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• Running time

➢ Sometimes, we want the algorithm to always take a small 
amount of time
o Regardless of both the input and the random coin flips

➢ Sometimes, we want the algorithm to take a small 
amount of time in expectation
o Expectation over random coin flips

o Still regardless of the input
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• Efficiency

➢ We want the algorithm to return a solution that is, in 
expectation, close to the optimum according to the 
objective under consideration
o Once again, the expectation is over random coin flips

o We want this to hold for every input
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• For some problems, it is easy to come up with a 
very simple randomized approximation algorithm

• Later, one can ask whether this algorithm can be 
“derandomized”
➢ Informally, the randomized algorithm is making some 

random choices, and sometimes they turn out to be good

➢ Can we make these “good” choices deterministically?
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• Random variable 𝑋
➢ Discrete
o Takes value 𝑣1 with probability 𝑝1, 𝑣2 w.p. 𝑝2, …

o Expected value 𝐸 𝑋 = 𝑝1 ⋅ 𝑣1 + 𝑝2 ⋅ 𝑣2 + ⋯

o Examples: the roll of a six-sided die (takes values 1 through 6 with 
probability 1/6 each)

➢ Continuous
o Has a probability density function (pdf) 𝑓

o Its integral is the cumulative density function (cdf) 𝐹

• 𝐹 𝑥 = Pr[𝑋 ≤ 𝑥]

o Expected value 𝐸 𝑋 = ∫ 𝑥 𝑓 𝑥 𝑑𝑥

o Examples: normal distribution, exponential distribution, uniform 
distribution over [0,1], …
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• Things you should be aware of…
➢ Conditional probabilities

➢ Independence among random variables

➢ Conditional expectations

➢ Moments of random variables

➢ Standard discrete distributions: uniform over a finite set, 
Bernoulli, binomial, geometric, Poisson, …

➢ Standard continuous distributions: uniform over intervals, 
Gaussian/normal, exponential, …
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• Deceptively simple, but incredibly powerful!

• Many many many many probabilistic results are 
just interesting applications of these three results

Linearity of Expectation Union Bound Chernoff Bound
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• Linearity of expectation
➢ 𝐸 𝑋 + 𝑌 = 𝐸 𝑋 + 𝐸[𝑌]

➢ This does not require any independence assumptions 
about 𝑋 and 𝑌

➢ E.g. if you want to find out how many people will attend 
your party on average, just ask each person the 
probability with which they will attend and add up
o It does not matter that some of them are friends, and will either 

attend together or not attend together
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• Union bound
➢ For any two events 𝐴 and 𝐵, Pr 𝐴 ∪ 𝐵 ≤ Pr 𝐴 + Pr[𝐵]

➢ “Probability that at least one of the 𝑛 events 𝐴1, … , 𝐴𝑛
will occur is at most σ𝑖 Pr 𝐴𝑖 ”

➢ Typically, 𝐴1, … , 𝐴𝑛 are “bad events”
o You do not want any of them to occur

o If you can individually bound Pr 𝐴𝑖 ≤ Τ1
2𝑛 for each 𝑖, then 

probability that at least one them occurs ≤ Τ1 2

o So with probability ≥ Τ1
2, none of the bad events will occur

• Chernoff bound & Hoeffding’s inequality
➢ Read up!
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Exact Max-𝑘-SAT
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• Problem (recall)
➢ Input: An exact 𝑘-SAT formula 𝜑 = 𝐶1 ∧ 𝐶2 ∧ ⋯ ∧ 𝐶𝑚,

where each clause 𝐶𝑖 has exactly 𝑘 literals, and a weight 
𝑤𝑖 ≥ 0 of each clause 𝐶𝑖

➢ Output: A truth assignment 𝜏 maximizing the number (or 
total weight) of clauses satisfied under  𝜏

➢ Let us denote by 𝑊(𝜏) the total weight of clauses 
satisfied under 𝜏
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• Recall our local search
➢ 𝑁𝑑(𝜏) = set of all truth assignments which can be obtained 

by changing the value of at most 𝑑 variables in 𝜏

• Result 1: Neighborhood 𝑁1(𝜏) ⇒ Τ2
3-apx for Exact 

Max-2-SAT.

• Result 2: Neighborhood 𝑁1 𝜏 ∪ 𝜏𝑐 ⇒ Τ3
4-apx for 

Exact Max-2-SAT.

