
CSC373

Week 4:
Dynamic Programming (contd)

Network Flow (start)

373F19 - Nisarg Shah 1

Nisarg Shah

Recap

373F19 - Nisarg Shah 2

• Dynamic Programming Basics
➢ Optimal substructure property

➢ Bellman equation

➢ Top-down (memoization) vs bottom-up implementations

• Dynamic Programming Examples
➢ Weighted interval scheduling

➢ Knapsack problem

➢ Single-source shortest paths

➢ Chain matrix product

This Lecture

373F19 - Nisarg Shah 3

• Some more DP
➢ Edit distance (aka sequence alignment)

➢ Traveling salesman problem (TSP)

• Start of network flow
➢ Problem statement

➢ Ford-Fulkerson algorithm

➢ Running time

➢ Correctness

• Edit distance (aka sequence alignment) problem
➢ How similar are strings 𝑋 = 𝑥1, … , 𝑥𝑚 and 𝑌 = 𝑦1, … , 𝑦𝑛?

• Suppose we can delete or replace symbols
➢ We can do these operations on any symbol in either string

➢ How many deletions & replacements does it take to match
the two strings?

Edit Distance

373F19 - Nisarg Shah 4

• Example: ocurrance vs occurrence

Edit Distance

373F19 - Nisarg Shah 5

6 replacements, 1 deletion

1 replacement, 1 deletion

• Edit distance problem
➢ Input
o Strings 𝑋 = 𝑥1, … , 𝑥𝑚 and 𝑌 = 𝑦1, … , 𝑦𝑛

o Cost 𝑑(𝑎) of deleting symbol 𝑎

o Cost 𝑟(𝑎, 𝑏) of replacing symbol 𝑎 with 𝑏

• Assume 𝑟 is symmetric, so 𝑟 𝑎, 𝑏 = 𝑟(𝑏, 𝑎)

➢ Goal
o Compute the minimum total cost for matching the two strings

• Optimal substructure?
➢ Want to delete/replace at one end and recurse

Edit Distance

373F19 - Nisarg Shah 6

• Optimal substructure
➢ Goal: match 𝑥1, … , 𝑥𝑚 and 𝑦1, … , 𝑦𝑛

➢ Consider the last symbols 𝑥𝑚 and 𝑦𝑛

➢ Three options:
o Delete 𝑥𝑚, and optimally match 𝑥1, … , 𝑥𝑚−1 and 𝑦1, … , 𝑦𝑛

o Delete 𝑦𝑛, and optimally match 𝑥1, … , 𝑥𝑚 and 𝑦1, … , 𝑦𝑛−1

o Match 𝑥𝑚 and 𝑦𝑛, and optimally match 𝑥1, … , 𝑥𝑚−1 and 𝑦1, … , 𝑦𝑛−1

➢ Hence in the DP, we need to compute the optimal solutions
for matching 𝑥1, … , 𝑥𝑖 with 𝑦1, … , 𝑦𝑗 for all (𝑖, 𝑗)

Edit Distance

373F19 - Nisarg Shah 7

• 𝐸[𝑖, 𝑗] = edit distance between 𝑥1, … , 𝑥𝑖 and 𝑦1, … , 𝑦𝑗

• Bellman equation

𝐸 𝑖, 𝑗 =

0 if 𝑖 = 𝑗 = 0

𝑑 𝑦𝑗 + 𝐸[𝑖, 𝑗 − 1] if 𝑖 = 0 ∧ 𝑗 > 0

𝑑 𝑥𝑖 + 𝐸[𝑖 − 1, 𝑗] if 𝑖 > 0 ∧ 𝑗 = 0
min{𝐴, 𝐵, 𝐶} otherwise

where
𝐴 = 𝑑 𝑥𝑖 + 𝐸 𝑖 − 1, 𝑗 , 𝐵 = 𝑑 𝑦𝑗 + 𝐸 𝑖, 𝑗 − 1
𝐶 = 𝑟 𝑥𝑖 , 𝑦𝑗 + 𝐸[𝑖 − 1, 𝑗 − 1]

