CSC373

Week 4:
Dynamic Programming (contd)
Network Flow (start)

Nisarg Shah

Recap

Dynamic Programming Basics

- > Optimal substructure property
- > Bellman equation
- > Top-down (memoization) vs bottom-up implementations

Dynamic Programming Examples

- Weighted interval scheduling
- Knapsack problem
- Single-source shortest paths
- > Chain matrix product

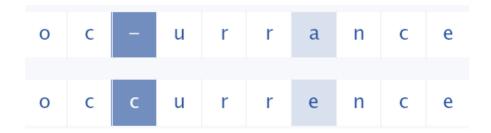
This Lecture

Some more DP

- > Edit distance (aka sequence alignment)
- Traveling salesman problem (TSP)

Start of network flow

- > Problem statement
- > Ford-Fulkerson algorithm
- > Running time
- > Correctness


- Edit distance (aka sequence alignment) problem How similar are strings $X = x_1, ..., x_m$ and $Y = y_1, ..., y_n$?

- Suppose we can delete or replace symbols
 - > We can do these operations on any symbol in either string
 - > How many deletions & replacements does it take to match the two strings?

• Example: ocurrance vs occurrence

6 replacements, 1 deletion

1 replacement, 1 deletion

- Edit distance problem
 - > Input
 - \circ Strings $X=x_1,\ldots,x_m$ and $Y=y_1,\ldots,y_n$
 - \circ Cost d(a) of deleting symbol a
 - \circ Cost r(a, b) of replacing symbol a with b
 - Assume r is symmetric, so r(a,b) = r(b,a)
 - > Goal
 - Compute the minimum total cost for matching the two strings
- Optimal substructure?
 - > Want to delete/replace at one end and recurse

Optimal substructure

- \triangleright Goal: match x_1, \dots, x_m and y_1, \dots, y_n
- \triangleright Consider the last symbols x_m and y_n
- > Three options:
 - \circ Delete x_m , and optimally match x_1, \dots, x_{m-1} and y_1, \dots, y_n
 - \circ Delete y_n , and optimally match x_1, \dots, x_m and y_1, \dots, y_{n-1}
 - \circ Match x_m and y_n , and optimally match x_1, \dots, x_{m-1} and y_1, \dots, y_{n-1}

 \triangleright Hence in the DP, we need to compute the optimal solutions for matching $x_1, ..., x_i$ with $y_1, ..., y_j$ for all (i, j)

- E[i,j] = edit distance between $x_1, ..., x_i$ and $y_1, ..., y_j$
- Bellman equation

$$E[i,j] = \begin{cases} 0 & \text{if } i = j = 0 \\ d(y_j) + E[i,j-1] & \text{if } i = 0 \land j > 0 \\ d(x_i) + E[i-1,j] & \text{if } i > 0 \land j = 0 \\ \min\{A,B,C\} & \text{otherwise} \end{cases}$$
where
$$A = d(x_i) + E[i-1,j], B = d(y_j) + E[i,j-1]$$

$$C = r(x_i,y_j) + E[i-1,j-1]$$

• $O(n \cdot m)$ time, $O(n \cdot m)$ space

$$E[i,j] = \begin{cases} 0 & \text{if } i = j = 0 \\ d(y_j) + E[i,j-1] & \text{if } i = 0 \land j > 0 \\ d(x_i) + E[i-1,j] & \text{if } i > 0 \land j = 0 \\ \min\{A,B,C\} & \text{otherwise} \end{cases}$$
where
$$A = d(x_i) + E[i-1,j], B = d(y_j) + E[i,j-1]$$

$$C = r(x_i,y_j) + E[i-1,j-1]$$

- Space complexity can be improved to O(n+m)
 - \succ To compute $E[\cdot,j]$, we only need $E[\cdot,j-1]$ stored
 - > So we can forget $E[\cdot, j]$ as soon as we reach j + 2
 - But this is not enough if we want to compute the actual solution (sequence of operations)

This slide is not in the scope of the course

• The optimal solution can be computed in $O(n \cdot m)$ time and O(n + m) space too!