• Result 3: Neighborhood 𝑁1 𝜏 + oblivious local 
search ⇒ Τ3

4-apx for Exact Max-2-SAT.
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• Recall our local search
➢ 𝑁𝑑(𝜏) = set of all truth assignments which can be obtained 

by changing the value of at most 𝑑 variables in 𝜏

• We claimed that ¾-apx for Exact Max-2-SAT can be 

generalized to 
2𝑘−1

2𝑘 -apx for Exact Max-𝑘-SAT

➢ Algorithm becomes slightly more complicated

• What can we do with randomized algorithms?
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• Recall: 
➢ We have a formula 𝜑 = 𝐶1 ∧ 𝐶2 ∧ ⋯ ∧ 𝐶𝑚

➢ Variables = 𝑥1, … , 𝑥𝑛, literals = variables or their negations 

➢ Each clause contains exactly 𝑘 literals

• The most naïve randomized algorithm
➢ Set each variable to TRUE with probability ½ and to FALSE 

with probability ½

• How good is this?
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• Recall: 
➢ We have a formula 𝜑 = 𝐶1 ∧ 𝐶2 ∧ ⋯ ∧ 𝐶𝑚

➢ Variables = 𝑥1, … , 𝑥𝑛, literals = variables or their negations 

➢ Each clause contains exactly 𝑘 literals

• For each clause 𝐶𝑖:
➢ Pr[𝐶𝑖 is not satisfied] = 1/2𝑘 (WHY?)

➢ Hence, Pr[𝐶𝑖 is satisfied] = (2𝑘 − 1)/2𝑘
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• For each clause 𝐶𝑖:
➢ Pr[𝐶𝑖 is not satisfied] = 1/2𝑘 (WHY?)

➢ Hence, Pr[𝐶𝑖 is satisfied] = (2𝑘 − 1)/2𝑘

• Let 𝜏 denote the random assignment
➢ 𝐸 𝑊 𝜏 = σ𝑖=1

𝑚 𝑤𝑖 ⋅ Pr[𝐶𝑖 is satisfied]

(Which pillar did we just use?)

➢ 𝐸 𝑊 𝜏 =
2𝑘−1

2𝑘 ⋅ σ𝑖=1
𝑚 𝑤𝑖 ≥

2𝑘−1

2𝑘 ⋅ 𝑂𝑃𝑇
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• Can we derandomize this algorithm?
➢ What are the choices made by the algorithm?
o Setting the values of 𝑥1, 𝑥2, … , 𝑥𝑛

➢ How do we know which set of choices is good?

• Idea:
➢ Do not think about all the choices at once. 

➢ Think about them one by one.
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• Say you want to deterministically make the right 
choice for 𝑥1

➢ Choices of 𝑥2, … , 𝑥𝑛 are still random

𝐸 𝑊 𝜏 = Pr 𝑥1 = 𝑇 ⋅ 𝐸 𝑊 𝜏 𝑥1 = 𝑇 + Pr 𝑥1 = 𝐹 ⋅ 𝐸 𝑊 𝜏 𝑥1 = 𝐹
= ൗ1

2 ⋅ 𝐸 𝑊 𝜏 𝑥1 = 𝑇 + ൗ1
2 ⋅ 𝐸 𝑊 𝜏 𝑥1 = 𝐹

➢ This means at least one of 𝐸[𝑊(𝜏)|𝑥1 = 𝑇] and 
𝐸[𝑊(𝜏)|𝑥1 = 𝐹] must be at least as much as 𝐸 𝑊 𝜏
o Moreover, both quantities can be computed, so we can take the 

better of the two!

o For now, forget about the running time…



• Once we have made the right choice for 𝑥1 (say T), 
then we can apply the same logic to 𝑥2
➢

𝐸 𝑊 𝜏 |𝑥1 = 𝑇 = ൗ1
2 ⋅ 𝐸 𝑊 𝜏 𝑥1 = 𝑇, 𝑥2 = 𝑇

+ ൗ1
2 ⋅ 𝐸 𝑊 𝜏 𝑥1 = 𝑇, 𝑥2 = 𝐹

➢ And then we can pick the choice that leads to a better 
conditional expectation

• Derandomized Algorithm:
➢ For 𝑖 = 1, … , 𝑛
o Let 𝑧𝑖 = 𝑇 if 𝐸 𝑊 𝜏 𝑥1 = 𝑧1, … , 𝑥𝑖−1 = 𝑧𝑖−1, 𝑥𝑖 = 𝑇 ≥

