CSC373

Week 5: Network Flow (contd)

Nisarg Shah

Recap

Some more DP

- > Edit distance (aka sequence alignment)
- > Traveling salesman problem (TSP)

Start of network flow

- > Problem statement
- Ford-Fulkerson algorithm
- > Running time
- > Correctness using max-flow, min-cut

This Lecture

- Network flow in polynomial time
 - > Edmonds-Karp algorithm (shortest augmenting path)

Applications of network flow

- » Bipartite matching & Hall's theorem
- > Edge-disjoint paths & Menger's theorem
- > Multiple sources/sinks
- > Circulation networks
- Lower bounds on flows
- Survey design
- > Image segmentation

- Define the residual graph G_f of flow f
 - $> G_f$ has the same vertices as G

> For each edge e = (u, v) in G, G_f has at most two edges

• Forward edge e = (u, v) with capacity c(e) - f(e)

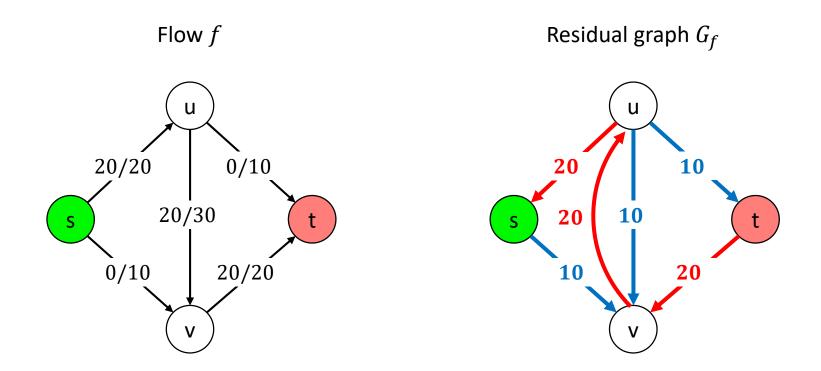
• We can send this much additional flow on *e*

• Reverse edge $e^{rev} = (v, u)$ with capacity f(e)

• The maximum "reverse" flow we can send is the maximum amount by which we can reduce flow on e, which is f(e)

 $\,\circ\,$ We only add each edge if its capacity >0

• Example!



```
MaxFlow(G):
   // initialize:
   Set f(e) = 0 for all e in G
```

```
// while there is an s-t path in G<sub>f</sub>:
While P = FindPath(s,t,Residual(G,f))!=None:
    f = Augment(f,P)
    UpdateResidual(G,f)
EndWhile
Return f
```

• Running time:

#Augmentations:

- $\,\circ\,$ At every step, flow and capacities remain integers
- For path *P* in G_f , bottleneck(*P*, *f*) > 0 implies bottleneck(*P*, *f*) ≥ 1
- $\,\circ\,$ Each augmentation increases flow by at least 1
- At most $C = \sum_{e \text{ leaving } s} c(e)$ augmentations

> Time for an augmentation:

• G_f has *n* vertices and at most 2m edges • Einding an *s t* path in *C* takes $O(m \pm n)$ t

• Finding an s-t path in G_f takes O(m + n) time

> Total time: $O((m + n) \cdot C)$

Edmonds-Karp Algorithm

• At every step, find the shortest path from s to t in G_f , and augment.

```
MaxFlow(G):
```

```
// initialize:
```

```
Set f(e) = 0 for all e in G
```

Minimum number of edges

```
// Find shortest s-t path in G<sub>f</sub> & augment:
While P = BFS(s,t,Residual(G,f))!=None:
    f = Augment(f,P)
    UpdateResidual(G,f)
EndWhile
Return f
```

Edmonds-Karp Proof Overview

Overview

> Lemma 1: The length of the shortest $s \rightarrow t$ path in G_f never decreases.

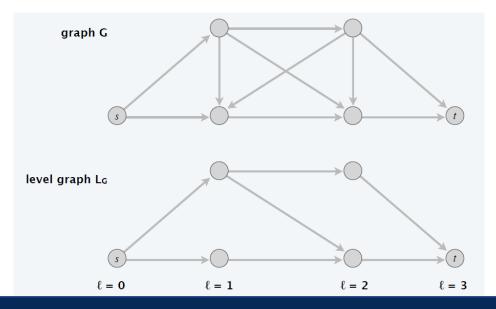
 \circ (Proof ahead)

- Lemma 2: After at most *m* augmentations, the length of the shortest *s* → *t* path in *G_f* must strictly increase.
 (Proof ahead)
- Theorem: The algorithm takes O(m²n) time.
 Proof:
 - Length of shortest $s \rightarrow t$ path in G_f can go from 0 to n-1
 - Using Lemma 2, there can be at most $m \cdot n$ augmentations
 - Each takes *O*(*m*) time using BFS. ■

