CSC373

Week 11: Randomized Algorithms

373F19 - Nisarg Shah & Karan Singh

Randomized Algorithms

- Running time
 - Sometimes, we want the algorithm to always take a small amount of time
 - $\,\circ\,$ Regardless of both the input and the random coin flips
 - Sometimes, we want the algorithm to take a small amount of time in expectation
 - Expectation over random coin flips
 - $\,\circ\,$ Still regardless of the input

Randomized Algorithms

• Efficiency

- We want the algorithm to return a solution that is, in expectation, close to the optimum according to the objective under consideration
 - $\,\circ\,$ Once again, the expectation is over random coin flips
 - $\,\circ\,$ We want this to hold for every input

- For some problems, it is easy to come up with a very simple randomized approximation algorithm
- Later, one can ask whether this algorithm can be "derandomized"
 - Informally, the randomized algorithm is making some random choices, and sometimes they turn out to be good
 - > Can we make these "good" choices deterministically?

Recap: Probability Theory

• Random variable X

> Discrete

- \circ Takes value v_1 with probability p_1 , v_2 w.p. p_2 , ...
- Expected value $E[X] = p_1 \cdot v_1 + p_2 \cdot v_2 + \cdots$
- \odot Examples: the roll of a six-sided die (takes values 1 through 6 with probability 1/6 each)

Continuous

- \circ Has a probability density function (pdf) f
- \circ Its integral is the cumulative density function (cdf) F
 - $F(x) = \Pr[X \le x]$
- Expected value $E[X] = \int x f(x) dx$
- \circ Examples: normal distribution, exponential distribution, uniform distribution over [0,1], ...

Recap: Probability Theory

- Things you should be aware of...
 - Conditional probabilities
 - > Independence among random variables
 - > Conditional expectations
 - Moments of random variables
 - Standard discrete distributions: uniform over a finite set, Bernoulli, binomial, geometric, Poisson, ...
 - Standard continuous distributions: uniform over intervals, Gaussian/normal, exponential, ...

Three Pillars

Linearity of Expectation Union Bound

- Deceptively simple, but incredibly powerful!
- Many many many many probabilistic results are just interesting applications of these three results

Three Pillars

- Linearity of expectation ≻ E[X + Y] = E[X] + E[Y]
 - This does not require any independence assumptions about X and Y
 - E.g. if you want to find out how many people will attend your party on average, just ask each person the probability with which they will attend and add up
 - It does not matter that some of them are friends, and will either attend together or not attend together

Three Pillars

Union bound

- > For any two events A and B, $Pr[A \cup B] \leq Pr[A] + Pr[B]$
- > "Probability that at least one of the *n* events $A_1, ..., A_n$ will occur is at most $\sum_i \Pr[A_i]$ "
- > Typically, A_1, \dots, A_n are "bad events"
 - $\,\circ\,$ You do not want any of them to occur
 - If you can individually bound $Pr[A_i] \leq \frac{1}{2n}$ for each *i*, then probability that at least one them occurs $\leq 1/2$
 - So with probability $\geq 1/2$, none of the bad events will occur
- Chernoff bound & Hoeffding's inequality
 > Read up!

• Problem (recall)

- > Input: An exact k-SAT formula $\varphi = C_1 \wedge C_2 \wedge \cdots \wedge C_m$, where each clause C_i has exactly k literals, and a weight $w_i \ge 0$ of each clause C_i
- > Output: A truth assignment τ maximizing the number (or total weight) of clauses satisfied under τ
- > Let us denote by $W(\tau)$ the total weight of clauses satisfied under τ

- Recall our local search
 - > $N_d(\tau)$ = set of all truth assignments which can be obtained by changing the value of at most d variables in τ
- Result 1: Neighborhood $N_1(\tau) \Rightarrow 2/3$ -apx for Exact Max-2-SAT.
- Result 2: Neighborhood $N_1(\tau) \cup \tau^c \Rightarrow {}^3/_4$ -apx for Exact Max-2-SAT.
- Result 3: Neighborhood $N_1(\tau)$ + oblivious local search $\Rightarrow 3/4$ -apx for Exact Max-2-SAT.

- Recall our local search
 - > $N_d(\tau)$ = set of all truth assignments which can be obtained by changing the value of at most d variables in τ
- We claimed that ¾-apx for Exact Max-2-SAT can be generalized to ^{2^k-1}/_{2^k}-apx for Exact Max-k-SAT
 > Algorithm becomes slightly more complicated
- What can we do with randomized algorithms?

