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Recap
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• Network flow
➢ Ford-Fulkerson algorithm

➢ Ways to make the running time polynomial

➢ Correctness using max-flow, min-cut

➢ Applications:
o Edge-disjoint paths

o Multiple sources/sinks

o Circulation

o Circulation with lower bounds

o Survey design

o Image segmentation



Brewery Example
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• A brewery can invest its inventory of corn, hops 
and malt into producing some amount of ale and 
some amount of beer
➢ Per unit resource requirement and profit of the two items 

are as given below

Example Courtesy: Kevin Wayne



Brewery Example
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• Suppose it produces 
𝐴 units of ale and 𝐵
units of beer

• Then we want to 
solve this program:



Linear Function
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• 𝑓:ℝ𝑛 → ℝ is a linear function if 𝑓 𝑥 = 𝑎𝑇𝑥 for 
some 𝑎 ∈ ℝ𝑛

➢ Example: 𝑓 𝑥1, 𝑥2 = 3𝑥1 − 5𝑥2 =
3
−5

𝑇 𝑥1
𝑥2

• Linear constraints:
➢ For a linear function 𝑔:ℝ𝑛 → ℝ and 𝑐 ∈ ℝ, 𝑔 𝑥 = 𝑐

➢ Line in the plane (or a hyperplane in ℝ𝑛)

➢ Example: 5𝑥1 + 7𝑥2 = 10



Linear Function
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• Geometrically, 𝑎 is the normal vector of the line(or 
hyperplane) represented by 𝑎𝑇𝑥 = 𝑐



Linear Inequality
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• 𝑎𝑇𝑥 ≤ 𝑐 represents a “half-space”



Linear Programming
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• Maximize/minimize a linear function subject to 
linear equality/inequality constraints



Geometrically…
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Back to Brewery Example
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Back to Brewery Example
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• Claim: Regardless of the objective function, the 
optimal solution must be at a vertex

Optimal Solution At A Vertex
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Convexity
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• Convex set 𝑆: If 𝑥, 𝑦 ∈ 𝑆 and 𝜆 ∈ [0,1], then 𝜆𝑥 +
1 − 𝜆 𝑦 ∈ 𝑆 too.

• Vertex: A point which cannot be written as a strict 
convex combination of any two points in the set

• Observation: Feasible region of an LP is a convex set



Optimal Solution At A Vertex
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• Proof intuition:
➢ If 𝑥 is not a vertex, we can move towards the boundary in a direction 

where the objective value does not decrease

o Take some direction 𝑑 such that you can move by at least 𝜖 in both 𝑑
and −𝑑 directions while remaining within the region

o Objective must not decrease in at least one of {𝑑, −𝑑} directions

➢ Reach a point that is “tight” for at least one more constraint

➢ Repeat until we are at a vertex



LP, Standard Formulation
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• Input: 𝑐, 𝑎1, 𝑎2, … , 𝑎𝑚 ∈ ℝ𝑛, 𝑏 ∈ ℝ𝑚

➢ There are 𝑛 variables and 𝑚 constraints

• Goal:



LP, Standard Matrix Form
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• Input: 𝑐, 𝑎1, 𝑎2, … , 𝑎𝑚 ∈ ℝ𝑛, 𝑏 ∈ ℝ𝑚

➢ There are 𝑛 variables and 𝑚 constraints

• Goal:



Convert to Standard Form
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• What if the LP is not in standard form?

➢ Constraints that use ≥
o 𝑎𝑇𝑥 ≥ 𝑏 ⇔ −𝑎𝑇𝑥 ≤ −𝑏

➢ Constraints that use equality
o 𝑎𝑇𝑥 = 𝑏 ⇔ 𝑎𝑇𝑥 ≤ 𝑏, 𝑎𝑇𝑥 ≥ 𝑏

➢ Objective function is a minimization
o Minimize 𝑐𝑇𝑥 ⇔ Maximize −𝑐𝑇𝑥

➢ Variable is unconstrained
o 𝑥 with no constraint  ⇔ Replace 𝑥 by two variables 𝑥′and 𝑥′′, 

replace every occurrence of 𝑥 with 𝑥′ − 𝑥′′, and add constraints 
𝑥′ ≥ 0, 𝑥′′ ≥ 0



LP Transformation Example
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Optimal Solution
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• Does this LP always have an optimal solution?