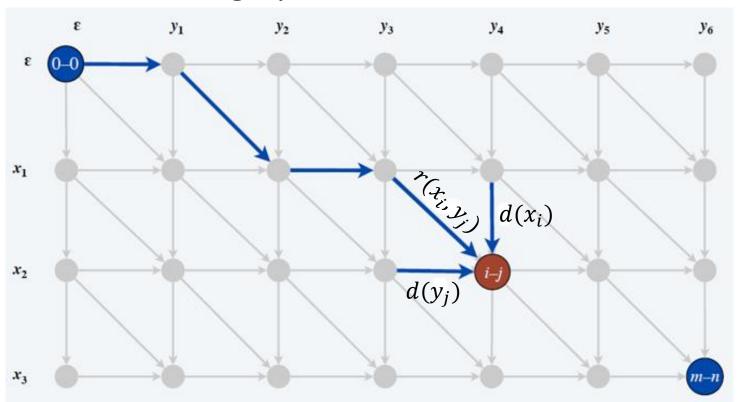
Programming Techniques

G. Manacher Editor

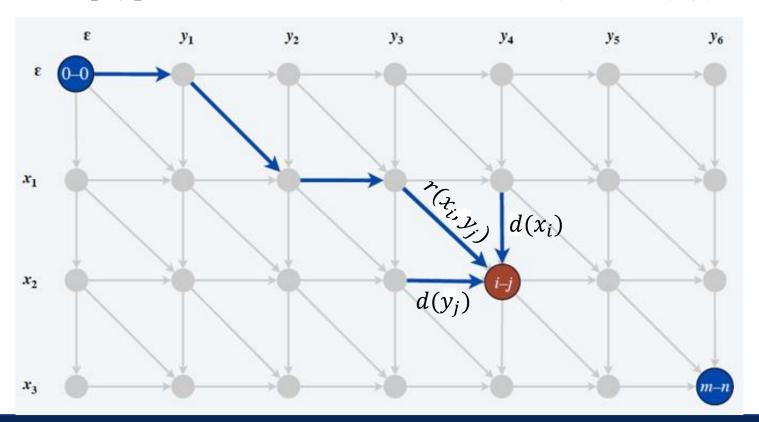
A Linear Space
Algorithm for
Computing Maximal
Common Subsequences

D.S. Hirschberg Princeton University

The problem of finding a longest common subsequence of two strings has been solved in quadratic time and space. An algorithm is presented which will solve this problem in quadratic time and in linear space.


Key Words and Phrases: subsequence, longest common subsequence, string correction, editing

CR Categories: 3.63, 3.73, 3.79, 4.22, 5.25


This slide is not in the scope of the course

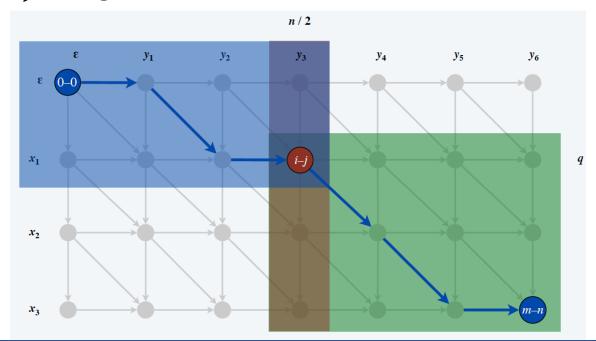
- Key idea nicely combines divide & conquer with DP
- Edit distance graph

This slide is not in the scope of the course


- Observation (can be proved by induction)
 - E[i,j] =length of shortest path from (0,0) to (i,j)

This slide is not in the scope of the course

Lemma


> Shortest path from (0,0) to (m,n) passes through $(q,^n/_2)$ where q minimizes length of shortest path from (0,0) to $(q,^n/_2)$ + length of shortest path from $(q,^n/_2)$ to (m,n)

This slide is not in the scope of the course

• Idea

- > Find q using divide-and-conquer
- > Find shortest paths from (0,0) to (q, n/2) and (q, n/2) to (m,n) using DP

Application: Protein Matching

	Α	R	N	D	C	Q	E	G	Н	1	L	K	M	F	P	S	T	W	Υ	٧
Α	7	-3	-3	-3	-1	-2	-2	0	-3	-3	-3	-1	-2	-4	-1	2	0	-5	-4	-1
R	-3	9	-1	-3	-6	1	-1	-4	0	-5	-4	3	-3	-5	-3	-2	-2	-5	-4	-4
N	-3	-1	9	2	-5	0	-1	-1	1	-6	-6	0	-4	-6	-4	1	0	-7	-4	-5
D	-3	-3	2	10	-7	-1	2	-3	-2	-7	-7	-2	-6	-6	-3	-1	-2	-8	-6	-6
C	-1	-6	-5	-7	13	-5	-7	-6	-7	-2	-3	-6	-3	-4	-6	-2	-2	-5	-5	-2
Q	-2	1	0	-1	-5	9	3	-4	1	-5	-4	2	-1	-5	-3	-1	-1	-4	-3	-4
E	-2	-1	-1	2	-7	3	8	-4	0	-6	-6	1	-4	-6	-2	-1	-2	-6	-5	-4
G	0	-4	-1	-3	-6	-4	-4	9	-4	-7	-7	-3	-5	-6	-5	-1	-3	-6	-6	-6
Н	-3	0	1	-2	-7	1	0	-4	12	-6	-5	-1	-4	-2	-4	-2	-3	-4	3	-5
1	-3	-5	-6	-7	-2	-5	-6	-7	-6	7	2	-5	2	-1	-5	-4	-2	-5	-3	4
L	-3	-4	-6	-7	-3	-4	-6	-7	-5	2	6	-4	3	0	-5	-4	-3	-4	-2	1
K	-1	3	0	-2	-6	2	1	-3	-1	-5	-4	8	-3	-5	-2	-1	-1	-6	-4	-4
M	-2	-3	-4	-6	-3	-1	-4	-5	-4	2	3	-3	9	0	-4	-3	-1	-3	-3	1
F	-4	-5	-6	-6	-4	-5	-6	-6	-2	-1	0	-5	0	10	-6	-4	-4	0	4	-2
Ρ	-1	-3	-4	-3	-6	-3	-2	-5	-4	-5	-5	-2	-4	-6	12	-2	-3	-7	-6	-4
S	2	-2	1	-1	-2	-1	-1	-1	-2	-4	-4	-1	-3	-4	-2	7	2	-6	-3	-3
T	0	-2	0	-2	-2	-1	-2	-3	-3	-2	-3	-1	-1	-4	-3	2	8	-5	-3	0
W	-5	-5	-7	-8	-5	-4	-6	-6	-4	-5	-4	-6	-3	0	-7	-6	-5	16	3	-5
Υ	-4	-4	-4	-6	-5	-3	-5	-6	3	-3	-2	-4	-3	4	-6	-3	-3	3	11	-3
٧	-1	-4	-5	-6	-2	-4	-4	-6	-5	4	1	-4	1	-2	-4	-3	0	-5	-3	7