𝐸 𝑊 𝜏 𝑥1 = 𝑧1, … , 𝑥𝑖−1 = 𝑧𝑖−1, 𝑥𝑖 = 𝐹 , and 𝑧𝑖 = 𝐹 otherwise

o Set 𝑥𝑖 = 𝑧𝑖

Derandomization
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• This is called the method of conditional expectations
➢ If we’re happy when making a choice at random, we 

should be at least as happy conditioned on at least one of 
the possible values of that choice

• Derandomized Algorithm:
➢ For 𝑖 = 1, … , 𝑛
o Let 𝑧𝑖 = 𝑇 if 𝐸 𝑊 𝜏 𝑥1 = 𝑧1, … , 𝑥𝑖−1 = 𝑧𝑖−1, 𝑥𝑖 = 𝑇 ≥

𝐸 𝑊 𝜏 𝑥1 = 𝑧1, … , 𝑥𝑖−1 = 𝑧𝑖−1, 𝑥𝑖 = 𝐹 , and 𝑧𝑖 = 𝐹 otherwise

o Set 𝑥𝑖 = 𝑧𝑖

➢ How do we compare the two conditional expectations?

Derandomization
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• 𝐸 𝑊 𝜏 𝑥1 = 𝑧1, … , 𝑥𝑖−1 = 𝑧𝑖−1, 𝑥𝑖 = 𝑇
➢ = σ𝑟 𝑤𝑟 ⋅ Pr[𝐶𝑟 is satisfied 𝑥1 = 𝑧1, … , 𝑥𝑖−1 = 𝑧𝑖−1, 𝑥𝑖 = 𝑇
➢ Set the values of 𝑥1, … , 𝑥𝑖−1, 𝑥𝑖

➢ If 𝐶𝑟 resolves to TRUE already, the corresponding probability is 1

➢ If 𝐶𝑟 resolves to FALSE already, the corresponding probability is 0

➢ Otherwise, if there are ℓ literals left in 𝐶𝑟 after setting 𝑥1, … , 𝑥𝑖−1, 𝑥𝑖, 

the corresponding probability is 
2ℓ−1

2ℓ

• Compute 𝐸 𝑊 𝜏 𝑥1 = 𝑧1, … , 𝑥𝑖−1 = 𝑧𝑖−1, 𝑥𝑖 = 𝐹
similarly
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• Simple randomized algorithm 

➢

2𝑘−1

2𝑘 −approximation for Max-𝑘-SAT

➢ Max-3-SAT ⇒ Τ7
8

o [Håstad]: This is the best possible assuming P ≠ NP

➢ Max-2-SAT ⇒ Τ3
4 = 0.75

o The best known approximation is 0.9401 using semi-definite 
programming and randomized rounding

➢ Max-SAT ⇒ Τ1
2

o Max-SAT = no restriction on the number of literals in each clause

o The best known approximation is 0.7968, also using semi-definite 
programming and randomized rounding
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• Better approximations for Max-SAT
➢ Semi-definite programming is out of the scope 

➢ But we will see the simpler “LP + randomized rounding” 
approach that gives 1 − Τ1

𝑒 ≈ 0.6321 approximation

• Max-SAT:
➢ Input: 𝜑 = 𝐶1 ∧ 𝐶2 ∧ ⋯ ∧ 𝐶𝑚, where each clause 𝐶𝑖 has 

weight 𝑤𝑖 ≥ 0 (and can have any number of literals)

➢ Output: Truth assignment that approximately maximizes 
the weight of clauses satisfied
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• First, IP formulation:
➢ Variables:
o 𝑦1, … , 𝑦𝑛 ∈ {0,1}

• 𝑦𝑖 = 1 iff variable 𝑥𝑖 = TRUE in Max-SAT

o 𝑧1, … , 𝑧𝑚 ∈ {0,1}

• 𝑧𝑗 = 1 iff clause 𝐶𝑗 is satisfied in Max-SAT

o Program:

Maximize Σ𝑗 𝑤𝑗 ⋅ 𝑧𝑗

s.t.
Σ𝑥𝑖∈𝐶𝑗

𝑦𝑖 + Σ ҧ𝑥𝑖∈𝐶𝑗
1 − 𝑦𝑖 ≥ 𝑧𝑗 ∀𝑗 ∈ 1, … , 𝑚

𝑦𝑖 , 𝑧𝑗 ∈ 0,1 ∀𝑖 ∈ 1, … , 𝑛 , 𝑗 ∈ 1, … , 𝑚
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• LP relaxation:
➢ Variables:
o 𝑦1, … , 𝑦𝑛 ∈ [0,1]