• 𝑂(𝑛 ⋅ 𝑚) time, 𝑂(𝑛 ⋅ 𝑚) space

Edit Distance

373F19 - Nisarg Shah 8

Edit Distance

373F19 - Nisarg Shah 9

𝐸 𝑖, 𝑗 =

0 if 𝑖 = 𝑗 = 0

𝑑 𝑦𝑗 + 𝐸[𝑖, 𝑗 − 1] if 𝑖 = 0 ∧ 𝑗 > 0

𝑑 𝑥𝑖 + 𝐸[𝑖 − 1, 𝑗] if 𝑖 > 0 ∧ 𝑗 = 0
min{𝐴, 𝐵, 𝐶} otherwise

where
𝐴 = 𝑑 𝑥𝑖 + 𝐸 𝑖 − 1, 𝑗 , 𝐵 = 𝑑 𝑦𝑗 + 𝐸 𝑖, 𝑗 − 1
𝐶 = 𝑟 𝑥𝑖 , 𝑦𝑗 + 𝐸[𝑖 − 1, 𝑗 − 1]

• Space complexity can be improved to 𝑂(𝑛 + 𝑚)
➢ To compute 𝐸[⋅, 𝑗], we only need 𝐸 ⋅, 𝑗 − 1 stored

➢ So we can forget 𝐸[⋅, 𝑗] as soon as we reach 𝑗 + 2

➢ But this is not enough if we want to compute the actual
solution (sequence of operations)

Hirschberg’s Algorithm

373F19 - Nisarg Shah 10

• The optimal solution can be computed in 𝑂 𝑛 ⋅ 𝑚
time and 𝑂(𝑛 + 𝑚) space too!

This slide is not in the
scope of the course

Hirschberg’s Algorithm

373F19 - Nisarg Shah 11

• Key idea nicely combines divide & conquer with DP

• Edit distance graph

𝑑(𝑥𝑖)

𝑑(𝑦𝑗)

This slide is not in the
scope of the course

Hirschberg’s Algorithm

373F19 - Nisarg Shah 12

• Observation (can be proved by induction)
➢ 𝐸[𝑖, 𝑗] = length of shortest path from (0,0) to (𝑖, 𝑗)

𝑑(𝑥𝑖)

𝑑(𝑦𝑗)

This slide is not in the
scope of the course

Hirschberg’s Algorithm

373F19 - Nisarg Shah 13

• Lemma
➢ Shortest path from (0,0) to (𝑚, 𝑛) passes through (𝑞, Τ𝑛

2)
where 𝑞 minimizes length of shortest path from (0,0) to
(𝑞, Τ𝑛

2) + length of shortest path from (𝑞, Τ𝑛
2) to (𝑚, 𝑛)

This slide is not in the
scope of the course

Hirschberg’s Algorithm

373F19 - Nisarg Shah 14

• Idea
➢ Find 𝑞 using divide-and-conquer

➢ Find shortest paths from (0,0) to (𝑞, Τ𝑛
2) and (𝑞, Τ𝑛

2) to
(𝑚, 𝑛) using DP

This slide is not in the
scope of the course

373F19 - Nisarg Shah 15

Application: Protein Matching

Traveling Salesman

373F19 - Nisarg Shah 16

• Input
➢ Directed graph 𝐺 = (𝑉, 𝐸)

➢ Distance 𝑑𝑖,𝑗 is the distance from node 𝑖 to node 𝑗

• Output
➢ Minimum distance which needs to be traveled to start

from some node 𝑣, visit every other node exactly once,
and come back to 𝑣
o That is, the minimum cost of a Hamiltonian cycle

Traveling Salesman

373F19 - Nisarg Shah 17

• Approach
➢ Let’s start at node 𝑣1 = 1
o It’s a cycle, so the starting point does not matter