- Recall:
 - > We have a formula $\varphi = C_1 \wedge C_2 \wedge \cdots \wedge C_m$
 - > Variables = $x_1, ..., x_n$, literals = variables or their negations
 - Each clause contains exactly k literals

The most naïve randomized algorithm

 \succ Set each variable to TRUE with probability $\frac{1}{2}$ and to FALSE with probability $\frac{1}{2}$

• How good is this?

• Recall:

- > We have a formula $\varphi = C_1 \land C_2 \land \cdots \land C_m$
- > Variables = $x_1, ..., x_n$, literals = variables or their negations
- Each clause contains exactly k literals

• For each clause C_i :

- > $\Pr[C_i \text{ is not satisfied}] = 1/2^k \text{ (WHY?)}$
- > Hence, $\Pr[C_i \text{ is satisfied}] = (2^k 1)/2^k$

• For each clause C_i :

> $\Pr[C_i \text{ is not satisfied}] = 1/2^k \text{ (WHY?)}$ > Hence, $\Pr[C_i \text{ is satisfied}] = (2^k - 1)/2^k$

• Let τ denote the random assignment $\succ E[W(\tau)] = \sum_{i=1}^{m} w_i \cdot \Pr[C_i \text{ is satisfied}]$

(Which pillar did we just use?)

$$\succ E[W(\tau)] = \frac{2^{k} - 1}{2^{k}} \cdot \sum_{i=1}^{m} w_i \ge \frac{2^{k} - 1}{2^{k}} \cdot OPT$$

- Can we derandomize this algorithm?
 - > What are the choices made by the algorithm?
 - \odot Setting the values of x_1, x_2, \ldots, x_n
 - > How do we know which set of choices is good?

• Idea:

- > Do not think about all the choices at once.
- > Think about them one by one.

- Say you want to *deterministically* make the right choice for x_1
 - > Choices of x_2, \dots, x_n are still random

$$E[W(\tau)] = \Pr[x_1 = T] \cdot E[W(\tau)|x_1 = T] + \Pr[x_1 = F] \cdot E[W(\tau)|x_1 = F]$$

= $\frac{1}{2} \cdot E[W(\tau)|x_1 = T] + \frac{1}{2} \cdot E[W(\tau)|x_1 = F]$

- > This means at least one of $E[W(\tau)|x_1 = T]$ and $E[W(\tau)|x_1 = F]$ must be at least as much as $E[W(\tau)]$
 - Moreover, both quantities can be computed, so we can take the better of the two!
 - $\,\circ\,$ For now, forget about the running time...

 Once we have made the right choice for x₁ (say T), then we can apply the same logic to x₂

$$E[W(\tau)|x_1 = T] = \frac{1}{2} \cdot E[W(\tau)|x_1 = T, x_2 = T] + \frac{1}{2} \cdot E[W(\tau)|x_1 = T, x_2 = F]$$

> And then we can pick the choice that leads to a better conditional expectation

• Derandomized Algorithm:
• For
$$i = 1, ..., n$$

• Let $z_i = T$ if $E[W(\tau)|x_1 = z_1, ..., x_{i-1} = z_{i-1}, x_i = T] \ge E[W(\tau)|x_1 = z_1, ..., x_{i-1} = z_{i-1}, x_i = F]$, and $z_i = F$ otherwise
• Set $x_i = z_i$

۶

• This is called *the method of conditional expectations*

If we're happy when making a choice at random, we should be at least as happy conditioned on at least one of the possible values of that choice

> How do we compare the two conditional expectations?