Level Graph

- Level graph L_G of a directed graph G = (V, E):
 - > Level: $\ell(v)$ = length of shortest $s \rightarrow v$ path
 - > Level graph $L_G = (V, E_L)$ is a subgraph of G where we only retain edges $(u, v) \in E$ where $\ell(v) = \ell(u) + 1$

 $\,\circ\,$ Intuition: Keep only the edges useful for shortest paths



Level Graph

- Level graph L_G of a directed graph G = (V, E):
 - > Level: $\ell(v)$ = length of shortest $s \rightarrow v$ path
 - ▶ Level graph $L_G = (V, E_L)$ is a subgraph of *G* where we only retain edges $(u, v) \in E$ where $\ell(v) = \ell(u) + 1$ \circ Intuition: Keep only the edges useful for shortest paths
- Property: P is a shortest $s \rightarrow v$ path in G if and only if P is an $s \rightarrow v$ path in L_G .

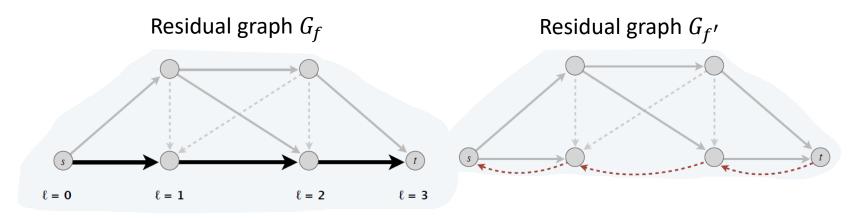
Edmonds-Karp Proof

• Lemma 1:

> Length of the shortest $s \rightarrow t$ path in G_f never decreases.

• Proof:

> Let f and f' be flows before and after an augmentation step, and G_f and $G_{f'}$ be their residual graphs.



Edmonds-Karp Proof

• Lemma 1:

> Length of the shortest $s \rightarrow t$ path in G_f never decreases.

• Proof:

- > Let f and f' be flows before and after an augmentation step, and G_f and $G_{f'}$ be their residual graphs.
- > Augmentation happens along a path in L_{G_f}
- For each edge on the path, we either remove it, add an opposite direction edge, or both.
- > Opposite direction edges can't help reduce the length of the shortest $s \rightarrow t$ path (exercise!).
- ≻ QED!

Edmonds-Karp Proof

• Lemma 2:

> After at most m augmentations, the length of the shortest $s \rightarrow t$ path in G_f must strictly increase.

• Proof:

- In each augmentation step, we remove at least one edge from L_{G_f}
 - Because we make the flow on at least one edge on the shortest path equal to its capacity
- > No new edges are added in L_{G_f} unless the length of the shortest $s \rightarrow t$ path strictly increases
- \succ This cannot happen more than m times!

Edmonds-Karp Proof Overview

Overview

> Lemma 1: The length of the shortest $s \rightarrow t$ path in G_f never decreases.

> Lemma 2: After at most m augmentations, the length of the shortest $s \rightarrow t$ path in G_f must strictly increase.

> Theorem: The algorithm takes $O(m^2n)$ time.

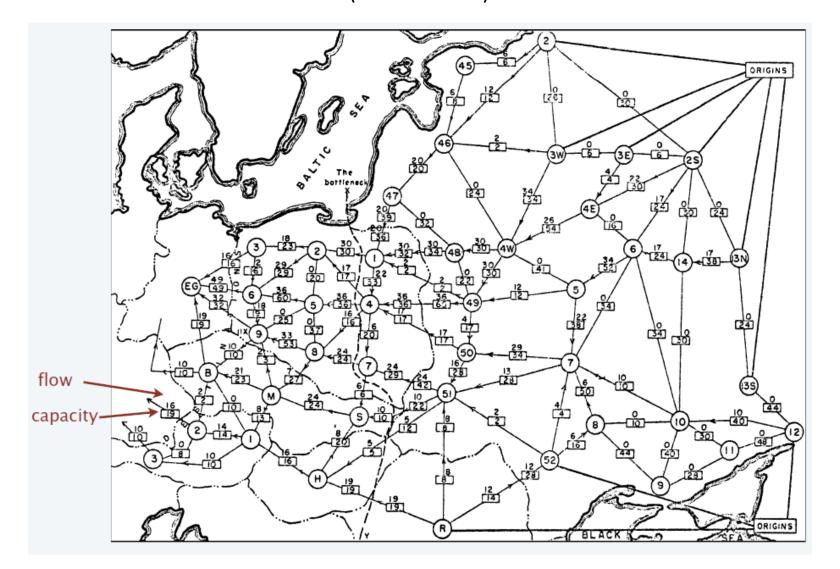
Edmonds-Karp Proof Overview

• Note:

- > Some graphs require $\Omega(mn)$ augmentation steps
- But we may be able to reduce the time to run each augmentation step
- Two algorithms use this idea to reduce run time
 - > Dinitz's algorithm [1970] $\Rightarrow O(mn^2)$
 - > Sleator–Tarjan algorithm [1983] $\Rightarrow O(m n \log n)$
 - $\,\circ\,$ Using the dynamic trees data structure

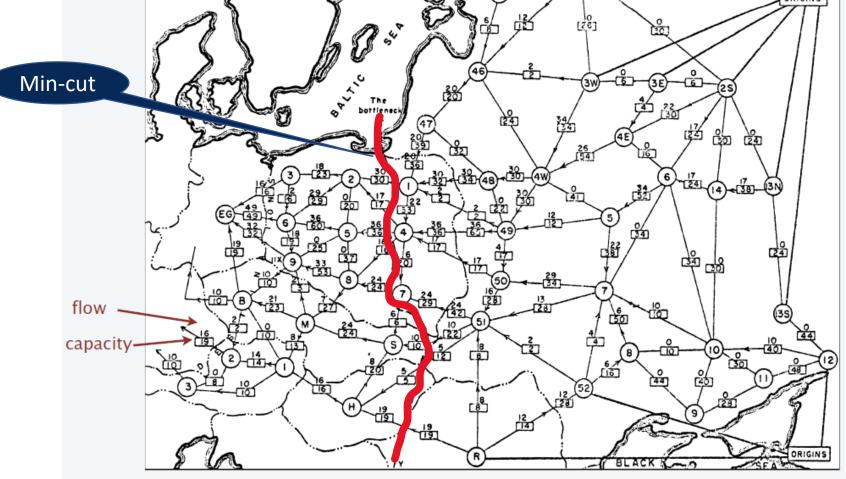
Network Flow Applications

Rail network connecting Soviet Union with Eastern European countries (Tolstoĭ 1930s)



Rail network connecting Soviet Union with Eastern European countries

(Tolstoi 1930s) ORIGINS P St [28]



Integrality Theorem

 Before we look at applications, we need the following special property of the max-flow computed by Ford-Fulkerson and its variants

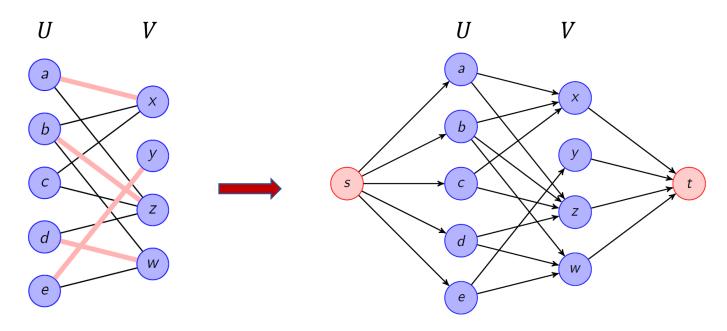
• Observation:

- If edge capacities are integers, then the max-flow computed by Ford-Fulkerson and its variants are also integral (i.e. the flow on each edge is an integer).
- Easy to check that each augmentation step preserves integral flow

Problem

> Given a bipartite graph $G = (U \cup V, E)$, find a maximum cardinality matching

- We do not know any efficient greedy or dynamic programming algorithm for this problem.
- But it can be reduced to max-flow.



- Create a directed flow graph where we...
 - > Add a source node s and target node t
 - > Add edges, all of capacity 1:
 - \circ *s* \rightarrow *u* for each *u* \in *U*, *v* \rightarrow *t* for each *v* \in *V*
 - $\circ u \rightarrow v$ for each $(u, v) \in E$

Observation

- There is a 1-1 correspondence between matchings of size k in the original graph and flows with value k in the corresponding flow network.
- **Proof**: (matching \Rightarrow integral flow)
 - > Take a matching $M = \{(u_1, v_1), \dots, (u_k, v_k)\}$ of size k
 - > Construct the corresponding unique flow f_M where...

 $\circ \ {\rm Edges} \ s \to u_i, u_i \to v_i, {\rm and} \ v_i \to t {\rm \ have\ flow\ 1,\ for\ all\ } i=1,\ldots,k$

 \circ The rest of the edges have flow 0

> This flow has value k

Observation

- There is a 1-1 correspondence between matchings of size k in the original graph and flows with value k in the corresponding flow network.
- **Proof**: (integral flow \Rightarrow matching)
 - \succ Take any flow f with value k
 - The corresponding unique matching M_f = set of edges from U to V with a flow of 1
 - \circ Since flow of k comes out of s, unit flow must go to k distinct vertices in U
 - \circ From each such vertex in U, unit flow goes to a distinct vertex in V
 - $\,\circ\,$ Uses integrality theorem

