CSC373

Week 6:
Linear Programming

Illustration Courtesy:
Kevin Wayne & Denis Pankratov
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Recap

* Network flow
> Ford-Fulkerson algorithm
» Ways to make the running time polynomial
> Correctness using max-flow, min-cut

> Applications:
o Edge-disjoint paths
o Multiple sources/sinks
o Circulation
o Circulation with lower bounds
o Survey design
o Image segmentation
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Brewery Example

* A brewery can invest its inventory of corn, hops
and malt into producing some amount of ale and
some amount of beer

> Per unit resource requirement and profit of the two items
are as given below

Corn Hops Malt Profit

Ale (barrel)
Beer (barrel) 15 4 20 23
constraint 480 160 1190

Example Courtesy: Kevin Wayne

373F19 - Nisarg Shah & Karan Singh 3



C Hop Malt Profit

Ale (barrel)
Beer (barrel) 15
constraint 480 160 1190

objective function

* Suppose it produces

Ale Beer
A units of aleand B .
1 rofit
units of beer max
s.t. 5A + 15B = 480 Com
e Then we want to A + 4B = 160 Hops
solve this program: 354 + 20B = 1190  Malt
A B = 0

constraint

decision variable
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Linear Function

 f:R™ - Ris a linear function if f(x) = a’x for
some a € R"

> Example: f(xq1,x5) = 3x1 — 5x, = (—35)T (2)

* Linear constraints:
> For alinear function g: R™ - Randc € R, g(x) =
> Line in the plane (or a hyperplane in R")
» Example: 5x; + 7x, = 10
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Linear Function

 Geometrically, a is the normal vector of the line(or
hyperplane) represented by a’ x = ¢

_C
@ X
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Linear Inequality

« al'x < c represents a “half-space”

7.

Geometrically: half-space
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Linear Programming

* Maximize/minimize a linear function subject to
linear equality/inequality constraints

Could be min
Objective function

max ri + 6xo

Constraints r1 < 200
ro < 300

T+ T9 < 400 Linear constraints:

r1, 19 > 0
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Geometrically...

Objective function max 1 + 619

Constraints r1 < 200 ] )
To Any point here is a
xro < 300 i feasible solution
r1 + o < 400 4008

Ti,%0 > 0

Feasible region — polytope, aka R Y . |
intersection of half-spaces! : : 200 1
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Back to Brewery Example

Hops
4A + 4B < 160

(0, 32)

Beer

Malt
35A+20B <1190

(12, 28)

Corn
5A + 15B <480
(26, 14)

v

(0, 0) |
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Back to Brewery Example

13A +23B=5800
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Ale

-~
~

13A + 23B=5442




Optimal Solution At A Vertex

* Claim: Regardless of the objective function, the
optimal solution must be at a vertex

0, 32)

(26, 14)

(0, 0) | Ale (34, 0)
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Convexity

* ConvexsetS:Ifx,y € Sand 4 € [0,1], then Ax +
(1—-A)y € S too.

* Vertex: A point which cannot be written as a strict
convex combination of any two points in the set

* Observation: Feasible region of an LP is a convex set

vertex

~N

convex not convex
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Optimal Solution At A Vertex

* Proof intuition:

> If x is not a vertex, we can move towards the boundary in a direction
where the objective value does not decrease

o Take some direction d such that you can move by at least € in both d
and —d directions while remaining within the region

o Objective must not decrease in at least one of {d, —d} directions
> Reach a point that is “tight” for at least one more constraint
> Repeat until we are at a vertex
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LP, Standard Formulation

* Input: ¢,aq, a,, ...,a,, € R, b € R™
> There are n variables and m constraints

. T

Subjectto alx < b,

al.x < b,

x =0 .
n more constraints

e Goal:
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LP, Standard Matrix Form

* Input: ¢,aq, a,, ...,a,, € R, b € R™
> There are n variables and m constraints

e Goal:

n variables

I
g
B

Maximize cT x

Subjectto Ax < b m constraints
x=0

n more constraints
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Convert to Standard Form

e What if the LP is not in standard form?

