CSC373

Week 6: Linear Programming

Illustration Courtesy: Kevin Wayne & Denis Pankratov

Recap

Network flow

- Ford-Fulkerson algorithm
- > Ways to make the running time polynomial
- > Correctness using max-flow, min-cut
- > Applications:
 - Edge-disjoint paths
 - Multiple sources/sinks
 - \circ Circulation
 - Circulation with lower bounds
 - \circ Survey design
 - Image segmentation

Brewery Example

- A brewery can invest its inventory of corn, hops and malt into producing some amount of ale and some amount of beer
 - > Per unit resource requirement and profit of the two items are as given below

Beverage	Corn (pounds)	Hops (ounces)	Malt (pounds)	Profit (\$)
Ale (barrel)	5	4	35	13
Beer (barrel)	15	4	20	23
constraint	480	160	1190	

Example Courtesy: Kevin Wayne

Brewery Example

Beverage	Corn (pounds)	Hops (ounces)	Malt (pounds)	Profit (\$)
Ale (barrel)	5	4	35	13
Beer (barrel)	15	4	20	23
constraint	480	160	1190	object

- Suppose it produces A units of ale and B units of beer
- Then we want to solve this program:

Linear Function

• $f: \mathbb{R}^n \to \mathbb{R}$ is a linear function if $f(x) = a^T x$ for some $a \in \mathbb{R}^n$

> Example: $f(x_1, x_2) = 3x_1 - 5x_2 = \begin{pmatrix} 3 \\ -5 \end{pmatrix}^T \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$

- Linear constraints:
 - ≻ For a linear function $g: \mathbb{R}^n \to \mathbb{R}$ and $c \in \mathbb{R}$, g(x) = c
 - > Line in the plane (or a hyperplane in \mathbb{R}^n)

> Example:
$$5x_1 + 7x_2 = 10$$

Linear Function

• Geometrically, a is the normal vector of the line(or hyperplane) represented by $a^T x = c$

Linear Inequality

• $a^T x \leq c$ represents a "half-space"

Linear Programming

• Maximize/minimize a linear function subject to linear equality/inequality constraints

Geometrically...

Back to Brewery Example

Back to Brewery Example

Optimal Solution At A Vertex

• Claim: Regardless of the objective function, the optimal solution must be at a vertex

Convexity

- Convex set S: If $x, y \in S$ and $\lambda \in [0,1]$, then $\lambda x + (1 \lambda)y \in S$ too.
- Vertex: A point which cannot be written as a strict convex combination of any two points in the set
- Observation: Feasible region of an LP is a convex set

Optimal Solution At A Vertex

• Proof intuition:

- If x is not a vertex, we can move towards the boundary in a direction where the objective value does not decrease
 - \circ Take some direction d such that you can move by at least ϵ in both d and -d directions while remaining within the region
 - \circ Objective must not decrease in at least one of $\{d, -d\}$ directions
- > Reach a point that is "tight" for at least one more constraint
- Repeat until we are at a vertex

LP, Standard Formulation

• Input: $c, a_1, a_2, ..., a_m \in \mathbb{R}^n, b \in \mathbb{R}^m$ > There are n variables and m constraints

• Goal:

LP, Standard Matrix Form

- Input: c, a₁, a₂, ..., a_m ∈ ℝⁿ, b ∈ ℝ^m
 ≻ There are n variables and m constraints
- Goal:

Convert to Standard Form

- What if the LP is not in standard form?
 - \succ Constraints that use \geq
 - $\circ a^T x \ge b \iff -a^T x \le -b$
 - Constraints that use equality
 - $\circ a^T x = b \iff a^T x \le b, \ a^T x \ge b$
 - > Objective function is a minimization
 - \circ Minimize $c^T x \iff$ Maximize $-c^T x$

> Variable is unconstrained

o x with no constraint ⇔ Replace x by two variables x'and x'', replace every occurrence of x with x' - x'', and add constraints $x' \ge 0, x'' \ge 0$

LP Transformation Example

Optimal Solution

- Does this LP always have an optimal solution?
- No! The LP can fail for two reasons
 - 1. It is *infeasible*, i.e. $\{x \mid Ax \leq b\} = \emptyset$

○ Example: $x_1 \le 1$ and $x_1 \ge 2$ (or $-x_1 \le -2$) constraints

2. It is *unbounded*, i.e. you can get arbitrarily large or small objective values

• Example: maximize x_1 subject to $x_1 \ge 0$

• We know that if the LP has an optimal solution, it must be at a vertex.

