gﬂ'ﬁ s 1985 Turing Award

39 g
o

INDEPENDENT SET DIR-HAM-CYCLE GRAPH 3-COLOR SUBSET-SUM

VERTEX COVER HAM-CYCLE PLANAR 3-COLOR SCHEDULING
SET COVER TSP
packing and covering sequencing partitioning numerical

373F19 - Nisarg Shah & Karan Singh

Just A Tad Bit of History

e [Cook 1971]

> Proved 3SAT is NP-complete in seminal paper

e [Karp 1972]
> Showed that 20 other problems are also NP-complete
> “Karp's 21 NP-complete problems”
> Renewed interest in this idea

e 1982: Cook won the Turing award

373F19 - Nisarg Shah & Karan Singh

Independent Set

(. Problem A
> Input: Undirected graph ¢ = (V, E), integer k
> Question: Does there exist a subset of vertices S € V
with |S| = k such that for each edge, at most one of its
_ endpointsisinS? -

Example: @ - independent set
* Does this graph have an
independent set of size 67
* Yes!
* Does this graph have an
independent set of size 7°?
* No!

373F19 - Nisarg Shah & Karan Singh

Independent Set

[° Claim: Independent Set is in NP]

> Recall: We need to show that there is a polynomial-time
algorithm which

o Can accept every YES instance with the right polynomial-size advice
o Will not accept a NO instance with any advice

> Advice: the actual independent set S
o Algorithm: Simply check if S is an independent set and |S| = k
o Simple!

373F19 - Nisarg Shah & Karan Singh

Independent Set

[- Claim: 3SAT <,, Independent Set]

> Given a formula @ of 3SAT with k clauses, construct an
instance (G, k) of Independent Set as follows
o Create 3 vertices for each clause (one for each literal)
o Connect them in a triangle
o Connect the vertex of each literal to each of its negations

373F19 - Nisarg Shah & Karan Singh

Independent Set

> Why does this work?
o 3SAT = YES (@ has satisfying assignment) = Independent Set = YES
* From each clause, take any literal that is TRUE in the assignment

o Independent Set = YES = 3SAT = YES
* Independent set S must contain one vertex from each triangle

* No literal and its negation are both in §

* Set literals in S to TRUE, their negations to FALSE, and the rest to
arbitrary values

Xy X X

373F19 - Nisarg Shah & Karan Singh

Different Types of Reductions

*A Karp reductions

o Take an arbitrary instance of A4, and in polynomial time, construct
a single instance of B with the same answer

o Very restricted type of reduction
o The reduction we just constructed was a Karp reduction

> Turing/Cook reductions

o Take an arbitrary instance of A, and solve it by making
polynomially many calls to an oracle for solving B and some
polynomial-time extra computation

o Very general reduction

o In this course, we’ll allow Turing/Cook reductions, but whenever
possible, see if you can construct a Karp reduction

373F19 - Nisarg Shah & Karan Singh

Subset Sum

¢ Problem A
> Input: Set of integers S = {wy, ..., w, }, integer W
> Question: Is there S’ € S that adds up to exactly W?
\§ J
* Example
>»S =1{1,4,16,64,256,1040,1041,1093, 1284, 1344}
and W = 37547
> Yes!

ol1l+16+ 64+ 256 + 1040 + 1093 + 1284 = 3754

373F19 - Nisarg Shah & Karan Singh

Subset Sum

[- Claim: Subset Sum is in NP]

> Recall: We need to show that there is a polynomial-time
algorithm which

o Can accept every YES instance with the right polynomial-size advice
o Will not accept a NO instance with any advice

> Advice: the actual subset S’
o Algorithm: Simply check that elements of S’ sum to W
o Simple!

