CSC373

Week 4:

Dynamic Programming (contd)
Network Flow (start)

Nisarg Shah




Recap

* Dynamic Programming Basics
» Optimal substructure property
» Bellman equation
> Top-down (memoization) vs bottom-up implementations

* Dynamic Programming Examples
» Weighted interval scheduling
» Knapsack problem
» Single-source shortest paths
» Chain matrix product
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This Lecture

* Some more DP
> Edit distance (aka sequence alignment)
> Traveling salesman problem (TSP)

e Start of network flow
> Problem statement
> Ford-Fulkerson algorithm
» Running time
» Correctness
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Edit Distance

-
 Edit distance (aka sequence alignment) problem

» How similar are strings X = x4, ..., X,y and Y = yq, ..., y,?
- y,

* Suppose we can delete or replace symbols
> We can do these operations on any symbol in either string

> How many deletions & replacements does it take to match
the two strings?
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Edit Distance

* Example: ocurrance vs occurrence

0O C u r r d n C S -

6 replacements, 1 deletion

OE‘-U r r d n C €
LJ r r € n «C &
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Edit Distance
ﬁdit distance problem \

» Input
o Strings X = x4, ..., xppand Y = y4, ..., Vn
o Cost d(a) of deleting symbol a
o Cost r(a, b) of replacing symbol a with b
* Assume r is symmetric, so r(a,b) = r(b,a)
> Goal
\ o Compute the minimum total cost for matching the two strings /

e Optimal substructure?
> Want to delete/replace at one end and recurse
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Edit Distance

e Optimal substructure
» Goal: match x4, ..., x,,, and y4, ..., ¥,
» Consider the last symbols x,,, and y,,

> Three options:
o Delete x,,,, and optimally match x4, ..., X;,—1 and y4, ..., ¥,
o Delete y,,, and optimally match x4, ..., x,,, and y4, ..., Vn—1
o Match x,,, and y,,, and optimally match x4, ..., x;,—1 and y4, ..., V5, _1

> Hence in the DP, we need to compute the optimal solutions
for matching x4, ..., x; with y4, ..., y; for all (i,))
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Edit Distance

* E|i, j] = edit distance between x4, ..., x; and y;, ey Y

* Bellman equation

( 0 ifi=j=0

dly;)+E[i,j—1] ifi=0Aj>0
Elij) = {400+ ELL ~ A1 =04

d(x;)) +E[i—1,j] ifi>0Aj=0

| min{4, B, C} otherwise
where

A=d(x) +E[i—1,j1,B=d(y;)+Eli,j—1]
C = r(xl-,yj) +E[i—1,j — 1]

* O(n-m)time, O(n - m) space
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Edit Distance

( 0 ifi=j=0
d(y;) +E[i,j—1] ifi=0Aj>0
d(x;)) +E[i—1,j] ifi>0Aj=0
. min{4, B, (} otherwise

Eli,j] =1«

where
A=d(x;)+E[i—1,j,B=d(y;) + E[i,j — 1]
C=r(x,y;)+E[i—1j—1]

* Space complexity can be improved to O(n + m)
> To compute E[:, j], we only need E|-,j — 1] stored
> So we can forget E[+, j] as soon as we reach j + 2

» But this is not enough if we want to compute the actual
solution (sequence of operations)
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This slide is not in the

Hirschberg’'s Algorithm [

* The optimal solution can be computed in O(n - m)
time and O(n + m) space too!

Programming G. Manacher
Techniques Editor

A Linear Space
Algorithm for
Computing Maximal
Common Subsequences

D.S. Hirschberg
Princeton University

The problem of finding a longest common subse-
quence of two strings has been solved in quadratic time
and space. An algorithm is presented which will solve
this problem in quadratic time and in linear space.