> Constraints that use >
calx>bh © —alx < —-b

> Constraints that use equality
ocalx=b © a’x<bh, a’lx>b

> Objective function is a minimization
o Minimize cTx & Maximize —cTx

» Variable is unconstrained

o x with no constraint & Replace x by two variables x'and x",
replace every occurrence of x with x’ — x"’, and add constraints
x'>0 x">0
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LP Transformation Example

minimize —2x; + 3x, maximize 2x; — 3Xx,
subject to — subject to
X1 + x» =7 Xy, + x», = 7
Yy, — 2x, =< 4 Xp — 2x, =< 4
X > 0, X > 0.
maximize 2x; — 3x, 4+ 3xj
subject to ’ )
Xy, + x, = x, =17
X, — 2x, 4+ 2x; <
X1, X5, X, > 0.
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Optimal Solution

* Does this LP always have an optimal solution?

* No! The LP can fail for two reasons
1. Itis infeasible, i.e. {x |[Ax < b} =0
o Example: x; < 1and x; = 2 (or —x; < —2) constraints

2. Itis unbounded, i.e. you can get arbitrarily large or small
objective values

o Example: maximize x; subjecttox; = 0

* We know that if the LP has an optimal solution, it
must be at a vertex.
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Simplex Algorithm

let v be any vertex of the feasible region
while there is a neighbor v’ of v with better objective value:
set v="1

» Simple algorithm, easy to specify geometrically
* Worst-case running time is exponential
* Excellent performance in practice
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Simplex: Geometric View

let v be any vertex of the feasible region

while there is a neighbor ¢’ of v with better objective value:
/

set v=v
Profit $1900
300
max rq + 6x9
Il S 200 200 81400
x9 < 300
T To < 400
fLT 2 s 100 A
r1,19 >0

00— 95200
0 100 200
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Algorithmic Implementation

Move to a
neighbor vertex
with better
objective value

Start at a Is there a
vertex of neighbor vertex
feasible with better
polytope objective value?

Terminate, declare
the current
solution and value
as optimal
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How Do We Implement This?

e We'll work with the slack form of LP

> Convenient for implementing simplex operations

> We want to maximize z in the slack form, but for now,
forget about the maximization objective

Standard form: Slack form:
Maximize cT x 7z =clx
Subjectto Ax < b s=b—Ax

x =0 s, x =0
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Slack Form

maximize 2x; — 3x, +
subject to
Xy + X -—
X1 — Xz ¥
X, — 2x, +
, O O

IA A A
I
TN SRS IS

|V

maximize

subject to

t:> Basic Variables
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Nonbasic Variables



Slack Form

Z 2x,

Xy = T — X, -
Xxs = —7 + X1  +
X6 4 - x; +
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3x, + 3x;
X2 + X3
X2 — X3
2x,  —  2Xx3
0
maximize

subject to

\\ | Basic Variables

Xy
Xs

Xe

Nonbasic Variables

+ +

[y}



Simplex: Step 1

e Start at a feasible vertex
> How do we find a feasible vertex?

» For now, assume b = 0 (each b; = 0)
o In this case, x = 0 is a feasible vertex.
o In the slack form, this means setting the nonbasic variables to 0

> We'll later see what to do in the general case

Standard form: Slack form:
Maximize cTx z=clx
Subjectto Ax < b s=b—Ax

x =0 s, x =0

373F19 - Nisarg Shah & Karan Singh




Simple: Step 2
 What next? Let’s look at an example

Z — 3.\‘1 + .\'2 + 2.\‘3

xg4 = 30 — x; — Xx, — 3Xxj3
xXs = 24 — 2x; — 2x, — 5x;
Xe = 36 — 4x; — X — 2x3
X1,X2,X3, X4, X5, X¢ > 0

* To increase the value of z:
> Find a nonbasic variable with a positive coefficient
o This is called an entering variable

> See how much you can increase its value without
violating any constraints
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Simple: Step 2

Try to increase!

Obstacles!
< 3x, -+ X, 4+ 2x3
vy = 30 - i — Yo, — 943 x; < 30
Xs = 24 — 2x; — 2x, — 5x; xXp <24/2=12
Xe 36 — 4x; — xy — 2x3 X, <£36/4=9
X1 Xos Kas Kis Xiw Xig > 0

Tightest obstacle!