- $E[W(\tau)|x_1 = z_1, ..., x_{i-1} = z_{i-1}, x_i = T]$
 - > = $\sum_r w_r$ · Pr[C_r is satisfied | $x_1 = z_1, ..., x_{i-1} = z_{i-1}, x_i = T$] > Set the values of $x_1, ..., x_{i-1}, x_i$
 - > If C_r resolves to TRUE already, the corresponding probability is 1
 - > If C_r resolves to FALSE already, the corresponding probability is 0
 - > Otherwise, if there are ℓ literals left in C_r after setting x_1, \dots, x_{i-1}, x_i , the corresponding probability is $\frac{2^{\ell}-1}{2^{\ell}}$
- Compute $E[W(\tau)|x_1 = z_1, \dots, x_{i-1} = z_{i-1}, x_i = F]$ similarly

Max-SAT

Simple randomized algorithm

- $> \frac{2^{k}-1}{2^{k}}$ approximation for Max-k-SAT
- > Max-3-SAT $\Rightarrow 7/_8$

 \circ [Håstad]: This is the best possible assuming P ≠ NP

> Max-2-SAT
$$\Rightarrow 3/_4 = 0.75$$

 The best known approximation is 0.9401 using semi-definite programming and randomized rounding

> Max-SAT
$$\Rightarrow 1/_2$$

 \circ Max-SAT = no restriction on the number of literals in each clause

 The best known approximation is 0.7968, also using semi-definite programming and randomized rounding

Max-SAT

- Better approximations for Max-SAT
 - Semi-definite programming is out of the scope
 - > But we will see the simpler "LP + randomized rounding" approach that gives $1 \frac{1}{e} \approx 0.6321$ approximation

• Max-SAT:

- > Input: $\varphi = C_1 \land C_2 \land \cdots \land C_m$, where each clause C_i has weight $w_i \ge 0$ (and can have any number of literals)
- > Output: Truth assignment that approximately maximizes the weight of clauses satisfied

LP Formulation of Max-SAT

- First, IP formulation:
 - > Variables:

$$y_1, ..., y_n \in \{0, 1\}$$

• $y_i = 1$ iff variable $x_i = \text{TRUE}$ in Max-SAT
 $z_1, ..., z_m \in \{0, 1\}$

• $z_j = 1$ iff clause C_j is satisfied in Max-SAT

○ Program:

 $\begin{aligned} & \text{Maximize } \Sigma_j \ w_j \cdot z_j \\ & \text{s.t.} \\ & \Sigma_{x_i \in C_j} \ y_i + \Sigma_{\bar{x}_i \in C_j} \ (1 - y_i) \geq z_j \quad \forall j \in \{1, \dots, m\} \\ & y_i, z_j \in \{0, 1\} \qquad \qquad \forall i \in \{1, \dots, n\}, j \in \{1, \dots, m\} \end{aligned}$

LP Formulation of Max-SAT

• LP relaxation:

> Variables:

$$y_1, \dots, y_n \in [0,1]$$

• $y_i = 1$ iff variable $x_i = \text{TRUE}$ in Max-SAT
 $z_1, \dots, z_m \in [0,1]$

• $z_j = 1$ iff clause C_j is satisfied in Max-SAT

○ Program:

 $\begin{aligned} & \text{Maximize } \Sigma_j \ w_j \cdot z_j \\ & \text{s.t.} \\ & \Sigma_{x_i \in C_j} \ y_i + \Sigma_{\bar{x}_i \in C_j} \ (1 - y_i) \geq z_j \quad \forall j \in \{1, \dots, m\} \\ & y_i, z_j \in [0, 1] \qquad \qquad \forall i \in \{1, \dots, n\}, j \in \{1, \dots, m\} \end{aligned}$

Randomized Rounding

Randomized rounding

- > Find the optimal solution (y^*, z^*) of the LP
- \succ Compute a random IP solution \hat{y} such that
 - \circ Each $\hat{y}_i = 1$ with probability y_i^* and 0 with probability $1 y_i^*$
 - \circ Independently of other \hat{y}_i 's

 $\,\circ\,$ The output of the algorithm is the corresponding truth assignment

> What is $Pr[C_j \text{ is satisfied}]$ if C_j has k literals?

$$1 - \Pi_{x_i \in C_j} (1 - y_i^*) \cdot \Pi_{\bar{x}_i \in C_j} (y_i^*)$$

$$\geq 1 - \left(\frac{\sum_{x_i \in C_j} (1 - y_i^*) + \sum_{\bar{x}_i \in C_j} (y_i^*)}{k}\right)^k \geq 1 - \left(\frac{k - z_j^*}{k}\right)^k$$
AM-GM inequality LP constraint

Randomized Rounding

Claim

>
$$1 - \left(1 - \frac{z}{k}\right)^k \ge \left(1 - \left(1 - \frac{1}{k}\right)^k\right) \cdot z$$
 for all $z \in [0, 1]$ and $k \in \mathbb{N}$