• 𝑦𝑖 = 1 iff variable 𝑥𝑖 = TRUE in Max-SAT

o 𝑧1, … , 𝑧𝑚 ∈ [0,1]

• 𝑧𝑗 = 1 iff clause 𝐶𝑗 is satisfied in Max-SAT

o Program:

Maximize Σ𝑗 𝑤𝑗 ⋅ 𝑧𝑗

s.t.
Σ𝑥𝑖∈𝐶𝑗

𝑦𝑖 + Σ ҧ𝑥𝑖∈𝐶𝑗
1 − 𝑦𝑖 ≥ 𝑧𝑗 ∀𝑗 ∈ 1, … , 𝑚

𝑦𝑖 , 𝑧𝑗 ∈ [0,1] ∀𝑖 ∈ 1, … , 𝑛 , 𝑗 ∈ 1, … , 𝑚
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• Randomized rounding
➢ Find the optimal solution (𝑦∗, 𝑧∗) of the LP

➢ Compute a random IP solution ො𝑦 such that
o Each ො𝑦𝑖 = 1 with probability 𝑦𝑖

∗ and 0 with probability 1 − 𝑦𝑖
∗

o Independently of other ො𝑦𝑖’s

o The output of the algorithm is the corresponding truth assignment 

➢ What is Pr[𝐶𝑗 is satisfied] if 𝐶𝑗 has 𝑘 literals?

1 − Π𝑥𝑖∈𝐶𝑗
1 − 𝑦𝑖

∗ ⋅ Π ҧ𝑥𝑖∈𝐶𝑗
𝑦𝑖

∗

≥ 1 −
Σ𝑥𝑖∈𝐶𝑗

1 − 𝑦𝑖
∗ + Σ ҧ𝑥𝑖∈𝐶𝑗

𝑦𝑖
∗

𝑘

𝑘

≥ 1 −
𝑘 − 𝑧𝑗

∗

𝑘

𝑘

AM-GM inequality LP constraint
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• Claim

➢ 1 − 1 −
𝑧

𝑘

𝑘
≥ 1 − 1 −

1

𝑘

𝑘
⋅ 𝑧 for all 𝑧 ∈ [0,1] and 𝑘 ∈ ℕ

• Assuming the claim:

Pr 𝐶𝑗 is satisfied ≥ 1 −
𝑘−𝑧𝑗

∗

𝑘

𝑘

≥ 1 − 1 −
1

𝑘

𝑘
⋅ 𝑧𝑗

∗ ≥ 1 −
1

𝑒
⋅ 𝑧𝑗

∗

• Hence, 

𝔼[#weight of clauses satisfied] ≥ 1 −
1

e
σ𝑗 𝑤𝑗 ⋅ 𝑧𝑗

∗ ≥ 1 −
1

𝑒
⋅ 𝑂𝑃𝑇

Standard inequality
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• Claim

➢ 1 − 1 −
𝑧

𝑘

𝑘
≥ 1 − 1 −

1

𝑘

𝑘
⋅ 𝑧 for all 𝑧 ∈ [0,1] and 𝑘 ∈ ℕ

• Proof of claim:
➢ True at 𝑧 = 0 and 𝑧 = 1 (same quantity on both sides)

➢ For 0 ≤ 𝑧 ≤ 1:
o LHS is a convex function

o RHS is a linear function

o Hence, LHS ≥ RHS ∎
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• Claim without proof:
➢ Running both “LP + randomized rounding” and “naïve 

randomized algorithm”, and returning the best of the two 
solutions gives Τ3

4 = 0.75 approximation!

➢ This algorithm can be derandomized.

➢ Recall: 
o “naïve randomized” = independently set each variable to 

TRUE/FALSE with probability 0.5 each, which only gives Τ1
2 = 0.5

approximation by itself
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• Max-2-SAT is NP-hard (we didn’t prove this!)

• But 2-SAT can be efficiently solved
➢ “Given a 2-CNF formula, check whether all clauses can be 

satisfied simultaneously.”

• Algorithm:
➢ Eliminate all unit clauses, set the corresponding literals.

➢ Create a graph with 2𝑛 literals as vertices.