➢ Want to visit the other nodes in some order, say 𝑣2, … , 𝑣𝑛

➢ Total distance is 𝑑1,𝑣2
+ 𝑑𝑣2,𝑣3

+ ⋯ + 𝑑𝑣𝑛−1,𝑣𝑛
+ 𝑑𝑣𝑛,1

o Want to minimize this distance

• Naïve solution
➢ Check all possible orderings

➢ 𝑛 − 1 ! = Θ 𝑛 ⋅
𝑛

𝑒

𝑛
(Stirling’s approximation)

Traveling Salesman

373F19 - Nisarg Shah 18

• DP Approach
➢ Consider 𝑣𝑛 (the last node before returning to 𝑣1 = 1)
o If 𝑣𝑛 = 𝑐

• We now want to find the optimal order of visiting nodes in
2, … , 𝑛 ∖ 𝑐

• So we will need to keep track of which subset of nodes we need
to visit and where we need to end

➢ 𝑂𝑃𝑇 𝑆, 𝑐 = minimum total distance of starting at 1,
visiting each node in 𝑆 exactly once, and ending at 𝑐 ∈ 𝑆
(without counting the distance for returning from 𝑐 to 1)
o Then the answer to our original problem can easily be computed

as min
𝑐∈𝑆

𝑂𝑃𝑇 𝑆, 𝑐 + 𝑑𝑐,1, where 𝑆 = {2, … , 𝑛}

Traveling Salesman

373F19 - Nisarg Shah 19

• DP Approach
➢ To compute 𝑂𝑃𝑇[𝑆, 𝑐], we condition over the vertex

which is visited right before 𝑐

• Bellman equation

𝑂𝑃𝑇 𝑆, 𝑐 = min
𝑚∈𝑆∖ 𝑐

𝑂𝑃𝑇 𝑆 ∖ 𝑐 , 𝑚 + 𝑑𝑚,𝑐

Final solution = min
𝑐∈ 2,…,𝑛

𝑂𝑃𝑇 2, … , 𝑛 , 𝑐 + 𝑑𝑐,1

• Time: 𝑂(𝑛 ⋅ 2𝑛) calls, 𝑂(𝑛) time per call ⇒ 𝑂 𝑛2 ⋅ 2𝑛

➢ Much better than the naïve solution which has Τ𝑛
𝑒

𝑛

Traveling Salesman

373F19 - Nisarg Shah 20

• Bellman equation

𝑂𝑃𝑇 𝑆, 𝑐 = min
𝑚∈𝑆∖ 𝑐

𝑂𝑃𝑇 𝑆 ∖ 𝑐 , 𝑚 + 𝑑𝑚,𝑐

Final solution = min
𝑐∈ 2,…,𝑛

𝑂𝑃𝑇 2, … , 𝑛 , 𝑐 + 𝑑𝑐,1

• Space complexity: 𝑂 𝑛 ⋅ 2𝑛

➢ But computing the optimal solution with 𝑆 = 𝑘 only requires
storing the optimal solutions with 𝑆 = 𝑘 − 1

• Question: Using this observation, how much can we reduce
the space complexity?

DP Concluding Remarks

373F19 - Nisarg Shah 21

• Key steps in designing a DP algorithm
➢ “Generalize” the problem first
o E.g. instead of computing edit distance between strings 𝑋 =

𝑥1, … , 𝑥𝑚 and 𝑌 = 𝑦1, … , 𝑦𝑛, we compute 𝐸[𝑖, 𝑗] = edit distance
between 𝑖-prefix of 𝑋 and 𝑗-prefix of 𝑌 for all (𝑖, 𝑗)

o The right generalization is often obtained by looking at the
structure of the “subproblem” which must be solved optimally to
get an optimal solution to the overall problem

➢ Remember the difference between DP and divide-and-
conquer

➢ Sometimes you can save quite a bit of space by only
storing solutions to those subproblems that you need in
the future

Network Flow

373F19 - Nisarg Shah 22

Network Flow

373F19 - Nisarg Shah 23

• Input
➢ A directed graph 𝐺 = (𝑉, 𝐸)