Simplex Algorithm

```
let v be any vertex of the feasible region while there is a neighbor v^\prime of v with better objective value: set v=v^\prime
```

- Simple algorithm, easy to specify geometrically
- Worst-case running time is exponential
- Excellent performance in practice

Simplex: Geometric View

let v be any vertex of the feasible region while there is a neighbor v' of v with better objective value: set v = v'

Algorithmic Implementation

How Do We Implement This?

- We'll work with the slack form of LP
 - > Convenient for implementing simplex operations
 - We want to maximize z in the slack form, but for now, forget about the maximization objective

Standard form:Slack form:Maximize
$$c^T x$$
 $z = c^T x$ Subject to $Ax \le b$ $s = b - Ax$ $x \ge 0$ $s, x \ge 0$

Slack Form

Slack Form

$$z = 2x_1 - 3x_2 + 3x_3$$

$$x_4 = 7 - x_1 - x_2 + x_3$$

$$x_5 = -7 + x_1 + x_2 - x_3$$

$$x_6 = 4 - x_1 + 2x_2 - 2x_3$$

$$x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$$

• Start at a feasible vertex

- > How do we find a feasible vertex?
- > For now, assume $b \ge 0$ (each $b_i \ge 0$)
 - \circ In this case, x = 0 is a feasible vertex.
 - $\,\circ\,$ In the slack form, this means setting the nonbasic variables to 0
- > We'll later see what to do in the general case

Standard form:

Slack form:

Maximize $c^T x$ $z = c^T x$ Subject to $Ax \le b$ s = b - Ax $x \ge 0$ $s, x \ge 0$

• What next? Let's look at an example

$$z = 3x_1 + x_2 + 2x_3$$

$$x_4 = 30 - x_1 - x_2 - 3x_3$$

$$x_5 = 24 - 2x_1 - 2x_2 - 5x_3$$

$$x_6 = 36 - 4x_1 - x_2 - 2x_3$$

$$x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$$

- To increase the value of z:
 - Find a nonbasic variable with a positive coefficient
 This is called an *entering variable*
 - > See how much you can increase its value without violating any constraints

$$z = 3x_1 + x_2 + 2x_3$$

$$x_4 = 30 - x_1 - x_2 - 3x_3$$

$$x_5 = 24 - 2x_1 - 2x_2 - 5x_3$$

$$x_6 = 36 - 4x_1 - x_2 - 2x_3$$
Tightest obstacle

$$x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$$

Solve the tightest obstacle for the nonbasic variable

$$x_1 = 9 - \frac{x_2}{4} - \frac{x_3}{2} - \frac{x_6}{4}$$

Substitute the entering variable (called pivot) in other equations
 Now x₁ becomes basic and x₆ becomes non-basic
 x₆ is called the *leaving variable*

- After one iteration of this step:
 - > The basic feasible solution (i.e. substituting 0 for all nonbasic variables) improves from z = 0 to z = 27
- Repeat!

Entering variable Try to increase! $3x_6$ $\frac{x_3}{2}$ $\frac{x_2}{4}$ $11x_{6}$ 111 $\frac{x_2}{16}$ x_5 27 +Ζ. 4 8 4 16 $\frac{x_3}{2}$ x_6 $\frac{x_2}{4}$ $5x_6$ $\frac{33}{4}$ $\frac{x_2}{16}$ 9 $\frac{x_5}{8}$ x_1 + x_1 4 16 $\frac{5x_3}{2}$ Pivot! $\frac{x_6}{4}$ $3x_2$ $\frac{3}{2}$ $\frac{3x_2}{8}$ $\frac{x_6}{8}$ $\frac{x_5}{4}$ 21 + χ_4 = + 4 x_3 = $\frac{x_6}{2}$ $3x_2$ $\frac{x_6}{16}$ 69 $\frac{3x_2}{16}$ $5x_5$ $4x_{3}$ + χ_5 ++ χ_4 8 0 > x_1, x_2 x_3, x_4, x_5, x_6 0 $x_1, x_2, x_3, x_4, x_5, x_6$ \geq Leaving variable Tightest obstacle!