Key Words and Phrases: subsequence, longest
common subsequence, string correction, editing

CR Categories: 3.63, 3.73, 3.79,4.22, 5.25
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Hirschberg’'s Algorithm

» Key idea nicely combines divide & conquer with DP
* Edit distance graph

€ N A) Y3 Y4 Ys AL

-‘..‘
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Hirschberg’'s Algorithm

e Observation (can be proved by induction)
> E[i, j] = length of shortest path from (0,0) to (i, j)

€ N A) Y3 Y4 Ys AL

X,
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Hirschberg's Algorithm

* Lemma

> Shortest path from (0,0) to (m, n) passes through (gq,"/,)
where g minimizes length of shortest path from (0,0) to
(q,™/,) + length of shortest path from (q,"/,) to (m,n)

n/2

X3
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Hirschberg's Algorithm

* |[dea
» Find g using divide-and-conquer

> Find shortest paths from (0,0) to (g,™/,) and (gq,"/,) to
(m,n) using DP

n/2
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Traveling Salesman
"

Input
> Directed graph ¢ = (V, E)
> Distance d; ; is the distance from node i to node j

* Output

> Minimum distance which needs to be traveled to start
from some node v, visit every other node exactly once,
and come back to v

o That is, the minimum cost of a Hamiltonian cycle

\_ J
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Traveling Salesman

* Approach
> Let’sstartatnode vy, =1

o It’s a cycle, so the starting point does not matter
» Want to visit the other nodes in some order, say v,, ..., v,
> Total distance is dy ,,, + dy, ,, + -+ + dy +dy 1

o Want to minimize this distance

n-1.Yn

* Naive solution
» Check all possible orderings

n
>n—1)!'=0 (\/ﬁ (g) ) (Stirling’s approximation)
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Traveling Salesman

* DP Approach
> Consider v, (the last node before returningtov; = 1)

olfv, =c
 We now want to find the optimal order of visiting nodes in
{2,..,n}\ {c}

* So we will need to keep track of which subset of nodes we need
to visit and where we need to end
> OPT|S, c] = minimum total distance of starting at 1,
visiting each node in § exactly once, and endingatc € S
(without counting the distance for returning from c to 1)

o Then the answer to our original problem can easily be computed
as min OPT[S,c] + d.,, where S = {2, ..., n}

CES
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Traveling Salesman

* DP Approach

» To compute OPT|[S, c], we condition over the vertex
which is visited right before ¢

* Bellman equation

OPTIS,c] = min (OPTIS\ {c},m] + duc)

Final solution = min _OPTI[{2,...,n},c] +d,4
ce{2,...,n} ’

e Time: O(n - 2™) calls, O(n) time per call = 0(n? - 2M)

> Much better than the naive solution which has (/)"
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Traveling Salesman

* Bellman equation

OPTIS,c] = min (OPTIS\ {c},m] + du)

Final solution = r{lznn }OPT[{Z ,ntcl+d, 4
CE ’
* Space complexity: O(n - 2™)
> But computing the optimal solution with |S| = k only requires
storing the optimal solutions with |S| =k — 1

e Question: Using this observation, how much can we reduce
the space complexity?
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DP Concluding Remarks

* Key steps in designing a DP algorithm
> “Generalize” the problem first

o E.g. instead of computing edit distance between strings X =
X1, -, Xm and Y = y;, ..., y,, we compute E|i, j] = edit distance
between i-prefix of X and j-prefix of Y for all (i, )

o The right generalization is often obtained by looking at the
structure of the “subproblem” which must be solved optimally to
get an optimal solution to the overall problem

> Remember the difference between DP and divide-and-

conquer

> Sometimes you can save quite a bit of space by only
storing solutions to those subproblems that you need in
the future
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Network Flow




Network Flow

-~

\_

~

> A directed graph ¢ = (V,E)
» Edge capacitiesc : £ = R,
> Source node s, target node t