➢ Edge capacities 𝑐 ∶ 𝐸 → ℝ≥0

➢ Source node 𝑠, target node 𝑡

• Output
➢ Maximum “flow” from 𝑠 to 𝑡

Network Flow

373F19 - Nisarg Shah 24

• Assumptions
➢ For simplicity, assume that…

➢ No edges enters 𝑠

➢ No edges comes out of 𝑡

➢ Edge capacity 𝑐(𝑒) is a non-
negative integer
o Later, we’ll see what happens

when 𝑐(𝑒) can be a rational
number

Network Flow

373F19 - Nisarg Shah 25

• Flow
➢ An 𝑠-𝑡 flow is a function 𝑓: 𝐸 → ℝ≥0

➢ Intuitively, 𝑓(𝑒) is the “amount of material” carried on
edge 𝑒

Network Flow

373F19 - Nisarg Shah 26

• Constraints on flow 𝑓

1. Respecting capacities

∀𝑒 ∈ 𝐸 ∶ 0 ≤ 𝑓 𝑒 ≤ 𝑐(𝑒)

2. Flow conservation

∀𝑣 ∈ 𝑉 ∖ 𝑠, 𝑡 ∶ σ𝑒 into 𝑣 𝑓 𝑒 = σ𝑒 leaving 𝑣 𝑓 𝑒

Flow in = flow out at every
node other than 𝑠 and 𝑡

Flow out at 𝑠 = flow in at 𝑡

Network Flow

373F19 - Nisarg Shah 27

• 𝑓𝑖𝑛 𝑣 = σ𝑒 into 𝑣 𝑓 𝑒

• 𝑓𝑜𝑢𝑡 𝑣 = σ𝑒 leaving 𝑣 𝑓 𝑒

• Value of flow 𝑓 is 𝑣 𝑓 = 𝑓𝑜𝑢𝑡 𝑠 = 𝑓𝑖𝑛(𝑡)

• Restating the problem:
➢ Given a directed graph 𝐺 = (𝑉, 𝐸) with edge capacities

𝑐: 𝐸 → ℝ≥0, find a flow 𝑓∗ with the maximum value.

First Attempt

373F19 - Nisarg Shah 28

• A natural greedy approach
1. Start from zero flow (𝑓 𝑒 = 0 for each 𝑒).

2. While there exists an 𝑠-𝑡 path 𝑃 in 𝐺 such that
𝑓 𝑒 < 𝑐(𝑒) for each 𝑒 ∈ 𝑃

a. Find one such path 𝑃

b. Increase the flow on each edge 𝑒 ∈ 𝑃 by min
𝑒∈𝑃

𝑐 𝑒 − 𝑓 𝑒

• Let’s run it on an example!

First Attempt

373F19 - Nisarg Shah 29

First Attempt

373F19 - Nisarg Shah 30

First Attempt

373F19 - Nisarg Shah 31

First Attempt

373F19 - Nisarg Shah 32

First Attempt

373F19 - Nisarg Shah 33

First Attempt

373F19 - Nisarg Shah 34

First Attempt

373F19 - Nisarg Shah 35

First Attempt

373F19 - Nisarg Shah 36

• Q: Why does the simple greedy approach fail?

• A: Because once it increases the flow on an edge, it
is not allowed to decrease it.