• No! The LP can fail for two reasons
1. It is infeasible, i.e. 𝑥 𝐴𝑥 ≤ 𝑏} = ∅

o Example: 𝑥1 ≤ 1 and 𝑥1 ≥ 2 (or −𝑥1≤ −2) constraints

2. It is unbounded, i.e. you can get arbitrarily large or small 
objective values
o Example: maximize 𝑥1 subject to 𝑥1 ≥ 0

• We know that if the LP has an optimal solution, it 
must be at a vertex.



Simplex Algorithm
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• Simple algorithm, easy to specify geometrically 

• Worst-case running time is exponential

• Excellent performance in practice



Simplex: Geometric View
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Algorithmic Implementation
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Start at a 
vertex of 
feasible 

polytope

Move to a 
neighbor vertex 

with better 
objective value

Terminate, declare 
the current 

solution and value 
as optimal

Is there a 
neighbor vertex 

with better 
objective value?



How Do We Implement This?
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• We’ll work with the slack form of LP
➢ Convenient for implementing simplex operations

➢ We want to maximize 𝑧 in the slack form, but for now, 
forget about the maximization objective



Slack Form
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Slack Form
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Simplex: Step 1
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• Start at a feasible vertex
➢ How do we find a feasible vertex?

➢ For now, assume 𝑏 ≥ 0 (each 𝑏𝑖 ≥ 0)
o In this case, 𝑥 = 0 is a feasible vertex.

o In the slack form, this means setting the nonbasic variables to 0

➢ We’ll later see what to do in the general case



Simple: Step 2

373F19 - Nisarg Shah & Karan Singh 27

• What next? Let’s look at an example

• To increase the value of 𝑧:
➢ Find a nonbasic variable with a positive coefficient
o This is called an entering variable

➢ See how much you can increase its value without 
violating any constraints



Simple: Step 2
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This is because the current 
values of 𝑥2 and 𝑥3 are 0, 

and we need 𝑥4, 𝑥5, 𝑥6 ≥ 0



Simple: Step 2
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Tightest obstacle

➢ Solve the tightest obstacle for the nonbasic variable

𝑥1 = 9 −
𝑥2
4
−
𝑥3
2
−
𝑥6
4

o Substitute the entering variable (called pivot) in other equations

o Now 𝑥1 becomes basic and 𝑥6 becomes non-basic

o 𝑥6 is called the leaving variable



Simplex: Step 2
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• After one iteration of this step:
➢ The basic feasible solution (i.e. substituting 0 for all 

nonbasic variables) improves from 𝑧 = 0 to 𝑧 = 27

• Repeat!



Simplex: Step 2
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Simplex: Step 2
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Simplex: Step 2
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• There is no leaving variable (nonbasic variable with positive coefficient). 
• What now? Nothing! We are done. 
• Take the basic feasible solution (𝑥3 = 𝑥5 = 𝑥6 = 0).
• Gives the optimal value 𝑧 = 28
• In the optimal solution, 𝑥1 = 8, 𝑥2 = 4, 𝑥3 = 0



Simplex Overview
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Start at a 
vertex of 
feasible 

polytope

Move to a 
neighbor vertex 

with better 
objective value

Terminate, declare 
the current 

solution and value 
as optimal

Is there a 
neighbor vertex 

with better 
objective value?



Simplex Overview
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Assuming 𝑏 ≥
0, start with a 
basic feasible 

solution

Move to a 
neighbor vertex 

with better 
objective value

Terminate, declare 
the current 

solution and value 
as optimal

Is there a 
neighbor vertex 

with better 
objective value?