➢ For every clause (𝑥 ∨ 𝑦), add two edges: ҧ𝑥 → 𝑦 and ത𝑦 → 𝑥.
o 𝑢 → 𝑣 means if 𝑢 is true, 𝑣 must be true.

➢ Formula is satisfiable iff no path from 𝑥 to ҧ𝑥 or ҧ𝑥 to 𝑥 for any 𝑥

➢ Solve 𝑠 − 𝑡 connectivity problem in polynomial time
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• Here’s a cute randomized algorithm by 
Papadimitriou [1991]

• Algorithm:
➢ Start with an arbitrary assignment.

➢ While there is an unsatisfied clause 𝐶 = (𝑥 ∨ 𝑦)
o Pick one of the two literals with equal probability.

o Flip the variable value so that 𝐶 is satisfied.

• But, but, this can hurt other clauses?
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• Theorem:
➢ If there is a satisfying assignment 𝜏∗, then the expected 

time to reach some satisfying assignment is at most 
𝑂 𝑛2 .

• Proof: 
➢ Fix 𝜏∗. Let 𝜏0 be the starting assignment. Let 𝜏𝑖 be the 

assignment after 𝑖 iterations.

➢ Consider the “hamming distance” 𝑑𝑖 between 𝜏𝑖 and 𝜏∗

o Number of coordinates in which the two differ

o 𝑑𝑖 ∈ {0,1, … , 𝑛}. 

➢ To show: in expectation, we will hit 𝑑𝑖 = 0 in 𝑂 𝑛2

iterations, unless the algorithm stops before that.
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• Observation: 𝑑𝑖+1 = 𝑑𝑖 − 1 or 𝑑𝑖+1 = 𝑑𝑖 + 1
➢ Because we change one variable in each iteration.

• Claim: Pr 𝑑𝑖+1 = 𝑑𝑖 − 1 ≥ 1/2

• Proof:
➢ Iteration 𝑖 considers an unsatisfied clause 𝐶 = (𝑥 ∨ 𝑦)

➢ 𝜏∗ satisfies at least one of 𝑥 or 𝑦, while 𝜏𝑖 satisfies neither

➢ Because we pick a literal randomly, w.p. at least ½ we 
pick one where 𝜏𝑖 and 𝜏∗ differ, and decrease distance.

➢ Q: Why did we need an unsatisfied clause? What if we 
pick one of 𝑛 variables randomly, and flip it?
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• Answer: 
➢ We want the distance to decrease with probability at 

least 
1

2
no matter how close or far we are from 𝜏∗.

➢ If we are already close, choosing a variable at random will 
likely choose one where 𝜏 and 𝜏∗ already match.

➢ Flipping this variable will increase the distance with high 
probability.

➢ An unsatisfied clause narrows it down to two variables 
s.t. 𝜏 and 𝜏∗ differ on at least one of them
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• Observation: 𝑑𝑖+1 = 𝑑𝑖 − 1 or 𝑑𝑖+1 = 𝑑𝑖 + 1

• Claim: Pr 𝑑𝑖+1 = 𝑑𝑖 − 1 ≥ 1/2

• How does this help?

0 1 2 3 4 𝑛5

≥
1

2
≤

1

2
≥

1

2
≤

1

2
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• How does this help?
➢ Can view this as Markov chain and use hitting time results

➢ But let’s prove it with elementary methods. 

0 1 2 3 4 𝑛5

≥
1

2
≤

1

2
≥

1

2
≤

1

2
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• For 𝑘 > ℓ, define:
➢ 𝑇𝑘,ℓ = expected number of iterations it takes to hit distance ℓ

for the first time when you start at distance 𝑘

• 𝑇𝑖+1,𝑖 ≤
1

2
∗ 1 +

1

2
∗ 1 + 𝑇𝑖+2,𝑖

=
1

2
∗ (1) +

1

2
∗ 1 + 𝑇𝑖+2,𝑖+1 + 𝑇𝑖+1,𝑖

• Simplifying: 
➢ 𝑇𝑖+1,𝑖 ≤ 2 + 𝑇𝑖+2,𝑖+1 ≤ 4 + 𝑇𝑖+3,𝑖+2 ≤ ⋯ ≤ 𝑂 𝑛 + 𝑇𝑛,𝑛−1 ≤ 𝑂 𝑛

o Uses 𝑇𝑛,𝑛−1 = 1 (Why?)