- Perfect matching = flow with value n
 where n = |U| = |V|
- Recall naïve Ford-Fulkerson running time:
 - > $O(m \cdot n \cdot C)$, where C = sum of capacities of edgesleaving s
 - > Q: What's the runtime when used for bipartite matching?
- Some variants are faster...
 - > Dinitz's algorithm runs in time $O(m\sqrt{n})$ when all edge capacities are 1

Hall's Marriage Theorem

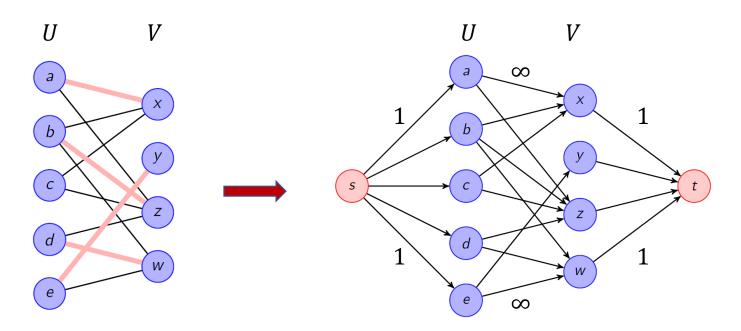
- When does a bipartite graph have a perfect matching?
 - \succ Well, when the corresponding flow network has value n
 - But can we interpret this condition in terms of edges of the original bipartite graph?
 - For S ⊆ U, let N(S) ⊆ V be the set of all nodes in V adjacent to some node in S

• Observation:

- > If G has a perfect matching, $|N(S)| \ge |S|$ for each $S \subseteq V$
- Because each node in S must be matched to a distinct node in N(S)

Hall's Marriage Theorem

We'll consider a slightly different flow network, which is still equivalent to bipartite matching
> All U → V edges now have ∞ capacity
> s → U and V → t edges are still unit capacity



Hall's Marriage Theorem

• Hall's Theorem:

- ≻ G has a perfect matching iff $|N(S)| \ge |S|$ for each $S \subseteq V$
- Proof (reverse direction, via network flow):
 - Suppose G doesn't have a perfect matching

 \circ Hence, max-flow = min-cut < n

- \circ Let (A, B) be the min-cut
 - Can't have any $U \rightarrow V$ (∞ capacity edges)
 - Has unit capacity edges $s \to U \cap B$ and $V \cap A \to t$
- $\succ cap(A,B) = |U \cap B| + |V \cap A| < n = |U|$

 $\circ \text{ So } |V \cap A| < |U \cap A|$

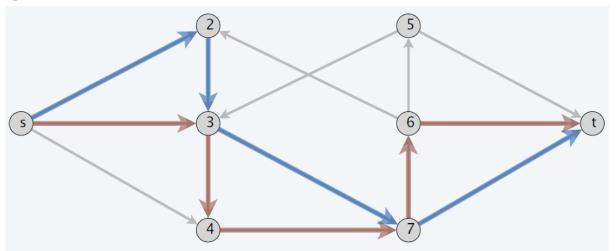
○ But $N(U \cap A) \subseteq V \cap A$ because the cut doesn't include any ∞ edges ○ So $|N(U \cap A)| \leq |V \cap A| < |U \cap A|$. ■

Some Notes

- Runtime for bipartite perfect matching
 - > 1955: $O(mn^2) \rightarrow$ Ford-Fulkerson
 - > 1973: $O(m\sqrt{n}) \rightarrow$ blocking flow (Hopcroft-Karp, Karzanov)
 - > 2004: $O(n^{2.378}) \rightarrow$ fast matrix multiplication (Mucha–Sankowsi)
 - > 2013: $\tilde{O}(m^{10/7}) \rightarrow \text{electrical flow (Mądry)}$
 - > Best running time is still an open question
- Nonbipartite graphs
 - > Hall's theorem \rightarrow Tutte's theorem
 - > 1965: $O(n^4) \rightarrow$ Blossom algorithm (Edmonds)
 - > 1980/1994: $O(m\sqrt{n}) \rightarrow Micali-Vazirani$

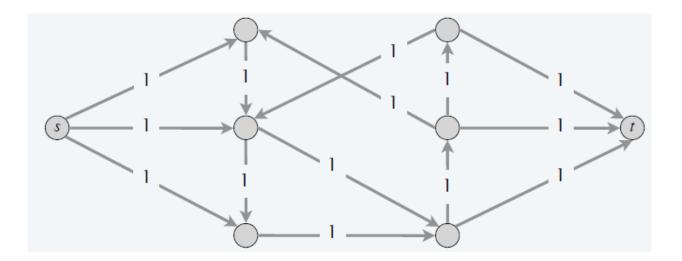
Problem

- > Given a directed graph G = (V, E), two nodes s and t, find the maximum number of edge-disjoint $s \rightarrow t$ paths
- > Two $s \rightarrow t$ paths P and P' are edge-disjoint if they don't share an edge



• Application:

- Communication networks
- Max-flow formulation
 - > Assign unit capacity on all edges



• Theorem:

> There is 1-1 correspondence between k edge-disjoint $s \rightarrow t$ paths and integral flows of value k

• Proof (paths \rightarrow flow)

- > If P_1, \ldots, P_k are k edge-disjoint $s \to t$ paths, define the following flow
- > f(e) = 1 whenever $e \in P_1 \cup \cdots \cup P_k$ and 0 otherwise
- Since paths are edge-disjoint, it satisfies flow conservation and capacity constraints, and gives a unique integral flow of value k

• Theorem:

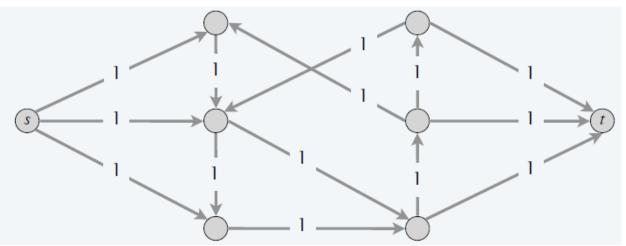
> There is 1-1 correspondence between k edge-disjoint $s \rightarrow t$ paths and integral flows of value k

Proof (flow → paths)

- \succ Let f be an integral flow of value k
- > k outgoing edges from s have unit flow
- > Pick one such edge (s, u_1)
 - \odot By flow conservation, u_1 must have unit outgoing flow (which we haven't used up yet).
 - $\circ\,$ Pick such an edge and continue building a path until you hit t
- Repeat this for the other k − 1 edges coming out of s
 with unit flow.

- Maximum number of edge-disjoint $s \rightarrow t$ paths
 - > Equals max flow in this network
 - > By max-flow min-cut theorem, also equals minimum cut
 - Exercise: minimum cut = minimum number of edges we need to delete to disconnect s from t

 \circ Hint: Show each direction separately (≤ and ≥)



• Exercise!

Show that to compute the maximum number of edgedisjoint s → t paths in an undirected graph, you can create a directed flow network by adding each undirected edge in both directions and setting all capacities to 1

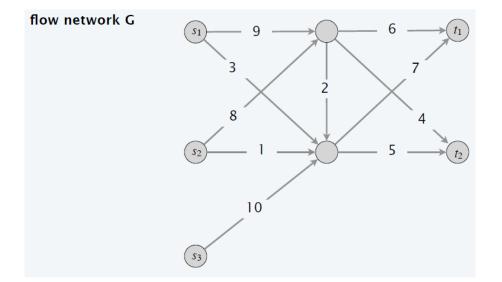
Menger's Theorem

> In any directed/undirected graph, the maximum number of edge-disjoint (resp. vertex-disjoint) s → t paths equals the minimum number of edges (resp. vertices) whose removal disconnects s and t

Multiple Sources/Sinks

• Problem

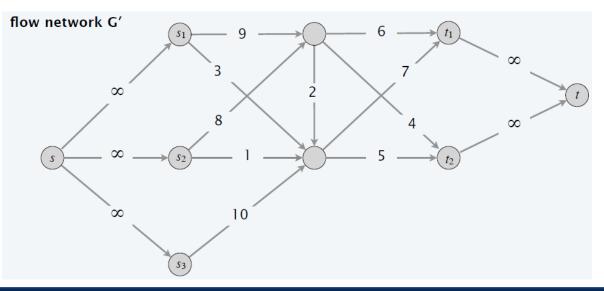
> Given a directed graph G = (V, E) with edge capacities c: E → N, sources $s_1, ..., s_k$ and sinks $t_1, ..., t_\ell$, find the maximum total flow from sources to sinks.



Multiple Sources/Sinks

Network flow formulation

- > Add a new source s, edges from s to each s_i with ∞ capacity
- > Add a new sink t, edges from each t_i to t with ∞ capacity
- Find max-flow from s to t
- ➤ Claim: 1 1 correspondence between flows in two networks



Input

- > Directed graph G = (V, E)
- ≻ Edge capacities $c : E \to \mathbb{N}$
- \succ Node demands $d: V \rightarrow \mathbb{Z}$