This is because the current
values of x, and x5 are 0,
and we need x4, X5, xg = 0
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Simple: Step 2

& — 3.\‘1 + Xn + 2.\‘3

x4 = 30 — x; — X5 — 3Xx;3

Xxs = 24 — 2x;, — 2x, — 5x;

X% = B — 4y — Xz — Iy Tightest obstacle
X1,X2,X3,X4,X5, X6 > 0

> Solve the tightest obstacle for the nonbasic variable

o Substitute the entering variable (called pivot) in other equations
o Now x; becomes basic and x; becomes non-basic
O Xg is called the leaving variable
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Simplex: Step 2

X> X3
z = 21 + — <+ 3
Z . 3.1‘ 1 + .\.2 + 2.\.‘3 :.t \7}
i Xy = 9 — = - =
Xy = 30 — x; — x, — 3x; ) 4 2
_ 3x, 5x3
vs = 24 — 2x; — 2x, — 5Xx;3 xg = 21 - T T &
Xe = 36 — 4x; — x» — 2x3 e = 6 — 22 4
) A5 = 5 X

X 14 Koy X2 Xas X5y X5 > 0 =

X1,X2,X3,X4, X5, X6 >

* After one iteration of this step:

> The basic feasible solution (i.e. substituting O for all
nonbasic variables) improves fromz = 0toz = 27

* Repeat!
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Simplex: Step 2

Entering variable
Try to increase!

4

=2 o4 2oy B2 T
N 2 + 4 16 3 16
A7) A3 AH . -
o= 9 - F - 5 - 7 L= 2 - ¥ _ s
2\f‘ \2 \4 "‘ 4 6 T 3 16
X — 2 l —_ 2 —_ ; _|_ _6 3 3.\'2 Xg Xeg
) 4 2 4 R - S S
. - 3x5 1+ ‘e 6:) 3x 5x X
Xs = 6 — — - 4+ = X = 9 — + =2 4 == _ =
- = 4 16 8 16
i \\3\\4 e . Xis KXoy KaaXis Hsu Xg > 0

~Leaving variable
Tightest obstacle!
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Simplex: Step 2

Entering variable
Try to increase!

/

- ")_
o w X5 1 1xe o= 28 - » L =
ST 4 16 8 16 \6 \6 f
(= 2 - %o, X M o= 8 + = + = - =
T 16 8 16 86 76 3
: ' X3 2X s X
6= 2o omoox R
- 2 8 4 8 3 3 3
69 3x5 5xs Xg X3 X5
Xa =N —_ — - — . X, = I8 — — o e
H 7 T 16 T3 16 ! 2 2
Xy Xos N X g Xg = 0 X1,X2,X3,X4,X5,X6 = 0

~Leaving variable
Tightest obstacle!
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Simplex: Step 2

Lo X3 X 2
6 6 3
X3 Xs Xg

X, = 3 + o -+ — — -
6 6 3
H_'I[; 2.\'5 e

X9 == "I' - - - — + -
A 1 J
X3 Xs

vy = 18 — = —

4 . 2 2

Vi, X2.X3, X4, X5, X = 0

* There is no leaving variable (nonbasic variable with positive coefficient).
 What now? Nothing! We are done.

* Take the basic feasible solution (x3 = x5 = x4 = 0).
* Gives the optimal value z = 28
* Inthe optimal solution, x; =8,x, =4,x3 =0
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Simplex Overview

Start at a Is there a
vertex of neighbor vertex
feasible with better
polytope objective value?
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Move to a
neighbor vertex
with better
objective value

Terminate, declare
the current
solution and value
as optimal




Simplex Overview

Assuming b > Is there a
0, start with a neighbor vertex

basic feasible with better
solution objective value?
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Move to a
neighbor vertex
with better
objective value

Terminate, declare
the current
solution and value
as optimal




Simplex Overview

Assuming b > Is there a leaving

0, start with a variable?

basic feasible (coefficient > 0 in
solution Z)
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Move to a
neighbor vertex
with better
objective value

Terminate, declare
the current
solution and value
as optimal




Simplex Overview

Assuming b > Is there a leaving

0, start with a variable?

basic feasible (coefficient > 0 in
solution Z)
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Pivot on a leaving
variable

Terminate, declare
the current
solution and value
as optimal




Simplex Overview

Assuming b > Is there a leaving

0, start with a variable?

basic feasible (coefficient > 0 in
solution Z)
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Pivot on a leaving
variable

Terminate, declare
optimal value




Some Outstanding Issues

 What if the entering variable has no upper bound?