Simplex Overview
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Assuming 𝑏 ≥
0, start with a 
basic feasible 

solution

Move to a 
neighbor vertex 

with better 
objective value

Terminate, declare 
the current 

solution and value 
as optimal

Is there a leaving 
variable? 

(coefficient > 0 in 
𝑧)



Simplex Overview
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Assuming 𝑏 ≥
0, start with a 
basic feasible 

solution

Pivot on a leaving 
variable

Terminate, declare 
the current 

solution and value 
as optimal

Is there a leaving 
variable? 

(coefficient > 0 in 
𝑧)



Simplex Overview
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Assuming 𝑏 ≥
0, start with a 
basic feasible 

solution

Pivot on a leaving 
variable

Terminate, declare 
optimal value

Is there a leaving 
variable? 

(coefficient > 0 in 
𝑧)



Some Outstanding Issues
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• What if the entering variable has no upper bound?
➢ If it doesn’t appear in any constraints, or only appears in 

constraints where it can go to ∞

➢ Then 𝑧 can also go to ∞, so declare that LP is unbounded

• What if pivoting doesn’t change the constant in 𝑧?
➢ Known as degeneracy, and can lead to infinite loops

➢ Can be prevented by “perturbing” 𝑏 by a small random 
amount in each coordinate

➢ Or by carefully breaking ties among entering and leaving 
variables, e.g., by smallest index (known as Bland’s rule)



Some Outstanding Issues

373F19 - Nisarg Shah & Karan Singh 40

• We assumed 𝑏 ≥ 0, and then started with the 
vertex 𝑥 = 0

• What if this assumption does not hold?

𝐿𝑃1

Max 𝑐𝑇𝑥

s.t. 𝑎1
𝑇𝑥 ≤ 𝑏1

𝑎2
𝑇𝑥 ≤ 𝑏2

⋮

𝑎𝑚
𝑇 𝑥 ≤ 𝑏𝑚

𝑥 ≥ 0

𝐿𝑃2

Max 𝑐𝑇𝑥

s.t. 𝑎1
𝑇𝑥 + 𝑠1 = 𝑏1

𝑎2
𝑇𝑥 + 𝑠2 = 𝑏2

⋮

𝑎𝑚
𝑇 𝑥 + 𝑠𝑚 = 𝑏𝑚

𝑥, 𝑠 ≥ 0

𝐿𝑃3

Max 𝑐𝑇𝑥

s.t. 𝑎1
𝑇𝑥 + 𝑠1 = 𝑏1

−𝑎2
𝑇𝑥 − 𝑠2 = −𝑏2

⋮

−𝑎𝑚
𝑇 𝑥 − 𝑠𝑚 = −𝑏𝑚

𝑥, 𝑠 ≥ 0

Multiply every 
constraint with 
negative 𝑏𝑖 by 
− 1 so RHS is 
now positive



Some Outstanding Issues
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• We assumed 𝑏 ≥ 0, and then started with the 
vertex 𝑥 = 0

• What if this assumption does not hold?

𝐿𝑃3

Max 𝑐𝑇𝑥

s.t. 𝑎1
𝑇𝑥 + 𝑠1 = 𝑏1

−𝑎2
𝑇𝑥 − 𝑠2 = −𝑏2

⋮

−𝑎𝑚
𝑇 𝑥 − 𝑠𝑚 = −𝑏𝑚

𝑥, 𝑠 ≥ 0
Remember: 
the RHS is now 
positive

𝐿𝑃4

Min σ𝑖 𝑧𝑖

s.t. 𝑎1
𝑇𝑥 + 𝑠1 + 𝑧1 = 𝑏1

−𝑎2
𝑇𝑥 − 𝑠2 + 𝑧2 = −𝑏2

⋮

−𝑎𝑚
𝑇 𝑥 − 𝑠𝑚 + 𝑧𝑚 = −𝑏𝑚

𝑥, 𝑠, 𝑧 ≥ 0



Some Outstanding Issues
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• We assumed 𝑏 ≥ 0, and then started with the 
vertex 𝑥 = 0

• What if this assumption does not hold?