Output

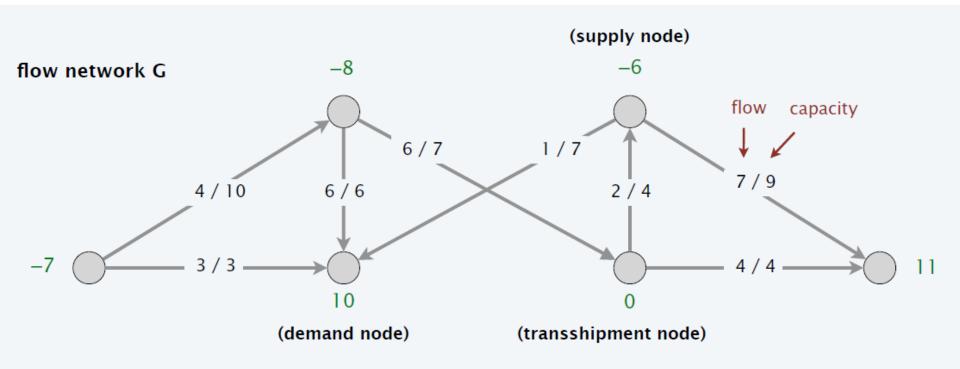
Some circulation $f : E → \mathbb{N}$ satisfying
○ For each $e \in E : 0 \le f(e) \le c(e)$

○ For each $v \in V : \sum_{e \text{ entering } v} f(v) - \sum_{e \text{ leaving } v} f(v) = d(v)$

> Note that you need $\sum_{v:d(v)>0} d(v) = \sum_{v:d(v)<0} -d(v)$ > What are demands?

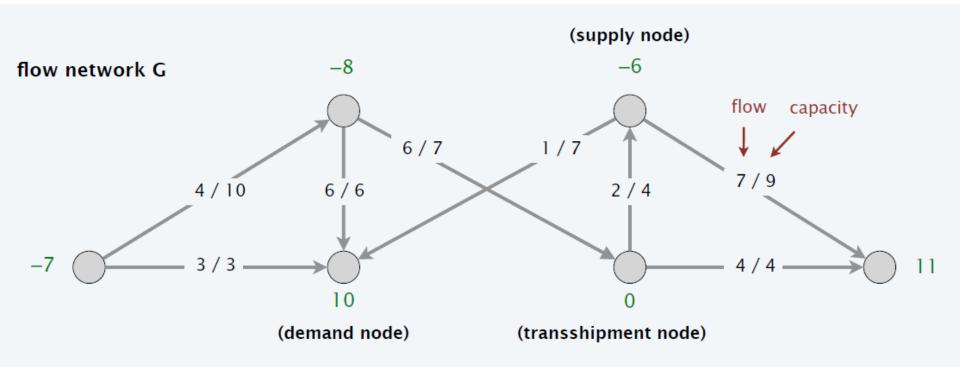
- Demand at v = amount of flow you need to take out at node v
 - > d(v) > 0: You need to take some flow out at v
 - So there should be d(v) more incoming flow than outgoing flow
 "Demand node"
 - > d(v) < 0: You need to put some flow in at v
 - So there should be |d(v)| more outgoing flow than incoming flow
 "Supply node"
 - > d(v) = 0 : Node has flow conservation
 - $\,\circ\,$ Equal incoming and outgoing flows
 - "Transshipment node"

• Example

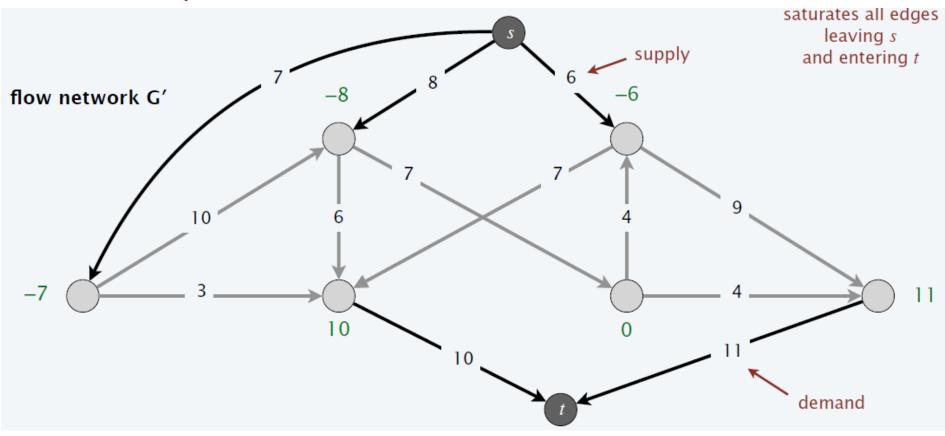


- Network-flow formulation G'
 - > Add a new source s and a new sink t
 - For each "supply" node v with d(v) < 0, add edge (s, v) with capacity −d(v)
 - For each "demand" node v with d(v) > 0, add edge (v, t) with capacity d(v)
- Claim: G has a circulation iff G' has max flow of value $\sum_{v:d(v)>0} d(v) = \sum_{v:d(v)<0} -d(v)$

• Example



• Example



Circulation with Lower Bounds

Input

- > Directed graph G = (V, E)
- \succ Edge capacities $c: E \rightarrow \mathbb{N}$ and lower bounds $\ell: E \rightarrow \mathbb{N}$
- > Node demands $d: V \rightarrow \mathbb{Z}$