373F19 - Nisarg Shah & Karan Singh

Subset Sum

[° Claim: 3SAT <y Subset Sum]

> Given a formula ¢ of 3SAT, we want to construct (S, W) of
Subset Sum with the same answer

> In the table in the following slide:
o Columns are for variables and clauses
o Each row is a numberin S, represented in decimal

o Number for literal € : has 1 in its variable column and in the column
of every clause where that literal appears

e Number selected = literal set to TRUE

o “Dummy” rows: can help make the sum in a clause column 4 if and
only if at least one literal is set to TRUE

373F19 - Nisarg Shah & Karan Singh

Subset Sum

[+ Claim: 35AT <, SubsetSum | pEEEEREAEICS

0

1

0

0

0

1

0
0
0

0
0
0

<

dummies to get
clause columns
to sum to 4

<
0
=
()
c
©
S
T
¥
o3
<
]
<
7))
0
S
m
&
2
1
o
—
L
o
N
L)

Subset Sum

* Note
> The Subset Sum instance we constructed has large numbers

0#variables+#clauses

o Something like 1

o Numbers are exponential in size of the original 3CNF instance, but it
only takes polynomially many bits to write these numbers

> Can we hope to construct Subset Sum instance with
numbers that are only poly(#variables, #clasuses) large?
o Unlikely.

o Like Knapsack, Subset Sum can be solved in pseudo-polynomial time
(i.e. we can solve Subset Sum in polytime if the numbers are only
polynomially large in value).

373F19 - Nisarg Shah & Karan Singh

3-Coloring

(Problem

_

> Input: Undirected graph ¢ = (V,E)

> Question: Can we color each vertex of G using at most
three colors such that no two adjacent vertices have the
same color?

J

373F19 - Nisarg Shah & Karan Singh

3-Coloring

[° Claim: 3-coloring is in NP]

> Recall: We need to show that there is a polynomial-time
algorithm which

o Can accept every YES instance with the right polynomial-size advice
o Will not accept a NO instance with any advice

> Advice: colors of the nodes in a valid 3-coloring
o Algorithm: Simply check that this is a valid 3-coloring
o Simple!

373F19 - Nisarg Shah & Karan Singh

3-Coloring

[- Claim: 3SAT <,, 3-Coloring]

» Given a 3SAT formula ¢, we want to construct a graph G
such that G is 3-colorable if and only if ¢ has a satisfying
assignment

» We want a satisfying assignment of ¢ to correspond to a
valid 3-coloring of G
o Each true literal should have color T
o Each false literal should have color F
o We need to make sure they don’t get the third color

373F19 - Nisarg Shah & Karan Singh

3-Coloring

» Given a 3SAT formula ¢, we construct a graph G as follows
o Create 3 new nodes T, F, and B; connect them in a triangle
o Create a node for each literal, connect it to its negation and to B
o So T-F-B have different colors and B-x;-x; have different colors
 Each literal has the color of T/F and its negation has the other color

true false

373F19 - Nisarg Shah & Karan Singh

3-Coloring

> Claim: valid 3-coloring = valid truth assignment
o Each literal node must be colored T or F
o If a literal is T, its negation must be F
o We can set all literals with color T to be TRUE
* Valid truth assignment

true false

373F19 - Nisarg Shah & Karan Singh

3-Coloring

> What about clauses?
o For each clause, add the following gadget with 6 nodes and 13 edges

o Claim: Clause gadget is 3-colorable if and only if at least one of the
nodes corresponding to the literals in the clause is assigned color of T

rue

373F19 - Nisarg Shah & Karan Singh

3-Coloring

» Claim: Valid 3-coloring = truth assignment satisfies ¢
o Suppose a clause (; is not satisfied, so all its three literals must be F
o Then the 3 nodes in top layer must be B
o Then the first two nodes in bottom layer must be F and T, resp.
o Then no color left for the remaining node = contradiction!

not 3-colorable if all are red

/

C,=x, Vx, Vx,

7

4./‘ contradiction

. G false

373F19 - Nisarg Shah & Karan Singh

frue

3-Coloring

> We just proved: valid 3-coloring = satisfying assignment

> Claim: satisfying assignment = valid 3-coloring
o Color all true literals as T and their negations as F
 Valid 3-coloring for the literal widget
o Each clause widget with at least one T literal can be 3-colored

a literal set to truein 3-SAT assignment

rue

373F19 - Nisarg Shah & Karan Singh

Review of Reductions

* If you want to show that problem B is NP-complete

e Step 1: Show that Bisin NP

» Some polynomial-size advice should be sufficient to verify
a YES instance in polynomial time