Remember: 
the RHS is now 
positive

𝐿𝑃4

Min σ𝑖 𝑧𝑖

s.t. 𝑎1
𝑇𝑥 + 𝑠1 + 𝑧1 = 𝑏1

−𝑎2
𝑇𝑥 − 𝑠2 + 𝑧2 = −𝑏2

⋮

−𝑎𝑚
𝑇 𝑥 − 𝑠𝑚 + 𝑧𝑚 = −𝑏𝑚

𝑥, 𝑠, 𝑧 ≥ 0

What now?
• Solve 𝐿𝑃4 using simplex with 

the initial basic solution 
being 𝑥 = 𝑠 = 0, 𝑧 = 𝑏

• If its optimum value is 0, 
extract a basic feasible 
solution 𝑥∗ from it, use it to 
solve 𝐿𝑃1 using simplex

• If optimum value for 𝐿𝑃4 is 
greater than 0, then 𝐿𝑃1 is 
infeasible



Some Outstanding Issues
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• We assumed 𝑏 ≥ 0, and then started with the 
vertex 𝑥 = 0

• What if this assumption does not hold?

𝐿𝑃1

Max 𝑐𝑇𝑥

s.t. 𝑎1
𝑇𝑥 ≤ 𝑏1

𝑎2
𝑇𝑥 ≤ 𝑏2

⋮

𝑎𝑚
𝑇 𝑥 ≤ 𝑏𝑚

𝑥 ≥ 0

𝐿𝑃2

Min σ𝑖 𝑧𝑖

s.t. 𝑎1
𝑇𝑥 + 𝑠1 + 𝑧1 = 𝑏1

𝑎2
𝑇𝑥 + 𝑠2 + 𝑧2 = 𝑏2

⋮

𝑎𝑚
𝑇 𝑥 + 𝑠𝑚 + 𝑧𝑚 = 𝑏𝑚

𝑥, 𝑠 ≥ 0

• Solve 𝐿𝑃2 using simplex with 
the initial basic feasible 
solution 𝑥 = 𝑠 = 0, 𝑧 = 𝑏

• If its optimum value is 0, 
extract a basic feasible 
solution 𝑥∗ from it, use it to 
solve 𝐿𝑃1 using simplex

• If optimum value for 𝐿𝑃2 is 
greater than 0, then 𝐿𝑃1 is 
infeasible



Some Outstanding Issues
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• Pseudocode? Proof of correctness? Running time 
analysis?

• See textbook for details!



Running Time

373F19 - Nisarg Shah & Karan Singh 45

• Notes
➢ Number of vertices of a polytope can be exponential in 

the number of constraints
o There are examples where simplex takes exponential time if you 

choose your pivots arbitrarily

o No pivot rule known which guarantees polynomial running time

➢ There are other algorithms which run in polynomial time
o Ellipsoid method, interior point method, …

o Ellipsoid uses 𝑂(𝑚𝑛3𝐿) arithmetic operations, where 𝐿 = length of 
input

o But no known strongly polynomial time algorithm

• Number of arithmetic operations = poly(m,n)



Certificate of Optimality
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• Suppose you design a state-of-the-art LP solver 
that can solve very large problem instances

• You want to convince someone that you have this 
new technology without showing them the code
➢ Idea: They can give you very large LPs and you can quickly 

return the optimal solutions

➢ Question: But how would they know that your solutions 
are optimal, if they don’t have the technology to solve 
those LPs?