Output

> Some circulation $f : E \rightarrow \mathbb{N}$ satisfying

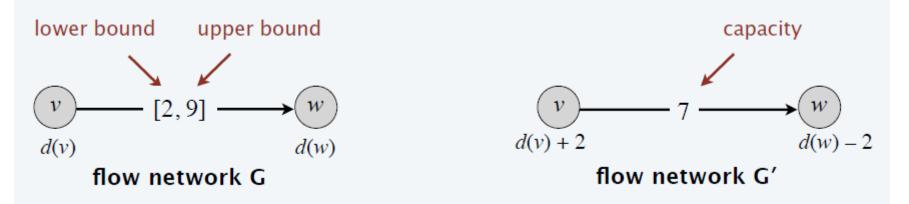
○ For each $e \in E : \ell(e) \le f(e) \le c(e)$

○ For each $v \in V : \sum_{e \text{ entering } v} f(v) - \sum_{e \text{ leaving } v} f(v) = d(v)$

▶ Note that you still need $\sum_{v:d(v)>0} d(v) = \sum_{v:d(v)<0} -d(v)$

Circulation with Lower Bounds

Transform to circulation without lower bounds
 Do the following operation to each edge



• Claim: Circulation in G iff circulation in G'

> Proof sketch: f(e) gives a valid circulation in G iff $f(e) - \ell(e)$ gives a valid circulation in G'

Survey Design

Problem

- > We want to design a survey about *m* products
 - $\,\circ\,$ We have one survey question in mind for each product
- > There are n consumers
- Consumer *i* owns a subset of products O_i
 We can ask consumer *i* questions only about these products
- We want to ask each consumer i between c_i and c'_i questions
- \succ We want to ask between p_j and p_j' question about each product j
- > Is there a survey meeting all these requirements?

Survey Design

• Bipartite matching is a special case

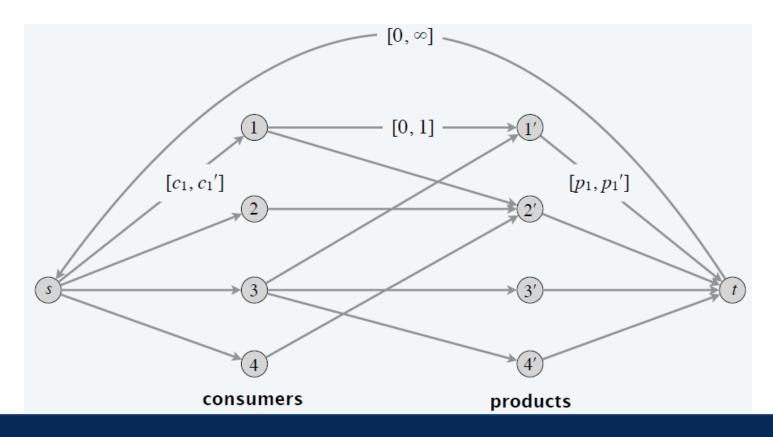
 $> c_i = c'_i = p_j = p'_j = 1$ for all i and j

- Max-flow formulation:
 - > Use circulation with lower bounds model
 - > Create a network with special nodes s and t
 - ≻ Edge from s to node of consumer i with flow $\in [c_i, c'_i]$
 - > Edge from consumer *i* to product $j \in O_i$ with flow $\in [0,1]$
 - > Edge from node of product j to sink t with flow $\in [p_j, p'_j]$
 - ≻ Edge from *t* to *s* with flow in $[0, \infty]$
 - > All demands and supplies are 0

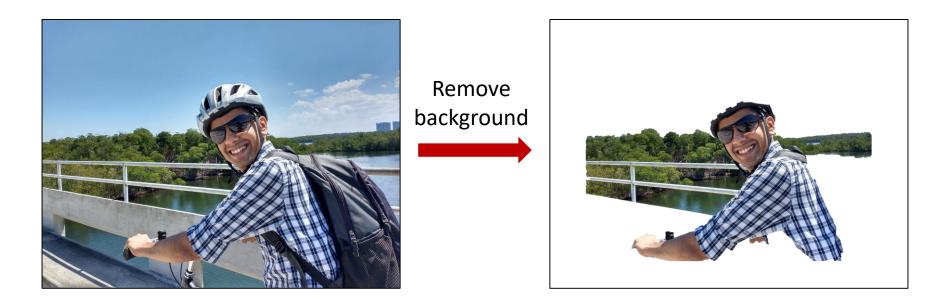
Survey Design

• Max-flow formulation:

> Feasible survey iff feasible circulation in this network



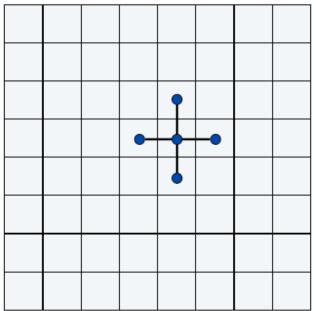
- Foreground/background segmentation
 - > Given an image, separate "foreground" from "background"
- Here's the power of PowerPoint (or lack thereof)