• 𝑇𝑛,0 ≤ 𝑇𝑛,𝑛−1 + ⋯ + 𝑇1,0 = 𝑂 𝑛2
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• Can view this algorithm as a “drunken local search”
➢ We are searching the local neighborhood

➢ But we don’t ensure that we necessarily improve.

➢ We just ensure that in expectation, we aren’t hurt.

➢ Hope to reach a feasible solution in polynomial time

• Schöning extended this technique to 𝑘-SAT
➢ Schöning’s algorithm no longer runs in polynomial time, 

but this is okay because 𝑘-SAT is NP-hard

➢ It still improves upon the naïve 2𝑛

➢ Later derandomized by Moser and Scheder [2011]
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• Algorithm:
➢ Choose a random assignment 𝜏.

➢ Repeat 3𝑛 times (𝑛 = #variables)
o If 𝜏 satisfies the CNF, stop.

o Else, pick an arbitrary unsatisfied clause, and flip a random literal 
in the clause.
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• Randomized algorithm with one-sided error
➢ If the CNF is satisfiable, it finds an assignment with 

probability at least 
1

2
⋅

𝑘

𝑘−1

𝑛

➢ If the CNF is unsatisfiable, it surely does not find an 
assignment.

• Expected # times we need to repeat = 2 1 −
1

𝑘

𝑛

➢ For 𝑘 = 3, this gives 𝑂(1.3333𝑛)

➢ For 𝑘 = 4, this gives 𝑂 1.5𝑛
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• 3-SAT

• Deterministic
➢ Derandomized Schöning’s algorithm: 𝑂(1.3333𝑛)

➢ Best known: 𝑂(1.3303𝑛) [HSSW]
o If there is a unique satisfying assignment: 𝑂(1.3071𝑛) [PPSZ]

• Randomized
➢ Nothing better known without one-sided error

➢ With one-sided error, best known is 𝑂 1.30704𝑛

[Modified PPSZ]
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• Random walks are not only of theoretical interest
➢ WalkSAT is a practical SAT algorithm

➢ At each iteration, pick an unsatisfied clause at random

➢ Pick a variable in the unsatisfied clause to flip:
o With some probability, pick at random.

o With the remaining probability, pick one that will make the fewest 
previously satisfied clauses unsatisfied. 

➢ Restart a few times (avoids being stuck in local minima)

• Faster than “intelligent local search” (GSAT)
➢ Flip the variable that satisfies most clauses
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• Aleliunas et al. [1979]
➢ Let 𝐺 be a connected undirected graph. Then a random 

walk starting from any vertex will cover the entire graph 
(visit each vertex at least once) in 𝑂(𝑚𝑛) steps.

• Also care about limiting probability distribution

➢ In the limit, the random walk with spend 
𝑑𝑖

2𝑚
fraction of 

the time on vertex with degree 𝑑𝑖

• Markov chains 
➢ Generalize to directed (possibly infinite) graphs with 

unequal edge probabilities
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Randomization for 
Sublinear Running Time
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• Given an input of length 𝑛, we want an algorithm 
that runs in time 𝑜(𝑛)

➢ 𝑜(𝑛) examples: log 𝑛 , 𝑛, 𝑛0.999,
𝑛

log 𝑛
, …

➢ The algorithm doesn’t even get to read the full input!

➢ There are four possibilities:
o Exact vs inexact: whether the algorithm always returns the 

correct/optimal solution or only does so with high probability (or 
gives some approximation)

o Worst-case versus expected running time: whether the algorithm 
always takes 𝑜(𝑛) time or only does so in expectation (but still on 
every instance)
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Exact algorithms, 
expected sublinear time
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• Input: A sorted doubly linked list with 𝑛 elements.
➢ Imagine you have an array 𝐴 with 𝑂(1) access to 𝐴[𝑖]

➢ 𝐴[𝑖] is a tuple (𝑥𝑖 , 𝑝𝑖 , 𝑛𝑖)
o Value, index of previous element, index of next element.