Input

- \triangleright Directed graph G = (V, E)
- \succ Distance $d_{i,j}$ is the distance from node i to node j

Output

- \succ Minimum distance which needs to be traveled to start from some node v, visit every other node exactly once, and come back to v
 - That is, the minimum cost of a Hamiltonian cycle

Approach

- \triangleright Let's start at node $v_1 = 1$
 - It's a cycle, so the starting point does not matter
- \triangleright Want to visit the other nodes in some order, say v_2, \dots, v_n
- > Total distance is $d_{1,v_2}+d_{v_2,v_3}+\cdots+d_{v_{n-1},v_n}+d_{v_n,1}$
 - Want to minimize this distance

Naïve solution

> Check all possible orderings

$$> (n-1)! = \Theta\left(\sqrt{n} \cdot \left(\frac{n}{e}\right)^n\right)$$
 (Stirling's approximation)

DP Approach

 \triangleright Consider v_n (the last node before returning to $v_1=1$)

$$\circ$$
 If $v_n = c$

- We now want to find the optimal order of visiting nodes in $\{2, ..., n\} \setminus \{c\}$
- So we will need to keep track of which subset of nodes we need to visit and where we need to end
- \triangleright OPT[S,c]= minimum total distance of starting at 1, visiting each node in S exactly once, and ending at $c \in S$ (without counting the distance for returning from $c \in S$)
 - \circ Then the answer to our original problem can easily be computed as $\min_{c \in S} OPT[S,c] + d_{c,1}$, where $S = \{2,\dots,n\}$

- DP Approach
 - > To compute OPT[S, c], we condition over the vertex which is visited right before c
- Bellman equation

$$OPT[S,c] = \min_{m \in S \setminus \{c\}} \left(OPT[S \setminus \{c\}, m] + d_{m,c} \right)$$

Final solution =
$$\min_{c \in \{2,...,n\}} OPT[\{2,...,n\},c] + d_{c,1}$$

- Time: $O(n \cdot 2^n)$ calls, O(n) time per call $\Rightarrow O(n^2 \cdot 2^n)$
 - > Much better than the naïve solution which has $(n/e)^n$

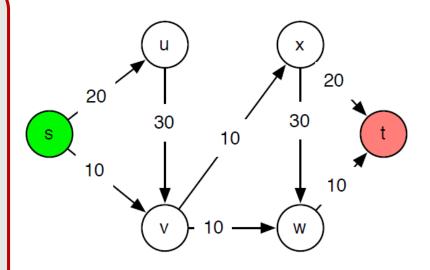
Bellman equation

$$OPT[S, c] = \min_{m \in S \setminus \{c\}} (OPT[S \setminus \{c\}, m] + d_{m,c})$$

Final solution = $\min_{c \in \{2, ..., n\}} OPT[\{2, ..., n\}, c] + d_{c,1}$

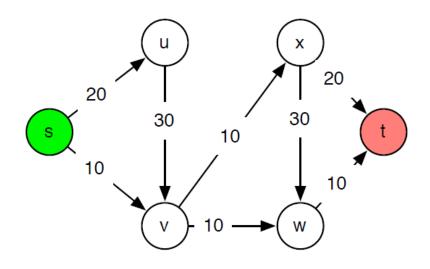
- Space complexity: $O(n \cdot 2^n)$
 - > But computing the optimal solution with |S| = k only requires storing the optimal solutions with |S| = k 1
- Question: Using this observation, how much can we reduce the space complexity?