> If it doesn’t appear in any constraints, or only appears in
constraints where it can go to o

> Then z can also go to oo, so declare that LP is unbounded

* What if pivoting doesn’t change the constant in z?
> Known as degeneracy, and can lead to infinite loops

> Can be prevented by “perturbing” b by a small random
amount in each coordinate

> Or by carefully breaking ties among entering and leaving
variables, e.g., by smallest index (known as Bland’s rule)
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Some Outstanding Issues

* We assumed b = 0, and then started with the
vertexx = 0

 What if this assumption does not hold?

LP; LP, LP;
Max cT x Max cT x Max cT x ,
. . . Multiply every
st.ajx<b; mmmp st.a;jx+s =b )| s.t.a;x + 51 = by constraint with
alx < b, alx +s, =b, —alx — s, = —b, +—7 Nnegative b; by
: — 1soRHS s
' now positive
al’ x < b,, al’. x + s, = by, —alx — s, = —by,
x>0 x,s =0 x,s =0
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Some Outstanding Issues

* We assumed b = 0, and then started with the

vertex x = 0

 What if this assumption does not hold?

LP;
Max cTx

st.alx+s, =b,

—alx —s, = —b,
T _
x,s =0

7

Remember:

the RHS is now
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LP,
Min Zi Zj

st.alx+s;,+z; =b

—alx —s,+2z, = —b,
—alx—s, + 2z, =—b

m m m — m
x,5,z=>0

positive




Some Outstanding Issues

* We assumed b = 0, and then started with the
vertexx = 0

 What if this assumption does not hold?

LP,
Min Zizi
st.alx+s,+z, =b;

—alx —s, +2z, = —b,

/ —ahx — sy + Zy = —by,

Remember:
the RHS is now
positive

x,5,z=>0
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What now?

* Solve LP, using simplex with
the initial basic solution
beingx =s =0,z = |b]

e Ifits optimum value is 0,
extract a basic feasible
solution x™ from it, use it to
solve LP; using simplex

* If optimum value for LP, is
greater than 0, then LP; is
infeasible




Some Outstanding Issues

* We assumed b = 0, and then started with the
vertexx = 0

 What if this assumption does not hold?

LP, LP, * Solve LP, using simplex with
the initial basic feasible
solutionx =s=0,z=0»b
st.ajx<b, mmp stajx+s;+z=b  mmp ¢ Ifitsoptimum valueisO,
alx < b, alx + s, + 7z, = b, extract a basic feasible
solution x* from it, use it to
solve LP; using simplex

T .
Max c¢” x Min }3; z;

A X < by AinX + S + Z;m = by * If optimum value for LP, is
x>0 x.5>0 greater than 0, then LP; is
infeasible
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Some Outstanding Issues

* Pseudocode? Proof of correctness? Running time
analysis?

e See textbook for details!
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Running Time

* Notes

> Number of vertices of a polytope can be exponential in
the number of constraints

o There are examples where simplex takes exponential time if you
choose your pivots arbitrarily

o No pivot rule known which guarantees polynomial running time

» There are other algorithms which run in polynomial time
o Ellipsoid method, interior point method, ...

o Ellipsoid uses O(mn3L) arithmetic operations, where L = length of
input

o But no known strongly polynomial time algorithm
 Number of arithmetic operations = poly(m,n)
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Certificate of Optimality

* Suppose you design a state-of-the-art LP solver
that can solve very large problem instances

* You want to convince someone that you have this
new technology without showing them the code

> ldea: They can give you very large LPs and you can quickly
return the optimal solutions

> Question: But how would they know that your solutions
are optimal, if they don’t have the technology to solve
those LPs?
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Certificate of Optimality

max x1 + 6x9
r1 < 200
T9 < 300
r1 + x9 < 400

&y, Lo > 0

* Suppose | tell you that (x4, x,) = (100,300) is
optimal with objective value 1900

* How can you check this?