• Assuming the claim:

$$\Pr[C_j \text{ is satisfied}] \ge 1 - \left(\frac{k - z_j^*}{k}\right)^k \ge \left(1 - \left(1 - \frac{1}{k}\right)^k\right) \cdot z_j^* \ge \left(1 - \frac{1}{e}\right) \cdot z_j^*$$
Standard inequality

• Hence,

$$\mathbb{E}[\text{#weight of clauses satisfied}] \ge \left(1 - \frac{1}{e}\right) \sum_{j} w_{j} \cdot z_{j}^{*} \ge \left(1 - \frac{1}{e}\right) \cdot OPT$$

Randomized Rounding

Claim

→
$$1 - \left(1 - \frac{z}{k}\right)^k \ge \left(1 - \left(1 - \frac{1}{k}\right)^k\right) \cdot z$$
 for all $z \in [0, 1]$ and $k \in \mathbb{N}$

- Proof of claim:
 - > True at z = 0 and z = 1 (same quantity on both sides)
 - \succ For $0 \le z \le 1$:
 - $\,\circ\,$ LHS is a convex function
 - RHS is a linear function
 - \circ Hence, LHS ≥ RHS ■

Improving Max-SAT Apx

• Claim without proof:

- Running both "LP + randomized rounding" and "naïve randomized algorithm", and returning the best of the two solutions gives ³/₄ = 0.75 approximation!
- > This algorithm can be derandomized.

> Recall:

 $_{\odot}$ "naïve randomized" = independently set each variable to TRUE/FALSE with probability 0.5 each, which only gives $^{1}\!/_{2}=0.5$ approximation by itself

Back to 2-SAT

- Max-2-SAT is NP-hard (we didn't prove this!)
- But 2-SAT can be efficiently solved
 - Given a 2-CNF formula, check whether all clauses can be satisfied simultaneously."

• Algorithm:

- > Eliminate all unit clauses, set the corresponding literals.
- \succ Create a graph with 2n literals as vertices.
- For every clause (x ∨ y), add two edges: $\bar{x} \to y$ and $\bar{y} \to x$.
 u → v means if u is true, v must be true.
- > Formula is satisfiable iff no path from x to \overline{x} or \overline{x} to x for any x
- > Solve s t connectivity problem in polynomial time

• Here's a cute randomized algorithm by Papadimitriou [1991]

• Algorithm:

- > Start with an arbitrary assignment.
- > While there is an unsatisfied clause $C = (x \lor y)$
 - $\,\circ\,$ Pick one of the two literals with equal probability.

 \circ Flip the variable value so that *C* is satisfied.

• But, but, this can hurt other clauses?

• Theorem:

If there is a satisfying assignment \(\tau^*\), then the expected time to reach some satisfying assignment is at most O(n²).

• Proof:

- > Fix τ^* . Let τ_0 be the starting assignment. Let τ_i be the assignment after *i* iterations.
- > Consider the "hamming distance" d_i between τ_i and τ^* \circ Number of coordinates in which the two differ

 $\circ d_i \in \{0,1,\ldots,n\}.$

> To show: in expectation, we will hit $d_i = 0$ in $O(n^2)$ iterations, unless the algorithm stops before that.

• Observation: $d_{i+1} = d_i - 1$ or $d_{i+1} = d_i + 1$

> Because we change one variable in each iteration.

- Claim: $\Pr[d_{i+1} = d_i 1] \ge 1/2$
- Proof:
 - > Iteration *i* considers an unsatisfied clause $C = (x \lor y)$
 - > τ^* satisfies at least one of x or y, while τ_i satisfies neither
 - > Because we pick a literal randomly, w.p. at least $\frac{1}{2}$ we pick one where τ_i and τ^* differ, and decrease distance.
 - Q: Why did we need an unsatisfied clause? What if we pick one of n variables randomly, and flip it?

• Answer:

- > We want the distance to decrease with probability at least $\frac{1}{2}$ no matter how close or far we are from τ^* .
- > If we are already close, choosing a variable at random will likely choose one where τ and τ^* already match.
- Flipping this variable will increase the distance with high probability.
- > An unsatisfied clause narrows it down to two variables s.t. τ and τ^* differ on at least one of them

- Observation: $d_{i+1} = d_i 1$ or $d_{i+1} = d_i + 1$
- Claim: $\Pr[d_{i+1} = d_i 1] \ge 1/2$

• How does this help?