> No advice should work for a NO instance

> Usually, the solution of the “search version” of the
problem works
o But sometimes, the advice can be non-trivial

o For example, to check LP optimality, one possible advice is the
values of both primal and dual variables, as we saw in the last
lecture

373F19 - Nisarg Shah & Karan Singh

Review of Reductions

* If you want to show that problem B is NP-complete

e Step 2: Find a known NP-complete problem A and
reduce it to B (i.e. show A <, B)

> This means taking an arbitrary instance of A, and solving
it in polynomial time using an oracle for B

o Caution 1: Remember the direction. You are “reducing known NP-
complete problem to your current problem”.

o Caution 2: The size of the B-instance you construct should be
polynomial in the size of the original A-instance

> This would show that if B can be solved in polynomial
time, then A can be as well

» Some reductions are trivial, some are notoriously tricky...

373F19 - Nisarg Shah & Karan Singh

Integer Linear Programming
(ILP)

a)

°* Problem
>Input:c ER", b ER™ A€ R™"keER

> Question: Does there exist x € {0,1}" such that cTx > k
_ and Ax < b? Y

> Decision variant of “maximize ¢’ x subject to Ax < b” but
instead of any x € R™ with x = 0, we are restricting x to
binary.

> Does restricting search space make the problem easier or
harder?

o This is actually NP-complete!

373F19 - Nisarg Shah & Karan Singh

[P Feasibility

* An even simpler problem
> Special case where c = k = 0, so cTx > k is always true

é)
 Problem

> Input: b € R™, 4 € R™*"
> Question: Does there exist x € {0,1}" such that Ax < b?

_ J

> Just need to find a feasible solution
> This is still NP-complete!

373F19 - Nisarg Shah & Karan Singh

[P Feasibility

[° Claim: IP Feasibility is in NP]

> Recall: We need to show that there is a polynomial-time
algorithm which

o Can accept every YES instance with the right polynomial-size advice
o Will not accept a NO instance with any advice

> Advice: simply a vector x satisfying Ax < b
o Algorithm: Check if Ax < b
o Simple!

373F19 - Nisarg Shah & Karan Singh

[P Feasibility

[° Claim: 3SAT <, IP Feasibility]

» Take any formula ¢ of 3SAT
> Create a binary variable x; for each variable x; in ¢
o We’'ll represent its negation X; with 1 — x;

> For each clause C, we want at least one of its three literals
to be TRUE

o Just make sure their sum is at least 1

oEg C=x,Vi,Vig=>x1+(1—x,)+ (1 —x3)=>1
» Easy to check that

o this is a polynomial reduction

o Resulting system has a feasible solution iff @ is satisfiable

373F19 - Nisarg Shah & Karan Singh

So far...

* To establish NP-completeness of problem B, we
always reduced 3SAT to B

> But we can reduce any other problem A that we have
already established to be NP-complete

> Sometimes this might lead to a simpler reduction
because A might already be “similar” to B

* Let’s see an example!

373F19 - Nisarg Shah & Karan Singh

Vertex Cover

(e Problem)
> Input: Undirected graph ¢ = (V, E), integer k
> Question: Does there exist a vertex cover of size k?

o That is, does there exist S € V with |S| = k such that every edge is
\ incident to at least one vertex in §? /

Example: @ -=vertex cover
* Does this graph have a
vertex cover of size 47?

* Yes!
* Does this graph have a
vertex cover of size 37?

* No!

373F19 - Nisarg Shah & Karan Singh

Vertex Cover

(e Problem
> Input: Undirected graph ¢ = (V, E), integer k
> Question: Does there exist a vertex cover of size k?

o That is, does there exist S € V with |S| = k such that every edge is
\ incident to at least one vertex in §?