• Need a way to “reverse”
bad decisions

Reversing Bad Decisions

373F19 - Nisarg Shah 37

s t

u

v

𝟐𝟎/20

𝟐𝟎/30

𝟐𝟎/200/10

0/10

Suppose we start by sending
20 units of flow along this path

s t

u

v

𝟐𝟎/20

𝟏𝟎/30

𝟐𝟎/20𝟏𝟎/10

𝟏𝟎/10

But the optimal configuration requires
10 fewer units of flow on 𝑢 → 𝑣

Reversing Bad Decisions

373F19 - Nisarg Shah 38

We can essentially send a “reverse”
flow of 10 units along 𝑣 → 𝑢

s t

u

v

𝟐𝟎/20

𝟏𝟎/30

𝟐𝟎/20𝟏𝟎/10

𝟏𝟎/10

So now we get this optimal flow

s t

u

v

𝟐𝟎/20

𝟐𝟎/30

𝟐𝟎/20𝟏𝟎/10

𝟏𝟎/10

𝟏𝟎

Residual Graph

373F19 - Nisarg Shah 39

• Define the residual graph 𝐺𝑓 of flow 𝑓
➢ 𝐺𝑓 has the same vertices as 𝐺

➢ For each edge e = (𝑢, 𝑣) in 𝐺, 𝐺𝑓 has at most two edges

o Forward edge 𝑒 = (𝑢, 𝑣) with capacity 𝑐 𝑒 − 𝑓 𝑒

• We can send this much additional flow on 𝑒

o Reverse edge 𝑒𝑟𝑒𝑣 = (𝑣, 𝑢) with capacity 𝑓(𝑒)

• The maximum “reverse” flow we can send is the maximum
amount by which we can reduce flow on 𝑒, which is 𝑓(𝑒)

o We only add each edge if its capacity > 0

Residual Graph

373F19 - Nisarg Shah 40

• Example!

s t

u

v

20/20

20/30

20/200/10

0/10

s t

u

v

𝟐𝟎

𝟏𝟎

𝟐𝟎𝟏𝟎

𝟏𝟎

𝟐𝟎

Flow 𝑓 Residual graph 𝐺𝑓

Augmenting Paths

373F19 - Nisarg Shah 41

• Let 𝑃 be an 𝑠-𝑡 path in the residual graph 𝐺𝑓

• Let bottleneck(𝑃, 𝑓) be the smallest capacity across
all edges in 𝑃

• “Augment” flow 𝑓 by “sending” bottleneck 𝑃, 𝑓
units of flow along 𝑃
➢ What does it mean to send 𝑥 units of flow along 𝑃?

➢ For each forward edge 𝑒 ∈ 𝑃, increase the flow on 𝑒 by 𝑥

➢ For each reverse edge 𝑒𝑟𝑒𝑣 ∈ 𝑃, decrease the flow on 𝑒 by 𝑥

Augmenting Paths

373F19 - Nisarg Shah 42

• Let’s argue that the new flow is a valid flow

• Capacity constraints:
➢ If we increase flow on 𝑒, we can do so by at most the

capacity of forward edge 𝑒 in 𝐺𝑓, which is 𝑐 𝑒 − 𝑓 𝑒

o So the new flow can be at most 𝑓 𝑒 + 𝑐 𝑒 − 𝑓 𝑒 = 𝑐(𝑒)

➢ If we decrease flow on 𝑒, we can do so by at most the
capacity of reverse edge 𝑒𝑟𝑒𝑣 in 𝐺𝑓, which is 𝑓 𝑒
o So the new flow is at least 𝑓 𝑒 − 𝑓 𝑒 = 0

Augmenting Paths

373F19 - Nisarg Shah 43

• Let’s argue that the new flow is a valid flow

• Flow conservation:
➢ Each node on the path (except 𝑠 and 𝑡) has exactly two

incident edges
o Both forward / both reverse ⇒ one is incoming, one is outgoing

o One forward, one reverse ⇒ both incoming / both outgoing

o Net flow remains 0

s t
+𝑥 +𝑥 −𝑥 −𝑥 +𝑥

Ford-Fulkerson Algorithm

373F19 - Nisarg Shah 44

MaxFlow(𝐺):
// initialize:

Set 𝑓 𝑒 = 0 for all 𝑒 in 𝐺

// while there is an 𝑠-𝑡 path in 𝐺𝑓:

While 𝑃 = FindPath(s, t,Residual(𝐺, 𝑓))!=None:

𝑓 = Augment(𝑓, 𝑃)

UpdateResidual(𝐺,𝑓)