> Note: Can easily substitute (x4, x,), and verify that it is
feasible, and its objective value is indeed 1900
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Certificate of Optimality

max xrq1 + 6xo

r1 < 200
9 < 300 . Clal.m: (xl.,xz) = (100,300) is
N optimal with objective value 1900
r1 + x9 < 400
T, 29 21U

* Any solution that satisfies these inequalities also
satisfies their positive combinations

> E.g. 2*first_constraint + 5*second_constraint +
3*third_constraint

» Try to take combinations which give you x; + 6x, on LHS
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Certificate of Optimality

max xrq1 + 6xo

r1 < 200
9 < 300 . Clal.m: (xl.,xz) = (100,300) is
N optimal with objective value 1900
r1 + x9 < 400
T, 29 21U

e first_constraint + 6*second_constraint
> X1+ 6x, <2004+ 6300 = 2000
> This shows that no feasible solution can beat 2000
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Certificate of Optimality

max xrq1 + 6xo

r1 < 200
9 < 300 . Clal.m: (xl.,xz) = (100,300) is
N optimal with objective value 1900
r1 + x9 < 400
T, 29 21U

e 5*second_constraint + third_constraint
> 5x5 + (x; + x5) < 5%300+ 400 = 1900
> This shows that no feasible solution can beat 1900

o No need to proceed further

o We already know one solution that achieves 1900, so it must be
optimal!
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[s There a General Algorithm?

* Introduce variables y, y,, y3 by which we will be
multiplying the three constraints

> Note: These need not be integers. They can be reals.

Multiplier Inequality
Y1 1 200
s o < 300
U3 1 + To 400

IA A IA

* After multiplying and adding constraints, we get:
(71 +¥3)x1 + (y2 + y3)x2 < 200y, + 300y, + 400y;
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[s There a General Algorithm?

Multiplier Inequality
Y1 T < 200
Y2 ro < 300
U3 Ty + 9 < 400

> We have:
(y1 + ¥3)x1 + (y2 + ¥3)x2 < 200y, + 300y, + 400y;

» What do we want?
O V1,V2,Y3 = 0 because otherwise direction of inequality flips
o LHS to look like objective x; + 6x,
* Infact, it is sufficient for LHS to be an upper bound on objective
* Sowewanty; +yz; =1landy, +y; =6
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[s There a General Algorithm?

Multiplier Inequality
Y1 1 < 200
Y2 ro < 300
3 1 + 9 < 400

> We have:
(y1 + ¥3)x1 + (y2 + ¥3)x2 < 200y, + 300y, + 400y;

> What do we want?
0 Y1,Y2, Y3 =0
oy1ty3=1 y2+y3=26

o Subject to these, we want to minimize the upper bound 200y, +
300y, + 400y5
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[s There a General Algorithm?

Multiplier Inequality
Y1 1 < 200
Y2 ro < 300
3 1 + 9 < 400

> We have:
(y1 + ¥3)x1 + (y2 + ¥3)x2 < 200y, + 300y, + 400y;

> What do we want?

o This is just another LP!
o Called the dual 1+ 2 1
o Original LP is called the primal Yo +1y3 > 6

min 200y; + 300y + 4004

y1.Y2.y3 = 0
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[s There a General Algorithm?

PRIMAL DUAL
max 1 + 69
r1 < 200 min 200y, + 300y, + 400y,
ro < 300 y1 +y3 > 1
r1 + r9 < 400 Y2 +y3 =6

LYo, ya > 0
r1,r9 = 0 y1-y2.4y3 =

> The problem of verifying optimality is another LP

o Forany (y4,y,,y3) that you can find, the objective value of the
dual is an upper bound on the objective value of the primal

o If you found a specific (4, y,, ¥3) for which this dual objective
becomes equal to the primal objective for the (x4, x,) given to
you, then you would know that the given (x4, x,) is optimal for
primal (and your (v4, ¥», ¥3) is optimal for dual)
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[s There a General Algorithm?