J

Question: @ -=vertex cover
* Did we see this graph in
the last lecture? @ -independent set
* Yes!
* For independent set
of size 6

373F19 - Nisarg Shah & Karan Singh

Vertex Cover

* Vertex cover and independent set are intimately
connected!

* Claim: G has a vertex cover of size k if and only if G
has an independent set of sizen — k

* Stronger claim: S is a vertex cover if and only if V\S is
an independent set

373F19 - Nisarg Shah & Karan Singh

Vertex Cover

* Claim: S is a vertex cover if and only if V\S is an
independent set

* Proof:
> S is a vertex cover
> IFF: For every (u,v) € E, at least one of {u, v}isin §
> IFF: For every (u, v) € E, at most one of {u, v}isin VV\S
> IFF: No two vertices of V\S are connected by an edge
> IFF: V\S is an independent set m

373F19 - Nisarg Shah & Karan Singh

Vertex Cover

* Claim: Independent Set <,, Vertex Cover

» Take an arbitrary instance (G, k) of Independent Set

> We want to check if there is an independent set of size k
» Just convert it to the instance (G, n — k) of Vertex Cover
> Simple!

o A reduction from 3SAT would have basically repeated the reduction
we already did for 3SAT <,, Independent Set

> Note: | didn’t argue that Vertex Cover is in NP
o This is simple as usual. Just give the actual vertex cover as the advice.

373F19 - Nisarg Shah & Karan Singh

Set Cover

(e Problem)

> Input: A universe of elements U, a family of subsets S, and
an integer k

»> Question: Do there exist k sets from S whose union is U?

_ J

* Example
> U = {1,2,3,4,5,6,7}
> S =1{{1,3,7},{2,4,6},{4,5},{1},{1,2,6}}
> k =37 Yes! {{1,3,7},{4,5},{1,2,6}}
>k = 27 No!

373F19 - Nisarg Shah & Karan Singh

Set Cover

[- Claim: Set Coveris in NP]

> Easy. Let the advice be the actual k sets whose union is U.

[- Claim: Vertex Cover Sp Set Cover]

> Given an instance of vertex cover with graph ¢ = (V,E) and
integer k, create the following set cover instance
oSetU =F
o Foreach v € V, § contains a set §,, of all edges incident on v

o Selecting k set whose union is U = selecting k vertices such that
union of their incident edges covers all edges

o Hence, the two problems obviously have the same answer

373F19 - Nisarg Shah & Karan Singh

Polynomial-Time Reductions

constraint satisfaction

o vl

o Dick Karp (1972)
oK .;ed‘::gﬂ'ﬁ s 1985 Turing Award

39 g
o

INDEPENDENT SET DIR-HAM-CYCLE GRAPH 3-COLOR SUBSET-SUM

VERTEX COVER HAM-CYCLE PLANAR 3-COLOR SCHEDULING
SET COVER TSP
packing and covering sequencing partitioning numerical

373F19 - Nisarg Shah & Karan Singh

Cook-Levin Theorem

* We did not prove “the first NP-completeness”
result

* Theorem: 3SAT is NP-complete

> We need to prove this without using any other “known
NP-complete” problem

> We want to directly show that every problem in NP can
be reduced to 3SAT

373F19 - Nisarg Shah & Karan Singh

Cook-Levin Theorem

* We’re not going to prove it in this class, but the key
idea is as follows

> If a problem is in NP, then 3 Turing machine T'(x, y) which

> ...takes a problem instance x, an advice y of p(n) size,
and verifies in p(n) time whether x is a YES instance...

> ...where p is some polynomial and n = |x|

> x is a YES instance iff 3y T(x,y) = ACCEPT

373F19 - Nisarg Shah & Karan Singh

Cook-Levin Theorem

* We’re not going to prove it in this class, but the key
idea is as follows

> x is a YES instance iff 3y T(x,y) = ACCEPT

» We can introduce a bunch of variables...

o T; j x = True if machine’s tape cell i contains symbol j at step k of
the computation

o H;j = True if the machine’s read/write head is at tape cell i at step
k of the computation

0 Qg x = True if machine is in state g at step k of the computation

> Then express how these variables must be related using a
bunch of constraints (clauses)
o This shows SAT is NP-complete. Then we can show SAT <,, 3SAT.