➢ Sorted: 𝑥𝑝𝑖
≤ 𝑥𝑖 ≤ 𝑥𝑛𝑖

• Task: Given 𝑥, check if there exists 𝑖 s.t. 𝑥 = 𝑥𝑖

• Goal: We will give a randomized + exact algorithm 
with expected running time 𝑂 𝑛 !
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• Motivation: 
➢ Often we deal with large datasets that are stored in a 

large file on disk, or possibly broken into multiple files

➢ Creating a new, sorted version of the dataset is expensive

➢ It is often preferred to “implicitly sort” the data by simply 
adding previous-next pointers along with each element

➢ Would like algorithms that can operate on such implicitly 
sorted versions and yet achieve sublinear running time 
o Just like binary search achieves for an explicitly sorted array
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Algorithm:
➢ Select 𝑛 random indices 𝑅

➢ Access 𝑥𝑗 for each 𝑗 ∈ 𝑅

➢ Find “accessed 𝑥𝑗 nearest to 𝑥 in either direction”
o Either largest among all 𝑥𝑗 ≤ 𝑥 or smallest among all 𝑥𝑗 ≥ 𝑥

o At least one direction must be possible (WHY?)

➢ If you take the largest 𝑥𝑗 ≤ 𝑥, start from there and keep 
going “next” until you find 𝑥 or go past its value

➢ If you take the smallest 𝑥𝑗 ≥ 𝑥, start from there and keep 
going “previous” until you find 𝑥 or go past its value
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• Analysis sketch:
➢ Suppose you find the largest 𝑥𝑗 ≤ 𝑥 and keep going 

“next”

➢ Let 𝑥𝑖 be smallest value ≥ 𝑥

➢ Algorithm stops when it hits 𝑥𝑖

➢ Algorithm throws 𝑛 random “darts” on the sorted list

➢ Chernoff bound:
o Expected distance of 𝑥𝑖 to the closest dart to its left is 𝑂 𝑛

o We’ll assume this without proof!

➢ Hence, the algorithm only does “next” 𝑂 𝑛 times in 
expectation
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• Note:
➢ We don’t really require the list to be doubly linked. Just 

“next” pointer suffices if we have a pointer to the first 
element of the list (a.k.a. “anchored list”).

• This algorithm is optimal!

• Theorem: No algorithm that always returns the 
correct answer can run in 𝑜 𝑛 expected time.
➢ Can be proved using Yao’s minimax principle

➢ Beyond the scope of the course, but this is a fundamental 
result with wide-ranging applications
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• Chazelle, Liu, and Magen [2003] proved the Θ 𝑛
bound for searching in a sorted linked list

➢ Their main focus was to generalize these ideas to come 
up with sublinear algorithms for geometric problems

➢ Polygon intersection: Given two convex polyhedra, check 
if they intersect.

➢ Point location: Given a Delaunay triangulation (or Voronoi
diagram) and a point, find the cell in which the point lies.

➢ They provided optimal 𝑂 𝑛 algorithms for both these 
problems.
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Inexact algorithms, 
expected sublinear time
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• Input: Graph 𝐺 with 𝑛 vertices, and access to an 
oracle that returns the degree of a queried vertex 
in 𝑂 1 time.

• Goal: (2 + 𝜖)-approximation in expected time 
𝑂 𝜖−𝑂 1 𝑛
➢ 𝜖 is constant ⇒ sublinear in input size 𝑛
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• Wait! 
➢ Isn’t this equivalent to “given an array of 𝑛 numbers 

between 1 and 𝑛 − 1, estimate their average”?

➢ No! That requires Ω(𝑛) time for constant approximation!

o Consider an instance with constantly many 𝑛 − 1’s, and all other 
1’s: you may not discover any 𝑛 − 1 until you query Ω(𝑛) numbers

➢ Why are degree sequences more special?

o Erdős–Gallai theorem: 𝑑1 ≥ ⋯ ≥ 𝑑𝑛 is a degree sequence iff their 
sum is even and σ𝑖=1

𝑘 𝑑𝑖 ≤ 𝑘 𝑘 − 1 + σ𝑖=𝑘+1
𝑛 𝑑𝑖.

o Intuitively, we will sample 𝑂 𝑛 vertices

• We may not discover the few high degree vertices, but we’ll 
find their neighbors, and thus account for their edges anyway!
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• Algorithm:
➢ Take Τ8

𝜖 random subsets 𝑆𝑖 ⊆ 𝑉 with 𝑆𝑖 = 𝑠

➢ Compute the average degree 𝑑𝑆𝑖
in each 𝑆𝑖.

➢ Return 𝑑 = min𝑖 𝑑𝑆𝑖

• Analysis beyond the scope of this course

➢ But doesn’t use anything other than Hoeffding’s
inequality, Markov’s inequality, linearity of expectation, 
and union bound