- How does this help?
 - > Can view this as Markov chain and use hitting time results
 - > But let's prove it with elementary methods.

- For $k > \ell$, define:
 - > $T_{k,\ell}$ = expected number of iterations it takes to hit distance ℓ for the first time when you start at distance k

•
$$T_{i+1,i} \leq \frac{1}{2} * 1 + \frac{1}{2} * (1 + T_{i+2,i})$$

= $\frac{1}{2} * (1) + \frac{1}{2} * (1 + T_{i+2,i+1} + T_{i+1,i})$

- Simplifying:
 - > $T_{i+1,i} ≤ 2 + T_{i+2,i+1} ≤ 4 + T_{i+3,i+2} ≤ \cdots ≤ O(n) + T_{n,n-1} ≤ O(n)$ ○ Uses $T_{n,n-1} = 1$ (Why?)

•
$$T_{n,0} \le T_{n,n-1} + \dots + T_{1,0} = O(n^2)$$

- Can view this algorithm as a "drunken local search"
 - > We are searching the local neighborhood
 - > But we don't ensure that we necessarily improve.
 - > We just ensure that in expectation, we aren't hurt.
 - > Hope to reach a feasible solution in polynomial time
- Schöning extended this technique to k-SAT
 - Schöning's algorithm no longer runs in polynomial time, but this is okay because k-SAT is NP-hard
 - \succ It still improves upon the naïve 2^n
 - > Later derandomized by Moser and Scheder [2011]

Schöning's Algorithm for k-SAT

• Algorithm:

- > Choose a random assignment τ .
- > Repeat 3n times (n =#variables)
 - \circ If au satisfies the CNF, stop.
 - $\,\circ\,$ Else, pick an arbitrary unsatisfied clause, and flip a random literal in the clause.

Schöning's Algorithm

- Randomized algorithm with one-sided error > If the CNF is satisfiable, it finds an assignment with probability at least $\left(\frac{1}{2} \cdot \frac{k}{k-1}\right)^n$
 - If the CNF is unsatisfiable, it surely does not find an assignment.
- Expected # times we need to repeat = $\left(2\left(1-\frac{1}{k}\right)\right)^n$
 - > For k = 3, this gives $O(1.3333^n)$
 - > For k = 4, this gives $O(1.5^n)$

Best Known Results

- 3-SAT
- Deterministic
 - > Derandomized Schöning's algorithm: $O(1.3333^n)$
 - > Best known: *O*(1.3303^{*n*}) [HSSW]
 - \circ If there is a unique satisfying assignment: $O(1.3071^n)$ [PPSZ]
- Randomized
 - > Nothing better known without one-sided error
 - With one-sided error, best known is O(1.30704ⁿ) [Modified PPSZ]

- Random walks are not only of theoretical interest
 - > WalkSAT is a practical SAT algorithm
 - > At each iteration, pick an unsatisfied clause at random
 - > Pick a variable in the unsatisfied clause to flip:
 - $\,\circ\,$ With some probability, pick at random.
 - With the remaining probability, pick one that will make the fewest previously satisfied clauses unsatisfied.
 - > Restart a few times (avoids being stuck in local minima)
- Faster than "intelligent local search" (GSAT)
 - Flip the variable that satisfies most clauses

Random Walks on Graphs

- Aleliunas et al. [1979]
 - Let G be a connected undirected graph. Then a random walk starting from any vertex will cover the entire graph (visit each vertex at least once) in O(mn) steps.
- Also care about limiting probability distribution
 In the limit, the random walk with spend ^{d_i}/_{2m} fraction of the time on vertex with degree d_i
- Markov chains
 - Generalize to directed (possibly infinite) graphs with unequal edge probabilities

Randomization for Sublinear Running Time

Sublinear Running Time

- Given an input of length n, we want an algorithm that runs in time o(n)
 - > o(n) examples: $\log n$, \sqrt{n} , $n^{0.999}$, $\frac{n}{\log n}$, ...
 - > The algorithm doesn't even get to read the full input!
 - > There are four possibilities:
 - Exact vs inexact: whether the algorithm always returns the correct/optimal solution or only does so with high probability (or gives some approximation)
 - Worst-case versus expected running time: whether the algorithm always takes o(n) time or only does so in expectation (but still on every instance)

Exact algorithms, expected sublinear time

Input: A sorted doubly linked list with n elements.
> Imagine you have an array A with O(1) access to A[i]
> A[i] is a tuple (x_i, p_i, n_i)
• Value, index of previous element, index of next element.