* Input

* Output

> Maximum “flow” from s to t

J
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Network Flow

* Assumptions

> For simplicity, assume that... O O
u X
> No edges enters s P .
> No edges comes out of £ 20 Y
30
> Edge capacity c(e) is a non- @ 10 @
negative integer 10 | Voo
o Later, we’ll see what happens . 10 _,@
when c(e) can be a rational

number
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Network Flow

* Flow
> An s-t flow is a function f: E - R,

> Intuitively, f (e) is the “amount of material” carried on
edge e
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Network Flow

* Constraints on flow f

1. Respecting capacities Flow in = flow out at every
node other than s and ¢

VeeE:0< f(e) <c(e)

2. Flow conservation

Vv eVl \ {s, t}: Zeintov f(e) = Zeleavingv f(e)

Flow out at s =flow in att
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Network Flow

* fin(v) = Deintov f (€)
* fout(v) — Zeleavingv f(e)
» Value of flow f is v(f) = fOU4(s) = f"(¢)

* Restating the problem:

> Given a directed graph ¢ = (V, E) with edge capacities
c:E - R, find a flow f with the maximum value.
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First Attempt

* A natural greedy approach

1. Start from zero flow (f (e) = 0 for each e).

2. While there exists an s-t path P in G such that
f(e) <c(e)foreache € P

a. Find one such path P
b. Increase the flow on each edge e € P by rrlei}gl(c(e) — f(e))
e

* Let’s run it on an example!
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First Attempt

flow capacity
flow network G and flow f \ /
=Y =
(L o O
o 0/2 0 0/6 -
O * g value of flow

O SRV SV SV O F
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First Attempt

flow network G and flow f

() 0/4 )

373F19 - Nisarg Shah



First Attempt

flow network G and flow f

() 0/4
/ \\'\ / (\)
&
G 0/2 0 0
&\ &

0/6 e

<s/0/|o @ 0/9\<>_ g/lo_)(}:) 0 +8=8
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First Attempt

flow network G and flow f

V)

2—6/2 &/d’ 0/6 4=

on—@

C/O/'O 0/9—)<>_£/10_)<D 8 +2=10
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First Attempt

flow network G and flow f

=
A 978 \
. U

212 & 6 ©-/6
\Q\ / 7o /

N

Q)_g/uo_)\/_%/g_)/) 10/10— (&) 10+6=16
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First Attempt

ending flow value = 16

flow network G and flow f

Q——@

22 & . 6/6

@O ——O

D,
&
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First Attempt

but max-flow value = 19

flow network G and flow f

) 4
O 3/ ()

'\Q > 9
o 0/2 - 6/6 ),

<S> 9/10 <> 9/9 <> 10/ 10 (}\) 19

N
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First Attempt

* Q: Why does the simple greedy approach fail?

* A: Because once it increases the flow on an edge, it
is not allowed to decrease it.

flow network G

* Need a way to “reverse”
bad decisions 0. : O
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Reversing Bad Decisions

Suppose we start by sending But the optimal configuration requires
20 units of flow along this path 10 fewer units of flowonu = v
PON FON
20/20 0/10 20/20 10/10
@i 20/30 :@ @< 10/30 :@
0/10 20/20 10/10 20/20
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Reversing Bad Decisions

We can essentially send a “reverse” So now we get this optimal flow
flow of 10 units alongv - u

PN PN

20/20 10/10 20/20 10/10
(10 20/30 }E) ( 10/30 }3)
10/10\ | 20,20 10/10 | 20/20

hof
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Residual Graph

* Define the residual graph G¢ of flow f

> Gf has the same vertices as G

> For each edge e = (u,v) in G, G has at most two edges

o Forward edge e = (u, v) with capacity c(e) — f(e)
 We can send this much additional flow on e

o Reverse edge e’ = (v, u) with capacity f(e)
e The maximum “reverse” flow we can send is the maximum

amount by which we can reduce flow on e, which is f(e)

o We only add each edge if its capacity > 0
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Residual Graph

* Example!
Flow f Residual graph Gy
/CD\ /CD\
20/20 0/10 20 10
@ > ®» @ ®
0/10 20/20 10 20