Entering variable Try to increase!

$$z = 28 - \frac{x_3}{6} - \frac{x_5}{6} - \frac{2x_6}{3}$$

$$x_1 = 8 + \frac{x_3}{6} + \frac{x_5}{6} - \frac{x_6}{3}$$

$$x_2 = 4 - \frac{8x_3}{3} - \frac{2x_5}{3} + \frac{x_6}{3}$$

$$x_4 = 18 - \frac{x_3}{2} + \frac{x_5}{2}$$

$$x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$$

- There is no leaving variable (nonbasic variable with positive coefficient).
- What now? Nothing! We are done.
- Take the basic feasible solution ($x_3 = x_5 = x_6 = 0$).
- Gives the optimal value z = 28
- In the optimal solution, $x_1 = 8$, $x_2 = 4$, $x_3 = 0$

- What if the entering variable has no upper bound?
 - > If it doesn't appear in any constraints, or only appears in constraints where it can go to ∞
 - \succ Then z can also go to ∞ , so declare that LP is unbounded
- What if pivoting doesn't change the constant in z?
 - > Known as *degeneracy*, and can lead to infinite loops
 - Can be prevented by "perturbing" b by a small random amount in each coordinate
 - > Or by carefully breaking ties among entering and leaving variables, e.g., by smallest index (known as *Bland's rule*)

- We assumed $b \ge 0$, and then started with the vertex x = 0
- What if this assumption does not hold?

- We assumed $b \ge 0$, and then started with the vertex x = 0
- What if this assumption does not hold?

- We assumed $b \ge 0$, and then started with the vertex x = 0
- What if this assumption does not hold?

What now?

- Solve LP_4 using simplex with the initial basic solution being x = s = 0, z = |b|
- If its optimum value is 0, extract a basic feasible solution x* from it, use it to solve LP₁ using simplex
- If optimum value for *LP*₄ is greater than 0, then *LP*₁ is infeasible

- We assumed $b \ge 0$, and then started with the vertex x = 0
- What if this assumption does not hold?

- Solve LP_2 using simplex with the initial basic feasible solution x = s = 0, z = b
- If its optimum value is 0, extract a basic feasible solution x* from it, use it to solve LP₁ using simplex
- If optimum value for *LP*₂ is greater than 0, then *LP*₁ is infeasible

- Pseudocode? Proof of correctness? Running time analysis?
- See textbook for details!

Running Time

Notes

- > Number of vertices of a polytope can be exponential in the number of constraints
 - There are examples where simplex takes exponential time if you choose your pivots arbitrarily
 - $\,\circ\,$ No pivot rule known which guarantees polynomial running time
- > There are other algorithms which run in polynomial time
 - Ellipsoid method, interior point method, ...
 - Ellipsoid uses $O(mn^3L)$ arithmetic operations, where L = length of input
 - But no known *strongly polynomial time* algorithm
 - Number of arithmetic operations = poly(m,n)

- Suppose you design a state-of-the-art LP solver that can solve very large problem instances
- You want to convince someone that you have this new technology without showing them the code
 - Idea: They can give you very large LPs and you can quickly return the optimal solutions
 - Question: But how would they know that your solutions are optimal, if they don't have the technology to solve those LPs?

 $\max x_1 + 6x_2$ $x_1 \le 200$ $x_2 \le 300$ $x_1 + x_2 \le 400$ $x_1, x_2 \ge 0$

- Suppose I tell you that $(x_1, x_2) = (100,300)$ is optimal with objective value 1900
- How can you check this?
 - > Note: Can easily substitute (x_1, x_2) , and verify that it is feasible, and its objective value is indeed 1900

- $\max x_1 + 6x_2$
 - $x_1 \le 200$
 - $x_2 \le 300$
- $x_1 + x_2 \le 400$
 - $x_1, x_2 \ge 0$

• Claim: $(x_1, x_2) = (100,300)$ is optimal with objective value 1900

- Any solution that satisfies these inequalities also satisfies their positive combinations
 - > E.g. 2*first_constraint + 5*second_constraint + 3*third_constraint
 - > Try to take combinations which give you $x_1 + 6x_2$ on LHS

- $\max x_1 + 6x_2$
 - $x_1 \le 200$
 - $x_2 \le 300$
- $x_1 + x_2 \le 400$
 - $x_1, x_2 \ge 0$

• Claim: $(x_1, x_2) = (100,300)$ is optimal with objective value 1900

first_constraint + 6*second_constraint
 x₁ + 6x₂ ≤ 200 + 6 * 300 = 2000
 This shows that no feasible solution can beat 2000

- $\max x_1 + 6x_2$
 - $x_1 \le 200$
 - $x_2 \le 300$
- $x_1 + x_2 \le 400$
 - $x_1, x_2 \ge 0$

• Claim: $(x_1, x_2) = (100,300)$ is optimal with objective value 1900

- 5*second_constraint + third_constraint
 - $> 5x_2 + (x_1 + x_2) \le 5 * 300 + 400 = 1900$
 - > This shows that no feasible solution can beat 1900
 - $\,\circ\,$ No need to proceed further
 - We already know one solution that achieves 1900, so it must be optimal!