PRIMAL DUAL
max 1 + 69
r1 < 200 min 200y, + 300y, + 400y,
ro < 300 y1 +y3 > 1
r1 + r9 < 400 Y2 +y3 =6

LYo, ya > 0
r1,r9 = 0 y1-y2.4y3 =

> The problem of verifying optimality is another LP

o Issue 1: But...but...if | can’t solve large LPs, how will | solve the dual
to verify if optimality of (x4, x,) given to me?
* You don’t. Ask the other party to give you both (x4, x,) and the
corresponding (v1, V,, ¥3) for proof of optimality

o Issue 2: What if there are no (y4, ¥, ¥3) for which dual objective
matches primal objective under optimal solution (x{, x,)?

* This can’t happen!
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[s There a General Algorithm?

Primal LP Dual LP
max ¢! x min yTb
Ax <b yTA > (:T

x > 0 y >0

> General version, in our standard form for LPs

» Recap:
o c!'x for any feasible x < yTb for any feasible y

o max c’Tx< min_ yTh
primal feasible x dual feasible y

o If there are (x*, y*) with c"x* = (y*)Tb, then both are optimal
o In fact, for optimal (x*, y*), we are claiming this must happen!
* Does this remind you of something? Max-flow, min-cut...
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Weak Duality

Primal LP Dual LP
max ¢! x min yTb
Ax <b yTA b (:T

x >0 y >0

* From here on, we assume that primal LP is feasible and also
not unbounded

* Weak duality theorem:
> For any primal feasible x and dual feasible y, cTx < yTh

* Proof:
cTx < (YTA)x =yT(Ax) < yTb
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Strong Duality

Primal LP Dual LP
max ¢! x min yTb
Ax <b yTA b (:T

x > () y >0

* Strong duality theorem:
> For any primal optimal x* and dual optimal y*, c"x* = (y*)Tb

Primal Dual
Primal feasible opt opt Dual feasible

This duality gap is zero

» Objective
value
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Strong Duality Proof

* Farkas’ lemma (one of many, many versions):
> Exactly one of the following holds:
1) There exists x such that Ax < b
2) There exists y suchthaty’A =0, y >0, y'b <0

* Geometric intuition:
> Define image of A = set of all possible values of Ax

> It is known that this is a “linear subspace” (e.g. a linein a
plane, a line or plane in 3D, etc)
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This slide is not in the

Strong Duality Proof scope of the course

* Farkas’ lemma: Exactly one of the following holds:
1) There exists x such that Ax < b
2) There exists y suchthat y’A =0, y >0, y'b <0

1) Image of A contains a point “below” b 2) The region “below” b doesn’t intersect image of A
this is witnessed by normal vector to the image of A

A

Image of A, aka
linear subspace

Image of A, aka
linear subspace
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This slide is not in the

StrO ng Duallty scope of the course

Primal LP Dual LP
max ¢! x min yTb
Ax <b yTA b (:T

x > () y >0

* Strong duality theorem:
> For any primal optimal x* and dual optimal y*, c"x* = (y*)Tb
> Proof (by contradiction):

o Suppose optimal dual objective value > z*

o Let z* = cTx* be the optimal primal value. By weak duality, there is no y
such that yTA > c¢T and yTh < z*%, i.e,,
there is no y such that /_ 4T C
( pT )y < ()
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Strong Duality

This slide is not in the
scope of the course
. ANy < (¢
» There is no y such that ( pr )Y = (z)

> By Farkas’ lemma, there is x and A such that

T
(xT /1)( b/'} ) =0,x=>0,1=0—xTc+1z* <0
»Case1: 1 >0

o Note: cTx > Az* and Ax = 0 = Ab.

o Divide both by 1 to get A G) =bandc’ G) > z*

e Contradicts optimality of z*

»Case2: A =0
oWehaveAx =0andcfx >0

o Adding x to optimal x* of primal improves objective value beyond
z* = contradiction
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