DP Concluding Remarks

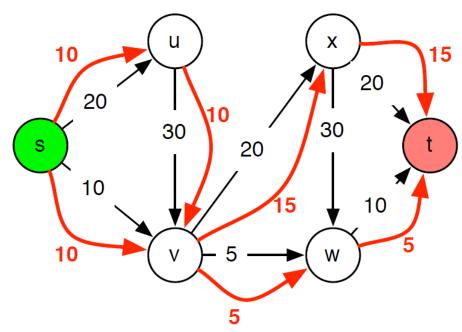

- Key steps in designing a DP algorithm
 - "Generalize" the problem first
 - \circ E.g. instead of computing edit distance between strings $X=x_1,\ldots,x_m$ and $Y=y_1,\ldots,y_n$, we compute E[i,j]= edit distance between i-prefix of X and j-prefix of Y for all (i,j)
 - The right generalization is often obtained by looking at the structure of the "subproblem" which must be solved optimally to get an optimal solution to the overall problem
 - Remember the difference between DP and divide-andconquer
 - Sometimes you can save quite a bit of space by only storing solutions to those subproblems that you need in the future

Input

- \triangleright A directed graph G = (V, E)
- \triangleright Edge capacities $c: E \to \mathbb{R}_{\geq 0}$
- > Source node s, target node t


Output

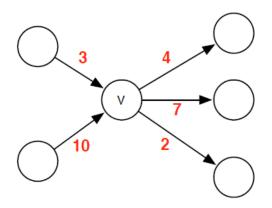
> Maximum "flow" from s to t


Assumptions

- > For simplicity, assume that...
- > No edges enters s
- \gt No edges comes out of t
- \triangleright Edge capacity c(e) is a nonnegative integer
 - \circ Later, we'll see what happens when c(e) can be a rational number

Flow

- \triangleright An s-t flow is a function $f: E \to \mathbb{R}_{\geq 0}$
- > Intuitively, f(e) is the "amount of material" carried on edge e



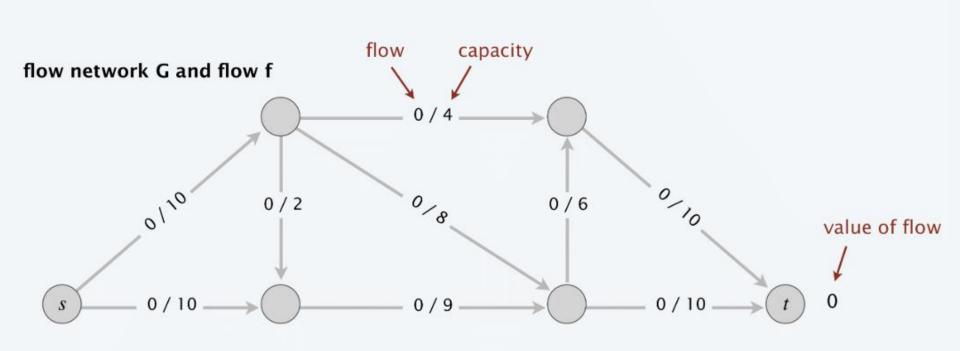
- Constraints on flow f
 - 1. Respecting capacities

$$\forall e \in E : 0 \le f(e) \le c(e)$$

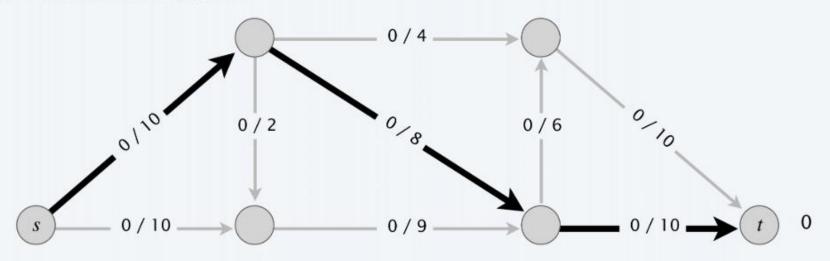
2. Flow conservation

$$\forall v \in V \setminus \{s, t\} : \sum_{e \text{ into } v} f(e) = \sum_{e \text{ leaving } v} f(e)$$

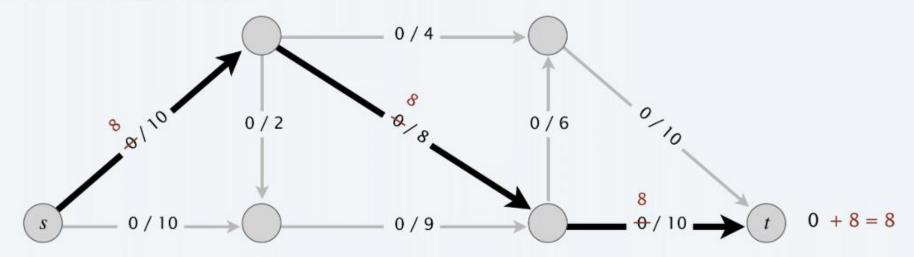
Flow in = flow out at every node other than s and t