373F19 - Nisarg Shah & Karan Singh

Cook-Levin Theorem

e Claim: SAT <y 3SAT

» Given an instance ¢ = C; A C, A --- of SAT, we can take
each clause, and replace it with a bunch of clauses with
exactly 3 literals each
o For a clause with one literal C = #;:

e Add two variables z4, z,, and replace it with four clauses
(yVZVZ)NELVZLVZ)NEVZLVZL)ANAELVZV Zy)

 Verify that this is indeed always equal to £

o For a clause with two literals C = (£ V ¥5):

* Add one variable z; and replace it with the following:
Ve, VZ)N VL,V Zy)

* Verify that this is indeed logically equal to (£ V ¥5)

373F19 - Nisarg Shah & Karan Singh

Cook-Levin Theorem

e Claim: SAT <y 3SAT

o For a clause with three literals C = £, V£, V{5
e Perfect. No need to do anything!

o For a clause with 4 or more literals C = (1 V£, V-V £}):
* Add variables z4, z5, ..., Z;_3 and replace it with:
(L1 VL, VZ)NE3VZIVZ)ANELVZo VZ3) Ao
AN(Cr—2VZg_gVZg_3) N(Ex_1 V€ V Z_3)
 If one of the ¥’s is TRUE, you can make this TRUE by setting
appropriate values for z variables (check!)

 If all £ are FALSE, then there is no way to make the above
conjunction TRUE (check!)

373F19 - Nisarg Shah & Karan Singh

NP vs co-NP

 Complements of each other

> NP = short proof for YES, co-NP = short proof for NO

> If a problem “Does there exist...” is in NP, then its
complement “Does there not exist...” is in co-NP, and
vice-versa

> The same goes for NP-complete and co-NP-complete

* Example
> SAT is NP-complete (“Does there exist x satisfying ¢?”)

> Tautology is coNP-complete (“Does there exist no x
satisfying @?” = “Is ¢ always FALSE?”)

373F19 - Nisarg Shah & Karan Singh

NP N co-NP

e Clearly, P € NP N co-NP

> No advice needed; can just solve the problem in polytime
> Major open question: Is P = NP N co-NP?

* How about a short proof of both YES and NO?
> Hunt for problems not known in P but still in NP N co-NP

373F19 - Nisarg Shah & Karan Singh

NP N co-NP

* Linear programming
> [Gale—Kuhn—Tucker 1948]: LP is in NP N co-NP

CuHAPTER XTX

LINEAR PROGRAMMING AND THE THEORY OF GAMES!
By Davip GaLg, Harorp W. Kuax, anDp ALBerT W. TUCKER *

The basic “sealar” problem of linear programming is to maximize (or
minimize) a linear function of several variables constrained by a system
of linear inequalities [Dantzig, IT]. A more general “‘vector” problem
calls for maximizing (in a sense of partial order) a system of linear fune-
tions of several variables subject to a system of linear mequalities and,
perhaps, linear equations [Koopmans, I1T]. The purpose of this chapter
is to establish theorems of duality and existence for general “matrix”
problems of linear programming which contain the “scalar’” and “vector”
problems as special cases, and to relate these general problems to the
theory of zero-sum two-person games.

373F19 - Nisarg Shah & Karan Singh

NP N co-NP

* Linear programming
> But later, we found out:
> [Khachiyan 1979]: LPisin P

HYPHA
BBIMHCJAATEIRHON MATEMATHEH H MATEMATHYECROH OH3HAKH

Tom 20 Aupapr 1980 deppans L |

YR 519.852

NOJHHOMHWAJILHLIE AJITOPUTMbI B JIHHENHOM
NNPOrPAMMHPOBAHMHI

J. T XATHAH
{ Mockan)

[locTpoensl TOYHEE ANTOPHTMEL nuneﬁn\{\nm OpOTpaMMEPOBAHEA, TPYI0eM-
KOCTh HKOTOPBIX OTPaHMIEHa IMOAWHOMOM OT JANHE JBOHYHOH SAUHCH 3agadd.