Certificate of Optimality
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• Suppose I tell you that 𝑥1, 𝑥2 = (100,300) is 
optimal with objective value 1900

• How can you check this?
➢ Note: Can easily substitute (𝑥1, 𝑥2), and verify that it is 

feasible, and its objective value is indeed 1900



Certificate of Optimality
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• Any solution that satisfies these inequalities also 
satisfies their positive combinations
➢ E.g. 2*first_constraint + 5*second_constraint + 

3*third_constraint

➢ Try to take combinations which give you 𝑥1 + 6𝑥2 on LHS

• Claim: 𝑥1, 𝑥2 = (100,300) is 
optimal with objective value 1900



Certificate of Optimality
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• first_constraint + 6*second_constraint
➢ 𝑥1 + 6𝑥2 ≤ 200 + 6 ∗ 300 = 2000

➢ This shows that no feasible solution can beat 2000

• Claim: 𝑥1, 𝑥2 = (100,300) is 
optimal with objective value 1900



Certificate of Optimality
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• 5*second_constraint + third_constraint
➢ 5𝑥2 + 𝑥1 + 𝑥2 ≤ 5 ∗ 300 + 400 = 1900

➢ This shows that no feasible solution can beat 1900
o No need to proceed further

o We already know one solution that achieves 1900, so it must be 
optimal!

• Claim: 𝑥1, 𝑥2 = (100,300) is 
optimal with objective value 1900



Is There a General Algorithm?

373F19 - Nisarg Shah & Karan Singh 51

• Introduce variables 𝑦1, 𝑦2, 𝑦3 by which we will be 
multiplying the three constraints
➢ Note: These need not be integers. They can be reals.

• After multiplying and adding constraints, we get:
𝑦1 + 𝑦3 𝑥1 + 𝑦2 + 𝑦3 𝑥2 ≤ 200𝑦1 + 300𝑦2 + 400𝑦3



Is There a General Algorithm?
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➢ We have: 
𝑦1 + 𝑦3 𝑥1 + 𝑦2 + 𝑦3 𝑥2 ≤ 200𝑦1 + 300𝑦2 + 400𝑦3

➢ What do we want?
o 𝑦1, 𝑦2, 𝑦3 ≥ 0 because otherwise direction of inequality flips

o LHS to look like objective 𝑥1 + 6𝑥2
• In fact, it is sufficient for LHS to be an upper bound on objective

• So we want 𝑦1 + 𝑦3 ≥ 1 and 𝑦2 + 𝑦3 ≥ 6



Is There a General Algorithm?
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➢ We have: 
𝑦1 + 𝑦3 𝑥1 + 𝑦2 + 𝑦3 𝑥2 ≤ 200𝑦1 + 300𝑦2 + 400𝑦3

➢ What do we want?
o 𝑦1, 𝑦2, 𝑦3 ≥ 0

o 𝑦1 + 𝑦3 ≥ 1, 𝑦2 + 𝑦3 ≥ 6

o Subject to these, we want to minimize the upper bound 200𝑦1 +
300𝑦2 + 400𝑦3



Is There a General Algorithm?
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➢ We have: 
𝑦1 + 𝑦3 𝑥1 + 𝑦2 + 𝑦3 𝑥2 ≤ 200𝑦1 + 300𝑦2 + 400𝑦3

➢ What do we want?
o This is just another LP!

o Called the dual

o Original LP is called the primal



Is There a General Algorithm?
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➢ The problem of verifying optimality is another LP
o For any 𝑦1, 𝑦2, 𝑦3 that you can find, the objective value of the 

dual is an upper bound on the objective value of the primal

o If you found a specific 𝑦1, 𝑦2, 𝑦3 for which this dual objective 
becomes equal to the primal objective for the (𝑥1, 𝑥2) given to 
you, then you would know that the given 𝑥1, 𝑥2 is optimal for 
primal (and your (𝑦1, 𝑦2, 𝑦3) is optimal for dual)



Is There a General Algorithm?
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➢ The problem of verifying optimality is another LP
o Issue 1: But…but…if I can’t solve large LPs, how will I solve the dual 

to verify if optimality of (𝑥1, 𝑥2) given to me?

• You don’t. Ask the other party to give you both (𝑥1, 𝑥2) and the 
corresponding 𝑦1, 𝑦2, 𝑦3 for proof of optimality

o Issue 2: What if there are no (𝑦1, 𝑦2, 𝑦3) for which dual objective 
matches primal objective under optimal solution (𝑥1, 𝑥2)?

• This can’t happen!