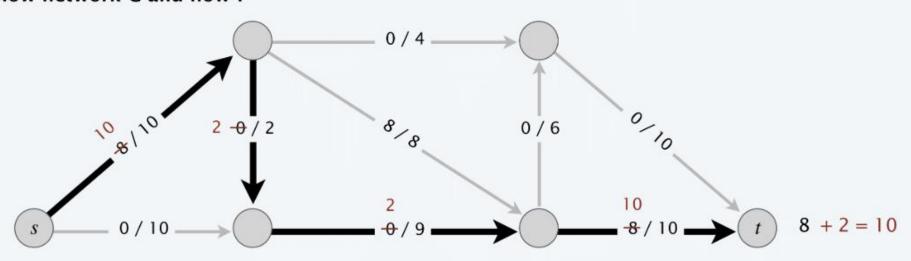

Flow out at s = flow in at t

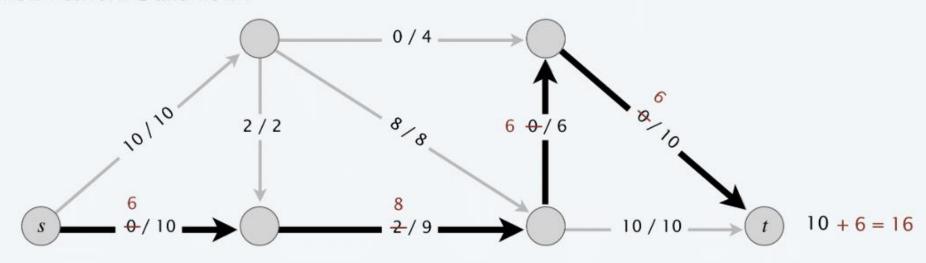
- $f^{in}(v) = \sum_{e \text{ into } v} f(e)$
- $f^{out}(v) = \sum_{e \text{ leaving } v} f(e)$
- Value of flow f is $v(f) = f^{out}(s) = f^{in}(t)$


- Restating the problem:
 - \succ Given a directed graph G=(V,E) with edge capacities $c\colon E\to\mathbb{R}_{\geq 0}$, find a flow f^* with the maximum value.

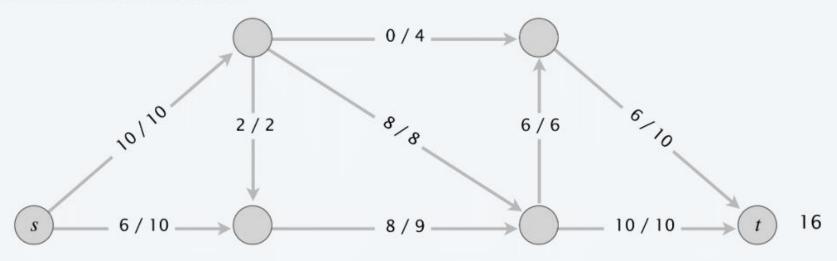
- A natural greedy approach
 - 1. Start from zero flow (f(e) = 0 for each e).
 - 2. While there exists an s-t path P in G such that f(e) < c(e) for each $e \in P$
 - a. Find one such path P
 - b. Increase the flow on each edge $e \in P$ by $\min_{e \in P} (c(e) f(e))$


Let's run it on an example!