) 4
\
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Augmenting Paths

* Let P be an s-t path in the residual graph G¢

* Let bottleneck(P, ) be the smallest capacity across
all edges in P

* “Augment” flow f by “sending” bottleneck(P, f)
units of flow along P
> What does it mean to send x units of flow along P?
> For each forward edge e € P, increase the flow on e by x
> For each reverse edge e"¢Y € P, decrease the flow on e by x
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Augmenting Paths

* Let’s argue that the new flow is a valid flow

* Capacity constraints:

> If we increase flow on e, we can do so by at most the
capacity of forward edge e in G¢, whichis c(e) — f(e)
o So the new flow can be at most f(e) + (c(e) — f(e)) = c(e)

> If we decrease flow on e, we can do so by at most the
capacity of reverse edge " in G¢, which is f(e)

o So the new flow is at least f(e) — f(e) = 0
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Augmenting Paths

* Let’s argue that the new flow is a valid flow

* Flow conservation:
> Each node on the path (except s and t) has exactly two
incident edges
o Both forward / both reverse = one is incoming, one is outgoing
o One forward, one reverse = both incoming / both outgoing
o Net flow remains 0

: +Xx :+x :—x:—x:+x:
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Ford-Fulkerson Algorithm

MaxFlow(G):
// 1nitialize:
Set f(e) =0 for all e in G

// while there 1s an s-t path in Gf:

While P = FindPath(s,t,Residual(G,f))!=None:
f = Augment(f,P)
UpdateResidual (G, f)

EndiWhile

Return f
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Ford-Fulkerson Algorithm

* Running time:
> #Augmentations:
o At every step, flow and capacities remain integers
o For path P in Gy, bottleneck(P, f) > 0 implies bottleneck(P, f) = 1
o Each augmentation increases flow by at least 1

o At most C = ), c(e) augmentations

e leaving s

> Time for an augmentation:
o Gy has n vertices and at most 2m edges
o Finding an s-t path in Gy takes O(m + n) time

> Total time: O((m +n) - C)
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Ford-Fulkerson Algorithm

* Total time: O((m +n) - C)
> This is pseudo-polynomial time

> C can be exponentially large in the input length (the number
of bits required to write down the edge capacities)

> Note: We assumed integer capacities, but this also gives a
pseudo-polynomial time algorithm for rational capacities

o Why?

* Q: Can we convert this to polynomial time?
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Ford-Fulkerson Algorithm

* Q: Can we convert this to polynomial time?
> Not if we choose an arbitrary path in G¢ at each step

> In the graph below, we might end up repeatedly sending 1
unit of flow across a — b and then reversing it

o Takes X steps, which can be exponential in the input length

an
N

d

S t

Y

b
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Ford-Fulkerson Algorithm

* Ways to achieve polynomial time

> Find the shortest augmenting path using BFS
o Edmonds-Karp algorithm
o Runs in 0(nm?) time
o Can be found in CLRS
> Find the maximum bottleneck capacity augmenting path
o Runsin O0(m? - log C) time

o “Weakly polynomial time” (number of arithmetic operations
depends on the number of bits used to write integers)
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Max Flow Problem

* Race to reduce the running time
> 1972: 0(n m?) Edmonds-Karp
> 1980: 0(n mlog? n) Galil-Namaad
> 1983: 0(n mlogn) Sleator-Tarjan
> 1986: 0(n mlog(™*/m)) Goldberg-Tarjan
> 1992: O(n m + n?*¢) King-Rao-Tarjan

> 1996: 0 (n mlogm/n log 1 n) King-Rao-Tarjan

o Note: These are O(n m) whenm = w(n)

> 2013: O(nm) Orlin
o Breakthrough!
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Back to Ford-Fulkerson

* We argued that the algorithm must terminate, and
must do so in 0((m +n) - C) time

* But we didn’t argue correctness yet, i.e., the
algorithm must terminate with the optimal flow
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Cuts and Cut Capacities