- Introduce variables y_1, y_2, y_3 by which we will be multiplying the three constraints
 - Note: These need not be integers. They can be reals.

Multiplier	Inequality			
y_1	x_1		\leq	200
y_2		x_2	\leq	300
y_3	$x_1 +$	x_2	\leq	400

• After multiplying and adding constraints, we get: $(y_1 + y_3)x_1 + (y_2 + y_3)x_2 \le 200y_1 + 300y_2 + 400y_3$

Multiplier	In	equa	alit	у
y_1	x_1		\leq	200
y_2		x_2	\leq	300
y_3	$x_1 +$	x_2	\leq	400

> We have:

 $(y_1 + y_3)x_1 + (y_2 + y_3)x_2 \le 200y_1 + 300y_2 + 400y_3$

> What do we want?

o y₁, y₂, y₃ ≥ 0 because otherwise direction of inequality flips o LHS to look like objective $x_1 + 6x_2$

- In fact, it is sufficient for LHS to be an upper bound on objective
- So we want $y_1 + y_3 \ge 1$ and $y_2 + y_3 \ge 6$

Multiplier	In	equa	alit	у
y_1	x_1		\leq	200
y_2		x_2	\leq	300
y_3	$x_1 +$	x_2	\leq	400

> We have:

 $(y_1 + y_3)x_1 + (y_2 + y_3)x_2 \le 200y_1 + 300y_2 + 400y_3$

> What do we want?

- $y_1, y_2, y_3 ≥ 0$ $○ y_1 + y_3 ≥ 1, y_2 + y_3 ≥ 6$
- $\circ\,$ Subject to these, we want to minimize the upper bound $200y_1+300y_2+400y_3$

Multiplier	In	equa	alit	у
y_1	x_1		\leq	200
y_2		x_2	\leq	300
y_3	$x_1 +$	x_2	\leq	400

> We have:

 $(y_1 + y_3)x_1 + (y_2 + y_3)x_2 \le 200y_1 + 300y_2 + 400y_3$

> What do we want?

- This is just another LP!
- Called the dual
- Original LP is called the primal

 $\min \ 200y_1 + 300y_2 + 400y_3$ $y_1 + y_3 \ge 1$ $y_2 + y_3 \ge 6$ $y_1, y_2, y_3 \ge 0$

PRIMAL

DUAL

$\max x_1 + 6x_2$	
$x_1 \le 200$	
$x_2 \le 300$	
$x_1 + x_2 \le 400$	
$x_1, x_2 \ge 0$	

min $200y_1 + 300y_2 + 400y_3$ $y_1 + y_3 \ge 1$ $y_2 + y_3 \ge 6$ $y_1, y_2, y_3 \ge 0$

> The problem of verifying optimality is another LP

- \circ For any (y_1, y_2, y_3) that you can find, the objective value of the dual is an upper bound on the objective value of the primal
- If you found a specific (y_1, y_2, y_3) for which this dual objective becomes equal to the primal objective for the (x_1, x_2) given to you, then you would know that the given (x_1, x_2) is optimal for primal (and your (y_1, y_2, y_3) is optimal for dual)

PRIMAL

DUAL

 $\begin{array}{ll} \max \ x_1 + 6x_2 \\ x_1 \le 200 \\ x_2 \le 300 \\ x_1 + x_2 \le 400 \\ x_1, x_2 \ge 0 \end{array} \begin{array}{ll} \min \ 200y_1 + 300y_2 + 400y_3 \\ y_1 + y_3 \ge 1 \\ y_2 + y_3 \ge 6 \\ y_1, y_2, y_3 \ge 0 \end{array}$

> The problem of verifying optimality is another LP

- Issue 1: But...but...if I can't solve large LPs, how will I solve the dual to verify if optimality of (x_1, x_2) given to me?
 - You don't. Ask the other party to give you both (x₁, x₂) and the corresponding (y₁, y₂, y₃) for proof of optimality
- Issue 2: What if there are no (y_1, y_2, y_3) for which dual objective matches primal objective under optimal solution (x_1, x_2) ?
 - This can't happen!