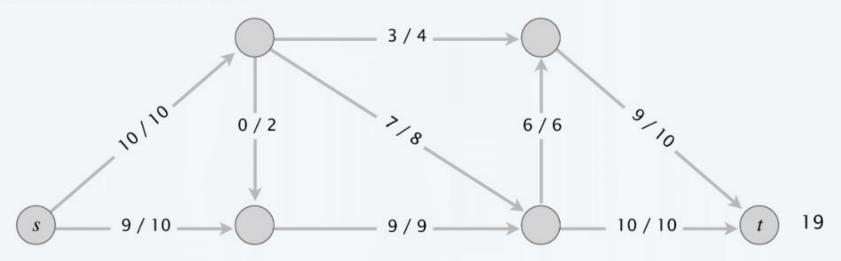

flow network G and flow f


flow network G and flow f

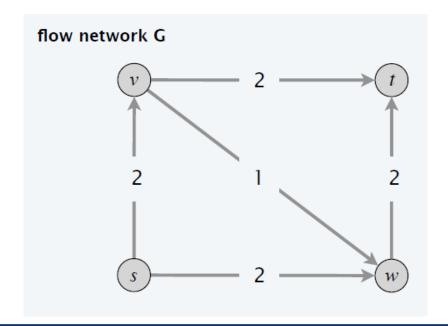
flow network G and flow f



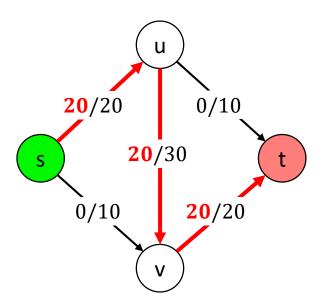
flow network G and flow f


ending flow value = 16

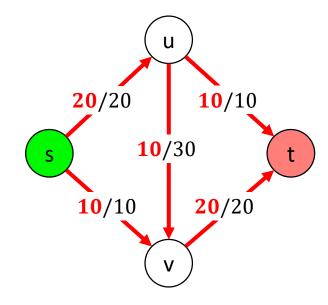
flow network G and flow f


but max-flow value = 19

flow network G and flow f

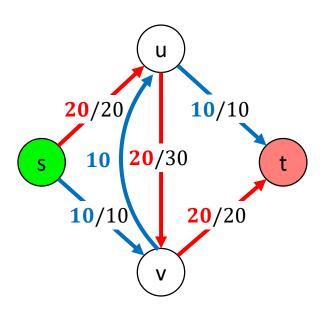

- Q: Why does the simple greedy approach fail?
- A: Because once it increases the flow on an edge, it is not allowed to decrease it.

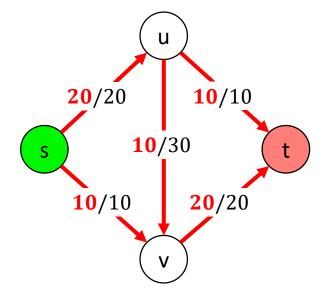
 Need a way to "reverse" bad decisions



Reversing Bad Decisions

Suppose we start by sending 20 units of flow along this path

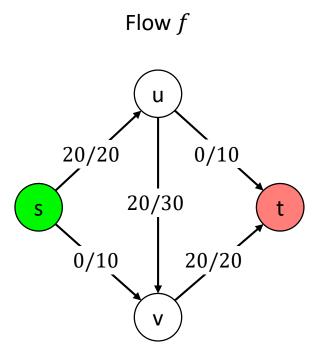

But the optimal configuration requires 10 fewer units of flow on $u \rightarrow v$



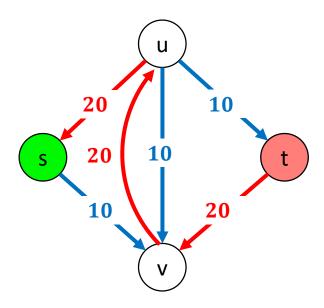
Reversing Bad Decisions

We can essentially send a "reverse" flow of 10 units along $v \rightarrow u$

So now we get this optimal flow



Residual Graph


- Define the residual graph G_f of flow f
 - > G_f has the same vertices as G
 - \triangleright For each edge e=(u,v) in G, G_f has at most two edges
 - Forward edge e = (u, v) with capacity c(e) f(e)
 - We can send this much additional flow on e
 - \circ Reverse edge $e^{rev} = (v, u)$ with capacity f(e)
 - The maximum "reverse" flow we can send is the maximum amount by which we can reduce flow on e, which is f(e)
 - \circ We only add each edge if its capacity >0

Residual Graph

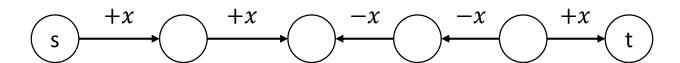
• Example!

Residual graph G_f

Augmenting Paths

- Let P be an s-t path in the residual graph G_f
- Let bottleneck(P, f) be the smallest capacity across all edges in P
- "Augment" flow f by "sending" bottleneck(P, f) units of flow along P
 - \triangleright What does it mean to send x units of flow along P?
 - \triangleright For each forward edge $e \in P$, increase the flow on e by x
 - \triangleright For each reverse edge $e^{rev} \in P$, decrease the flow on e by x

Augmenting Paths


- Let's argue that the new flow is a valid flow
- Capacity constraints:
 - > If we increase flow on e, we can do so by at most the capacity of forward edge e in G_f , which is c(e) f(e)
 - o So the new flow can be at most f(e) + (c(e) f(e)) = c(e)
 - > If we decrease flow on e, we can do so by at most the capacity of reverse edge e^{rev} in G_f , which is f(e)
 - \circ So the new flow is at least f(e) f(e) = 0

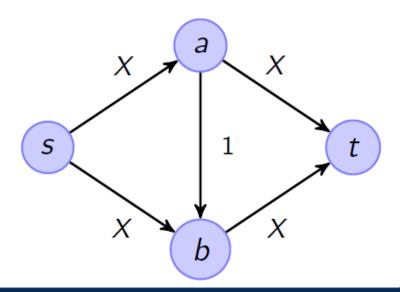
Augmenting Paths

Let's argue that the new flow is a valid flow

Flow conservation:

- ➤ Each node on the path (except s and t) has exactly two incident edges
 - Both forward / both reverse ⇒ one is incoming, one is outgoing
 - \circ One forward, one reverse \Rightarrow both incoming / both outgoing
 - Net flow remains 0


```
MaxFlow(G):
 // initialize:
 Set f(e) = 0 for all e in G
 // while there is an s-t path in G_f:
 While P = FindPath(s, t, Residual(G, f))! = None:
   f = Augment(f, P)
   UpdateResidual(G, f)
 EndWhile
 Return f
```


Running time:

- > #Augmentations:
 - At every step, flow and capacities remain integers
 - For path P in G_f , bottleneck(P, f) > 0 implies bottleneck $(P, f) \ge 1$
 - Each augmentation increases flow by at least 1
 - At most $C = \sum_{e \text{ leaving } s} c(e)$ augmentations
- > Time for an augmentation:
 - \circ G_f has n vertices and at most 2m edges
 - \circ Finding an s-t path in G_f takes O(m+n) time
- > Total time: $O((m+n) \cdot C)$

- Total time: $O((m+n) \cdot C)$
 - > This is pseudo-polynomial time
 - > C can be exponentially large in the input length (the number of bits required to write down the edge capacities)
 - Note: We assumed integer capacities, but this also gives a pseudo-polynomial time algorithm for rational capacities
 - O Why?

Q: Can we convert this to polynomial time?

- Q: Can we convert this to polynomial time?
 - \triangleright Not if we choose an *arbitrary* path in G_f at each step
 - > In the graph below, we might end up repeatedly sending 1 unit of flow across $a \rightarrow b$ and then reversing it
 - Takes X steps, which can be exponential in the input length

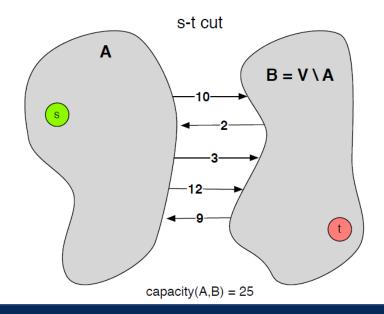
- Ways to achieve polynomial time
 - > Find the shortest augmenting path using BFS
 - Edmonds-Karp algorithm
 - \circ Runs in $O(nm^2)$ time
 - Can be found in CLRS
 - > Find the maximum bottleneck capacity augmenting path
 - o Runs in $O(m^2 \cdot \log C)$ time
 - "Weakly polynomial time" (number of arithmetic operations depends on the number of bits used to write integers)

> ...

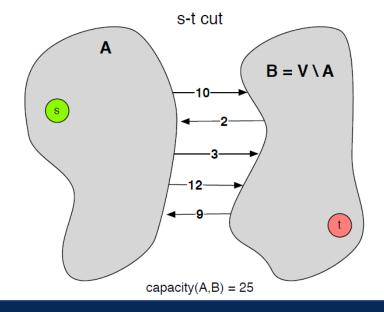
Max Flow Problem

Race to reduce the running time

- > 1972: $O(n m^2)$ Edmonds-Karp
- > 1980: $O(n m \log^2 n)$ Galil-Namaad
- > 1983: $O(n m \log n)$ Sleator-Tarjan
- > 1986: $O(n m \log(n^2/m))$ Goldberg-Tarjan
- > 1992: $O(n m + n^{2+\epsilon})$ King-Rao-Tarjan
- > 1996: $O\left(n \, m \log_{m/n \log n} n\right)$ King-Rao-Tarjan
 - \circ Note: These are O(n m) when $m = \omega(n)$
- > 2013: O(n m) Orlin
 - o Breakthrough!


Back to Ford-Fulkerson

• We argued that the algorithm must terminate, and must do so in $O((m+n)\cdot C)$ time


 But we didn't argue correctness yet, i.e., the algorithm must terminate with the optimal flow

Cuts and Cut Capacities

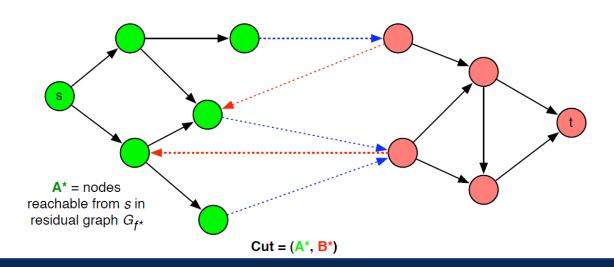
- (A, B) is an s-t cut if it is a partition of vertex set (i.e. $A \cup B = V, A \cap B = \emptyset$), $s \in A$, and $t \in B$
- Capacity of this cut, denoted cap(A,B), is the sum of capacities of edges leaving A

- Theorem: For any flow f and any s-t cut (A, B), $v(f) = f^{out}(A) f^{in}(A)$
- Proof: Just need to apply flow conservation (exercise!)