Is There a General Algorithm?
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Primal LP Dual LP

➢ General version, in our standard form for LPs

➢ Recap:
o 𝑐𝑇𝑥 for any feasible 𝑥 ≤ 𝑦𝑇𝑏 for any feasible 𝑦

o max
primal feasible 𝑥

𝑐𝑇𝑥 ≤ min
dual feasible 𝑦

𝑦𝑇𝑏

o If there are (𝑥∗, 𝑦∗) with 𝑐𝑇𝑥∗ = 𝑦∗ 𝑇𝑏, then both are optimal

o In fact, for optimal 𝑥∗, 𝑦∗ , we are claiming this must happen!

• Does this remind you of something? Max-flow, min-cut…



Weak Duality
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• From here on, we assume that primal LP is feasible and also 
not unbounded

• Weak duality theorem:

➢ For any primal feasible 𝑥 and dual feasible 𝑦, 𝑐𝑇𝑥 ≤ 𝑦𝑇𝑏

• Proof:
𝑐𝑇𝑥 ≤ 𝑦𝑇𝐴 𝑥 = 𝑦𝑇 𝐴𝑥 ≤ 𝑦𝑇𝑏

Primal LP Dual LP



Strong Duality
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• Strong duality theorem:
➢ For any primal optimal 𝑥∗ and dual optimal 𝑦∗, 𝑐𝑇𝑥∗ = 𝑦∗ 𝑇𝑏

Primal LP Dual LP



Strong Duality Proof
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• Farkas’ lemma (one of many, many versions):
➢ Exactly one of the following holds:

1) There exists 𝑥 such that 𝐴𝑥 ≤ 𝑏

2) There exists 𝑦 such that 𝑦𝑇𝐴 = 0, 𝑦 ≥ 0, 𝑦𝑇𝑏 < 0

• Geometric intuition:
➢ Define image of 𝐴 = set of all possible values of 𝐴𝑥

➢ It is known that this is a “linear subspace” (e.g. a line in a 
plane, a line or plane in 3D, etc)

This slide is not in the 
scope of the course



Strong Duality Proof
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• Farkas’ lemma: Exactly one of the following holds:
1) There exists 𝑥 such that 𝐴𝑥 ≤ 𝑏

2) There exists 𝑦 such that 𝑦𝑇𝐴 = 0, 𝑦 ≥ 0, 𝑦𝑇𝑏 < 0

1) Image of 𝐴 contains a point “below” 𝑏 2) The region “below” 𝑏 doesn’t intersect image of 𝐴
this is witnessed by normal vector to the image of 𝐴
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• Strong duality theorem:
➢ For any primal optimal 𝑥∗ and dual optimal 𝑦∗, 𝑐𝑇𝑥∗ = 𝑦∗ 𝑇𝑏

➢ Proof (by contradiction):
o Suppose optimal dual objective value > 𝑧∗

o Let 𝑧∗ = 𝑐𝑇𝑥∗ be the optimal primal value. By weak duality, there is no 𝑦
such that 𝑦𝑇𝐴 ≥ 𝑐𝑇 and 𝑦𝑇𝑏 ≤ 𝑧∗, i.e., 
there is no 𝑦 such that

Primal LP Dual LP
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➢ There is no 𝑦 such that

➢ By Farkas’ lemma, there is 𝑥 and 𝜆 such that

➢ Case 1: 𝜆 > 0
o Note: 𝑐𝑇𝑥 > 𝜆𝑧∗ and 𝐴𝑥 = 0 = 𝜆𝑏. 

o Divide both by 𝜆 to get 𝐴
𝑥

𝜆
= 𝑏 and 𝑐𝑇

𝑥

𝜆
> 𝑧∗

• Contradicts optimality of 𝑧∗

➢ Case 2: 𝜆 = 0
o We have 𝐴𝑥 = 0 and 𝑐𝑇𝑥 > 0

o Adding 𝑥 to optimal 𝑥∗ of primal improves objective value beyond 
𝑧∗ ⇒ contradiction
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