EndWhile

Return 𝑓

Ford-Fulkerson Algorithm

373F19 - Nisarg Shah 45

• Running time:
➢ #Augmentations:
o At every step, flow and capacities remain integers

o For path 𝑃 in 𝐺𝑓, bottleneck 𝑃, 𝑓 > 0 implies bottleneck 𝑃, 𝑓 ≥ 1

o Each augmentation increases flow by at least 1

o At most 𝐶 = σ𝑒 leaving 𝑠 𝑐(𝑒) augmentations

➢ Time for an augmentation:
o 𝐺𝑓 has 𝑛 vertices and at most 2𝑚 edges

o Finding an 𝑠-𝑡 path in 𝐺𝑓 takes 𝑂(𝑚 + 𝑛) time

➢ Total time: 𝑂(𝑚 + 𝑛 ⋅ 𝐶)

Ford-Fulkerson Algorithm

373F19 - Nisarg Shah 46

• Total time: 𝑂(𝑚 + 𝑛 ⋅ 𝐶)

➢ This is pseudo-polynomial time

➢ 𝐶 can be exponentially large in the input length (the number
of bits required to write down the edge capacities)

➢ Note: We assumed integer capacities, but this also gives a
pseudo-polynomial time algorithm for rational capacities

o Why?

• Q: Can we convert this to polynomial time?

Ford-Fulkerson Algorithm

373F19 - Nisarg Shah 47

• Q: Can we convert this to polynomial time?
➢ Not if we choose an arbitrary path in 𝐺𝑓 at each step

➢ In the graph below, we might end up repeatedly sending 1
unit of flow across 𝑎 → 𝑏 and then reversing it
o Takes 𝑋 steps, which can be exponential in the input length

Ford-Fulkerson Algorithm

373F19 - Nisarg Shah 48

• Ways to achieve polynomial time
➢ Find the shortest augmenting path using BFS
o Edmonds-Karp algorithm

o Runs in 𝑂 𝑛𝑚2 time

o Can be found in CLRS

➢ Find the maximum bottleneck capacity augmenting path
o Runs in 𝑂 𝑚2 ⋅ log 𝐶 time

o “Weakly polynomial time” (number of arithmetic operations
depends on the number of bits used to write integers)

➢ …

Max Flow Problem

373F19 - Nisarg Shah 49

• Race to reduce the running time
➢ 1972: 𝑂 𝑛 𝑚2 Edmonds-Karp

➢ 1980: 𝑂 𝑛 𝑚 log2 𝑛 Galil-Namaad

➢ 1983: 𝑂 𝑛 𝑚 log 𝑛 Sleator-Tarjan

➢ 1986: 𝑂 𝑛 𝑚 log Τ𝑛2
𝑚 Goldberg-Tarjan

➢ 1992: 𝑂 𝑛 𝑚 + 𝑛2+𝜖 King-Rao-Tarjan

➢ 1996: 𝑂 𝑛 𝑚 log ൗ𝑚
𝑛 log 𝑛

𝑛 King-Rao-Tarjan

o Note: These are 𝑂(𝑛 𝑚) when 𝑚 = 𝜔 𝑛

➢ 2013: 𝑂(𝑛 𝑚) Orlin
o Breakthrough!

Back to Ford-Fulkerson

373F19 - Nisarg Shah 50

• We argued that the algorithm must terminate, and
must do so in 𝑂 𝑚 + 𝑛 ⋅ 𝐶 time

• But we didn’t argue correctness yet, i.e., the
algorithm must terminate with the optimal flow

Cuts and Cut Capacities

373F19 - Nisarg Shah 51

• (𝐴, 𝐵) is an 𝑠-𝑡 cut if it is a partition of vertex set
(i.e. 𝐴 ∪ 𝐵 = 𝑉, 𝐴 ∩ 𝐵 = ∅), 𝑠 ∈ 𝐴, and 𝑡 ∈ 𝐵

• Capacity of this cut, denoted 𝑐𝑎𝑝 𝐴, 𝐵 , is the sum
of capacities of edges leaving 𝐴

Cuts and Flows

373F19 - Nisarg Shah 52

• Theorem: For any flow 𝑓 and any 𝑠-𝑡 cut (𝐴, 𝐵),
𝑣 𝑓 = 𝑓𝑜𝑢𝑡 𝐴 − 𝑓𝑖𝑛(𝐴)

• Proof: Just need to apply flow conservation
(exercise!)