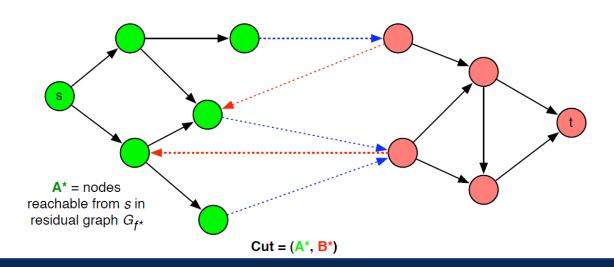
- Theorem: For any flow f and any s-t cut (A, B), $v(f) \le cap(A, B)$
- Proof:

$$v(f) = f^{out}(A) - f^{in}(A)$$

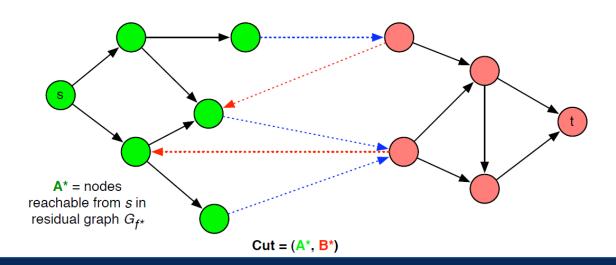
$$\leq f^{out}(A)$$

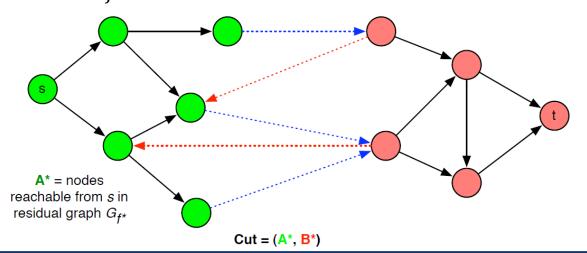

$$= \sum_{e \text{ leaving } A} f(e)$$

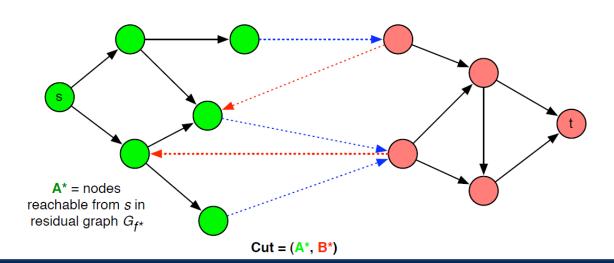
$$\leq \sum_{e \text{ leaving } A} c(e)$$


$$= cap(A, B)$$

- Theorem: For any flow f and any s-t cut (A, B), $v(f) \le cap(A, B)$
- So, the maximum flow is at most the minimum capacity of any cut.
- In fact, we will show that the maximum flow is equal to the minimum capacity of any cut.
 - > To demonstrate the correctness (i.e. optimality) of Ford-Fulkerson algorithm, all we need to show is that the flow it generates is equal to the capacity of *some* cut.


- Theorem: Ford-Fulkerson finds maximum flow.
- Proof:
 - \triangleright Let f^* denote the flow returned by Ford-Fulkerson.
 - \gt Look at G_{f^*} but define a cut in G


- Theorem: Ford-Fulkerson finds maximum flow.
- Proof:
 - (A^*, B^*) is a valid cut because there is no s-t path in G_{f^*} when Ford-Fulkerson terminates, so $t \notin A^*$


- Theorem: Ford-Fulkerson finds maximum flow.
- Proof:
 - ightharpoonup Blue edges = edges going out of A^* in G
 - ightharpoonup Red edges = edges coming into A^* in G

- Theorem: Ford-Fulkerson finds maximum flow.
- Proof:
 - Fach blue edge (u, v) must be saturated
 - \circ Otherwise G_f has a forward edge (u, v) and then $v \in A^*$
 - \triangleright Each red edge (v, u) must have zero flow
 - \circ Otherwise G_f has the reverse edge (u, v) and then $v \in A^*$

- Theorem: Ford-Fulkerson finds maximum flow.
- Proof:
 - \triangleright Each blue edge (u, v) must be saturated
 - \triangleright Each red edge (v, u) must have zero flow
 - \triangleright So $v(f^*) = cap(A^*, B^*) \blacksquare$

Max Flow - Min Cut

 Theorem: In any graph, the value of the maximum flow is equal to the capacity of the minimum cut.

- Our proof already showed that Ford-Fulkerson can be used to find the min cut
 - \triangleright Find the max flow f^*
 - \triangleright Let $A^* = \text{set of all nodes reachable from } s \text{ in } G_{f^*}$
 - Easy to compute using BFS
 - \triangleright Then $(A^*, V \setminus A^*)$ is min cut

Why Study Flow Networks?

- Unlike divide-and-conquer, greedy, or dynamic programming, this doesn't seem like a framework
 - > It is more like a single problem
- It turns out that many problems can be reduced to this single problem
 - > Hence, it is a very versatile technique
- Next lecture!