373F19 - Nisarg Shah & Karan Singh

NP N co-NP

* Primality testing (“Is n a prime?”)
> [Pratt 1975]: PRIMES is in NP N co-NP

o A short NO proof is easy, but a short YES proof relies on some
interesting math

SIAM J. CompuT.
Vol. 4, No. 3, September 1975

EVERY PRIME HAS A SUCCINCT CERTIFICATE*

VAUGHAN R. PRATT?t

Abstract. To prove that a number n is composite, it suffices to exhibit the working for the multiplica-
tion of a pair of factors. This working, represented as a string, is of length bounded by a polynomial
in log, n. We show that the same property holds for the primes. It is noteworthy that almost no other
set is known to have the property that short proofs for membership or nonmembership exist for all
candidates without being known to have the property that such proofs are easy to come by. It remains
an open problem whether a prime n can be recognized in only log3 n operations of a Turing machine
for any fixed o,

The proof system used for certifying primes is as follows.

AxioM. (x, y, 1).

INFERENCE RULES.

Ry: (p.x,a), g+ (p,x,qa) provided x»~'Y4 2 1 (mod p) and gl(p — 1).
R,: (p,x,p— 1)~ p provided x"~! = 1 (mod p).

THEOREM 1. p is a theorem = p is a prime.
THEOREM 2. p is a theorem = p has a proof of [4 log, p] lines.

373F19 - Nisarg Shah & Karan Singh

NP N co-NP

* Primality testing (“Is n a prime?”)
> But later we found out:
> [Agrawal—Kayal-Saxena 2004]: PRIMES is in P

o Milestone result!

Annals of Mathematics, 160 (2004), 781-793

PRIMES is in P

By MANINDRA AGRAWAL, NEERAJ KavaL, and NITIN SAXENA*

Abstract

We present an unconditional deterministic polynomial-time algorithm that
determines whether an input number is prime or composite.

373F19 - Nisarg Shah & Karan Singh

NP N co-NP

* Factoring (“Does n have a factor < k?”)
»> FACTOR is in NP N co-NP

o Short YES proof: Just present the factor

o Short NO proof:

* Present the entire prime factorization of n, along with a short
proof that each presented factor is a prime

 ATM can check that each factor is a prime

* Actually, proofs of primality are not required now that we
know the TM can just run AKS algorithm to check primality

 The TM can also verify that none of the factors is < k

373F19 - Nisarg Shah & Karan Singh

NP N co-NP

* Factoring (“Does n have a factor < k?”)
> Major open question: Is FACTOR in P?

o Basis of several cryptographic procedures

> Challenge: Factor the following number.

74037563479561712828046796097429573142593188889231289
08493623263897276503402826627689199641962511784399589
43305021275853701189680982867331732731089309005525051
16877063299072396380786710086096962537934650563796359

RSA-704
(530,000 prize if you can factor it)

373F19 - Nisarg Shah & Karan Singh

NP N co-NP

* Factoring (“Does n have a factor < k?”)

> [Shor 1994]: We can factor an n-bit integer in 0(n>)
steps on a quantum computer.

> *Scalable* quantum computers can help
o 2001: Factored 15 = 3 x 5 (with high probability)
o 2012: Factored 21=3x7

373F19 - Nisarg Shah & Karan Singh

Other Complexity Classes

* Based on the exact time complexity
> DTIME(n), NTIME(n?), ...

o Deterministic / nondeterministic time complexity

* Based on space complexity
> DSPACE(n), NSPACE(log n)

* Using randomization
> ZPP (expected polytime, no errors)

* Allowing probabilistic errors
> RP (polytime, one-sided error)
> BPP (polytime, two-sided erros)

373F19 - Nisarg Shah & Karan Singh