- Foreground/background segmentation
 - > Given an image, separate "foreground" from "background"
- Here's what remove.bg gets using AI

Informal problem

- > Given an image (2D array of pixels), and likelihood estimates of different pixels being foreground/background, label each pixel as foreground or background
- Want to prevent having too many neighboring pixels where one is labeled foreground but the other is labeled background



• Input

- > An image (2D array of pixels)
- > a_i = likelihood of pixels *i* being in foreground
- > b_i = likelihood of pixels *i* being in background
- p_{i,j} = penalty for separating pixels i and j (i.e. labeling one of them as foreground and the other as background)

Output

- > Label each pixel as "foreground" or "background"
- > Minimize total penalty
 - \circ We want this to be high if a_i is high but i is labeled background, or b_i is high but i is labeled foreground, or $p_{i,j}$ is high but i and j are separated

Recall

- > a_i = likelihood of pixels *i* being in foreground
- > b_i = likelihood of pixels *i* being in background
- > $p_{i,j}$ = penalty for separating pixels *i* and *j*
- > Let E = pairs of neighboring pixels

Output

- Minimize total penalty
 - $\circ A =$ set of pixels labeled foreground
 - $\circ B = set of pixels labeled background$

 \circ Penalty =

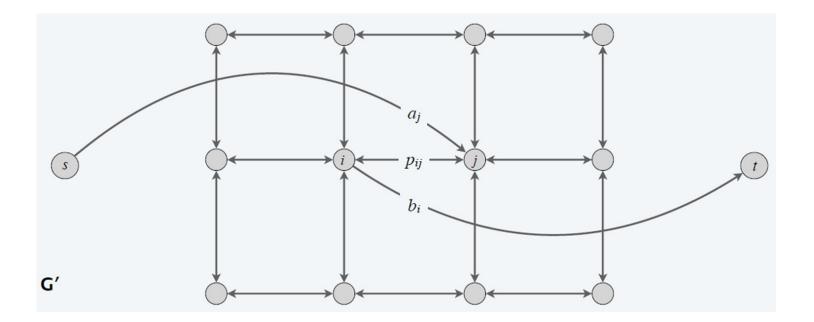
$$\sum_{i \in A} b_i + \sum_{j \in B} a_j + \sum_{\substack{(i,j) \in E \\ |A \cap \{i,j\}| = 1}} p_{i,j}$$

- Formulate as min-cut problem
 - > Want to divide the set of pixels V into (A, B) to minimize

$$\sum_{i \in A} b_i + \sum_{j \in B} a_j + \sum_{\substack{(i,j) \in E \\ |A \cap \{i,j\}| = 1}} p_{i,j}$$

- > Add a node v_i for each pixel i
- > Add a source node s, sink node t
- > Add $s \rightarrow v_i$ edge with capacity a_i and $v_i \rightarrow t$ edge with capacity b_i
- ➢ For neighboring (i, j), add both $v_i → v_j$ and $v_j → v_i$ edges with capacity $p_{i,j}$

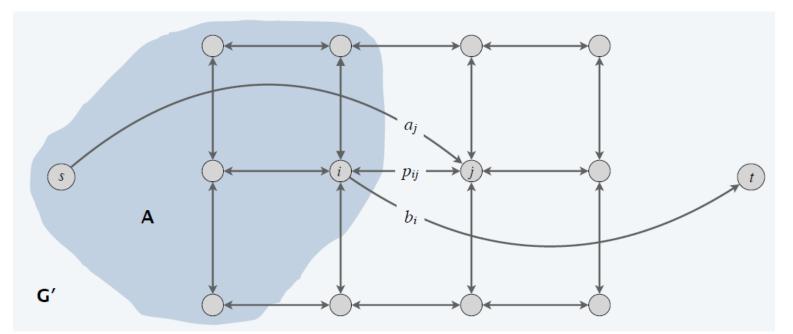
- Formulate as min-cut problem
 - > Here's what the network looks like



If i and j are labeled differently, it will add $p_{i,j}$ exactly once

> Exactly what we want to minimize!

> Consider the min-cut (A, B)



 $cap(A,B) = \sum_{i \in A} b_i + \sum_{i \in B} a_i + \sum_{(i,j) \in E} p_{i,j}$

 $i \in A, j \in B$

GrabCut [Rother-Kolmogorov-Blake 2004]

"GrabCut" — Interactive Foreground Extraction using Iterated Graph Cuts

Carsten Rother*

Vladimir Kolmogorov[†] Microsoft Research Cambridge, UK Andrew Blake[‡]

Figure 1: Three examples of GrabCut. The user drags a rectangle loosely around an object. The object is then extracted automatically.