Cuts and Flows

373F19 - Nisarg Shah 53

• Theorem: For any flow 𝑓 and any 𝑠-𝑡 cut (𝐴, 𝐵),
𝑣 𝑓 ≤ 𝑐𝑎𝑝(𝐴, 𝐵)

• Proof:
𝑣 𝑓 = 𝑓𝑜𝑢𝑡 𝐴 − 𝑓𝑖𝑛 𝐴

≤ 𝑓𝑜𝑢𝑡 𝐴

= ෍

𝑒 leaving 𝐴

𝑓 𝑒

≤ ෍

𝑒 leaving 𝐴

𝑐 𝑒

= 𝑐𝑎𝑝(𝐴, 𝐵)

Cuts and Flows

373F19 - Nisarg Shah 54

• Theorem: For any flow 𝑓 and any 𝑠-𝑡 cut (𝐴, 𝐵),
𝑣 𝑓 ≤ 𝑐𝑎𝑝(𝐴, 𝐵)

• So, the maximum flow is at most the minimum
capacity of any cut.

• In fact, we will show that the maximum flow is
equal to the minimum capacity of any cut.
➢ To demonstrate the correctness (i.e. optimality) of Ford-

Fulkerson algorithm, all we need to show is that the flow
it generates is equal to the capacity of some cut.

Cuts and Flows

373F19 - Nisarg Shah 55

• Theorem: Ford-Fulkerson finds maximum flow.

• Proof:
➢ Let 𝑓∗ denote the flow returned by Ford-Fulkerson.

➢ Look at 𝐺𝑓∗ but define a cut in 𝐺

Cuts and Flows

373F19 - Nisarg Shah 56

• Theorem: Ford-Fulkerson finds maximum flow.

• Proof:
➢ 𝐴∗, 𝐵∗ is a valid cut because there is no 𝑠-𝑡 path in 𝐺𝑓∗

when Ford-Fulkerson terminates, so 𝑡 ∉ 𝐴∗

Cuts and Flows

373F19 - Nisarg Shah 57

• Theorem: Ford-Fulkerson finds maximum flow.

• Proof:
➢ Blue edges = edges going out of 𝐴∗ in 𝐺

➢ Red edges = edges coming into 𝐴∗ in 𝐺

Cuts and Flows

373F19 - Nisarg Shah 58

• Theorem: Ford-Fulkerson finds maximum flow.

• Proof:
➢ Each blue edge 𝑢, 𝑣 must be saturated
o Otherwise 𝐺𝑓 has a forward edge 𝑢, 𝑣 and then 𝑣 ∈ 𝐴∗

➢ Each red edge (𝑣, 𝑢) must have zero flow
o Otherwise 𝐺𝑓 has the reverse edge (𝑢, 𝑣) and then 𝑣 ∈ 𝐴∗

Cuts and Flows

373F19 - Nisarg Shah 59

• Theorem: Ford-Fulkerson finds maximum flow.

• Proof:
➢ Each blue edge 𝑢, 𝑣 must be saturated

➢ Each red edge (𝑣, 𝑢) must have zero flow

➢ So 𝑣 𝑓∗ = 𝑐𝑎𝑝 𝐴∗, 𝐵∗ ∎

Max Flow - Min Cut

373F19 - Nisarg Shah 60

• Theorem: In any graph, the value of the maximum
flow is equal to the capacity of the minimum cut.

• Our proof already showed that Ford-Fulkerson can
be used to find the min cut
➢ Find the max flow 𝑓∗

➢ Let 𝐴∗ = set of all nodes reachable from 𝑠 in 𝐺𝑓∗

o Easy to compute using BFS

➢ Then (𝐴∗, 𝑉 ∖ 𝐴∗) is min cut

Why Study Flow Networks?

373F19 - Nisarg Shah 61

• Unlike divide-and-conquer, greedy, or dynamic
programming, this doesn’t seem like a framework
➢ It is more like a single problem

• It turns out that many problems can be reduced to
this single problem
➢ Hence, it is a very versatile technique

• Next lecture!