Primal LP	Dual LP		
$\max \mathbf{c}^T \mathbf{x}$	min $\mathbf{y}^T \mathbf{b}$		
$\mathbf{A}\mathbf{x} \leq \mathbf{b}$	$\mathbf{y}^T \mathbf{A} \ge \mathbf{c}^T$		
$\mathbf{x} \ge 0$	$\mathbf{y} \ge 0$		

- General version, in our standard form for LPs
- ≻ Recap:

 $\circ c^T x$ for any feasible $x \leq y^T b$ for any feasible y

○ $\max_{\text{primal feasible } x} c^T x \le \min_{\text{dual feasible } y} y^T b$ ○ If there are (x^*, y^*) with $c^T x^* = (y^*)^T b$, then both are optimal

 \circ In fact, for optimal (x^* , y^*), we are claiming this must happen!

• Does this remind you of something? Max-flow, min-cut...

Weak Duality

Primal LPDual LP $\max \mathbf{c}^T \mathbf{x}$ $\min \mathbf{y}^T \mathbf{b}$ $\mathbf{A}\mathbf{x} \leq \mathbf{b}$ $\mathbf{y}^T \mathbf{A} \geq \mathbf{c}^T$ $\mathbf{x} \geq 0$ $\mathbf{y} \geq 0$

- From here on, we assume that primal LP is feasible and also not unbounded
- Weak duality theorem:

> For any primal feasible x and dual feasible y, $c^T x \leq y^T b$

• Proof:

$$c^T x \leq (y^T A) x = y^T (A x) \leq y^T b$$

Strong Duality

Primal LPDual LP $\max \mathbf{c}^T \mathbf{x}$ $\min \mathbf{y}^T \mathbf{b}$ $\mathbf{A}\mathbf{x} \leq \mathbf{b}$ $\mathbf{y}^T \mathbf{A} \geq \mathbf{c}^T$ $\mathbf{x} \geq 0$ $\mathbf{y} \geq 0$

• Strong duality theorem:

> For any primal optimal x^* and dual optimal y^* , $c^T x^* = (y^*)^T b$

Strong Duality Proof

This slide is not in the scope of the course

- Farkas' lemma (one of many, many versions):
 - > Exactly one of the following holds:
 - 1) There exists x such that $Ax \leq b$
 - 2) There exists y such that $y^T A = 0$, $y \ge 0$, $y^T b < 0$

- Geometric intuition:
 - > Define image of A = set of all possible values of Ax
 - It is known that this is a "linear subspace" (e.g. a line in a plane, a line or plane in 3D, etc)

Strong Duality Proof

This slide is not in the scope of the course

Farkas' lemma: Exactly one of the following holds:
1) There exists x such that Ax ≤ b
2) There exists y such that y^TA = 0, y ≥ 0, y^Tb < 0

1) Image of A contains a point "below" b

2) The region "below" b doesn't intersect image of A this is witnessed by normal vector to the image of A

Strong Duality

Primal LPDual LP $\max \mathbf{c}^T \mathbf{x}$ $\min \mathbf{y}^T \mathbf{b}$ $\mathbf{A} \mathbf{x} \leq \mathbf{b}$ $\mathbf{y}^T \mathbf{A} \geq \mathbf{c}^T$ $\mathbf{x} \geq 0$ $\mathbf{y} \geq 0$

- Strong duality theorem:
 - > For any primal optimal x^* and dual optimal y^* , $c^T x^* = (y^*)^T b$
 - > Proof (by contradiction):
 - $_{\odot}$ Suppose optimal dual objective value > z^{*}
 - Let $z^* = c^T x^*$ be the optimal primal value. By weak duality, there is no y such that $y^T A \ge c^T$ and $y^T b \le z^*$, i.e., there is no y such that $\binom{-A^T}{b^T} y \le \binom{c}{z^*}$

Strong Duality

This slide is not in the scope of the course

- > There is no y such that $\begin{pmatrix} -A^T \\ b^T \end{pmatrix} y \leq \begin{pmatrix} c \\ z^* \end{pmatrix}$
- > By Farkas' lemma, there is x and λ such that

$$(x^T \quad \lambda) \begin{pmatrix} -A^T \\ b^T \end{pmatrix} = 0, x \ge 0, \lambda \ge 0, -x^T c + \lambda z^* < 0$$

> Case 1: $\lambda > 0$

• Note: $c^T x > \lambda z^*$ and $Ax = 0 = \lambda b$.

- Divide both by λ to get $A\left(\frac{x}{\lambda}\right) = b$ and $c^T\left(\frac{x}{\lambda}\right) > z^*$
 - Contradicts optimality of z^*

> Case 2: $\lambda = 0$

• We have Ax = 0 and $c^T x > 0$

○ Adding x to optimal x^* of primal improves objective value beyond $z^* \Rightarrow$ contradiction