* (A,B) isan s-t cutif itis a partition of vertex set
(ie, AUB=V,ANB=0@Q),seA,andt €B

* Capacity of this cut, denoted cap(A4, B), is the sum
of capacities of edges leaving A

s-t cut

capacity(A,B) =25
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Cuts and Flows

* Theorem: For any flow f and any s-t cut (4, B),
v(f) = (A — f(4)

* Proof: Just need to apply flow conservation
(exercise!)

s-t cut

capacity(A,B) =25
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Cuts and Flows

* Theorem: For any flow f and any s-t cut (4, B),
v(f) < cap(4, B)
* Proof:
v(f) = fOU(A) - (A
< fou(4)

= > f@©

e leaving A

< z c(e)

e leaving A

= cap(4A, B)
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Cuts and Flows

* Theorem: For any flow f and any s-t cut (4, B),
v(f) < cap(4, B)

* So, the maximum flow is at most the minimum
capacity of any cut.

* |n fact, we will show that the maximum flow is
equal to the minimum capacity of any cut.
> To demonstrate the correctness (i.e. optimality) of Ford-

Fulkerson algorithm, all we need to show is that the flow
it generates is equal to the capacity of some cut.
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Cuts and Flows

e Theorem: Ford-Fulkerson finds maximum flow.

* Proof:
> Let f* denote the flow returned by Ford-Fulkerson.
> Look at G¢+ but define a cutin G

(:t;:;:_*<:> """""""""""" f(:l\\\‘
TSSO ot
I 4
A* = nodes
reachable from sin

residual graph G« O

Cut = (A%, B
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Cuts and Flows

e Theorem: Ford-Fulkerson finds maximum flow.

* Proof:

> (A", B¥) is a valid cut because there is no s-t path in G-
when Ford-Fulkerson terminates,sot & A"

(:t;:;:_*<:> """""""""""" f(:l\\\‘
TSSO ot
I 4
A* = nodes
reachable from sin

residual graph G« O

Cut = (A%, B
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Cuts and Flows

e Theorem: Ford-Fulkerson finds maximum flow.

* Proof:
> Blue edges = edges going out of A" in G
> Red edges = edges coming into A™ in G

(:t;:;:_*<:> """""""""""" f(:l\\\‘
TSSO ot
I 4
A* = nodes
reachable from sin

residual graph G« O

Cut = (A%, B
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Cuts and Flows

e Theorem: Ford-Fulkerson finds maximum flow.

* Proof:
> Each blue edge (u, v) must be saturated
o Otherwise G; has a forward edge (u, v) and then v € A"

> Each red edge (v, u) must have zero flow
o Otherwise Gf has the reverse edge (u,v) and then v € A"

TSSO ot
. 4
A* = nodes
reachable from s in
residual graph Gg» O

Cut = (A%, B
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Cuts and Flows

e Theorem: Ford-Fulkerson finds maximum flow.

* Proof:
> Each blue edge (u, v) must be saturated

> Each red edge (v, u) must have zero flow
>»Sov(f*) =cap(A*,B*) m

(:t;:;:_*<:> """""""""""" f(:l\\\‘
TSSO ot
I 4
A* = nodes
reachable from sin

residual graph G« O

Cut = (A%, B
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Max Flow - Min Cut

* Theorem: In any graph, the value of the maximum
flow is equal to the capacity of the minimum cut.

e Our proof already showed that Ford-Fulkerson can
be used to find the min cut
> Find the max flow [~

> Let A* = set of all nodes reachable from s in Gf*
o Easy to compute using BFS

» Then (A%, V \ A®) is min cut
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Why Study Flow Networks?

* Unlike divide-and-conquer, greedy, or dynamic
programming, this doesn’t seem like a framework
> It is more like a single problem

* It turns out that many problems can be reduced to
this single problem

» Hence, it is a very versatile technique

 Next lecture!
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