> Sorted:
$$x_{p_i} \le x_i \le x_{n_i}$$

- Task: Given x, check if there exists i s.t. $x = x_i$
- Goal: We will give a randomized + exact algorithm with expected running time $O(\sqrt{n})!$

• Motivation:

- > Often we deal with large datasets that are stored in a large file on disk, or possibly broken into multiple files
- > Creating a new, sorted version of the dataset is expensive
- It is often preferred to "implicitly sort" the data by simply adding previous-next pointers along with each element
- Would like algorithms that can operate on such implicitly sorted versions and yet achieve sublinear running time
 Just like binary search achieves for an explicitly sorted array

Algorithm:

- > Select \sqrt{n} random indices R
- ≻ Access x_j for each $j \in R$
- > Find "accessed x_j nearest to x in either direction"
 - \circ Either largest among all $x_j \leq x$ or smallest among all $x_j \geq x$
 - At least one direction must be possible (WHY?)
- > If you take the largest $x_j \le x$, start from there and keep going "next" until you find x or go past its value
- > If you take the smallest $x_j \ge x$, start from there and keep going "previous" until you find x or go past its value

• Analysis sketch:

- > Suppose you find the largest $x_j \leq x$ and keep going "next"
- > Let x_i be smallest value $\ge x$
- > Algorithm stops when it hits x_i
- > Algorithm throws \sqrt{n} random "darts" on the sorted list
- > Chernoff bound:
 - Expected distance of x_i to the closest dart to its left is $O(\sqrt{n})$
 - $\,\circ\,$ We'll assume this without proof!
- > Hence, the algorithm only does "next" $O(\sqrt{n})$ times in expectation

• Note:

We don't *really* require the list to be doubly linked. Just "next" pointer suffices if we have a pointer to the first element of the list (a.k.a. "anchored list").

- This algorithm is optimal!
- Theorem: No algorithm that always returns the correct answer can run in $o(\sqrt{n})$ expected time.
 - > Can be proved using Yao's minimax principle
 - Beyond the scope of the course, but this is a fundamental result with wide-ranging applications

Sublinear Geometric Algorithms

- Chazelle, Liu, and Magen [2003] proved the $\Theta(\sqrt{n})$ bound for searching in a sorted linked list
 - > Their main focus was to generalize these ideas to come up with sublinear algorithms for geometric problems
 - Polygon intersection: Given two convex polyhedra, check if they intersect.
 - Point location: Given a Delaunay triangulation (or Voronoi diagram) and a point, find the cell in which the point lies.
 - > They provided optimal $O(\sqrt{n})$ algorithms for both these problems.

Inexact algorithms, expected sublinear time

Estimating Avg Degree in Graph

Input: Graph G with n vertices, and access to an oracle that returns the degree of a queried vertex in O(1) time.

• Goal: $(2 + \epsilon)$ -approximation in expected time $O(\epsilon^{-O(1)}\sqrt{n})$

 $\succ \epsilon$ is constant \Rightarrow sublinear in input size n

Estimating Avg Degree in Graph

• Wait!

- > Isn't this equivalent to "given an array of n numbers between 1 and n 1, estimate their average"?
- > No! That requires $\Omega(n)$ time for constant approximation!
 - \circ Consider an instance with constantly many n-1's, and all other 1's: you may not discover any n-1 until you query $\Omega(n)$ numbers
- > Why are degree sequences more special?
 - Erdős–Gallai theorem: $d_1 \ge \cdots \ge d_n$ is a degree sequence iff their sum is even and $\sum_{i=1}^k d_i \le k(k-1) + \sum_{i=k+1}^n d_i$.

 \circ Intuitively, we will sample $O(\sqrt{n})$ vertices

• We may not discover the few high degree vertices, but we'll find their neighbors, and thus account for their edges anyway!

Estimating Avg Degree in Graph

• Algorithm:

- > Take $^{8}/_{\epsilon}$ random subsets $S_{i} \subseteq V$ with $|S_{i}| = s$
- > Compute the average degree d_{S_i} in each S_i .
- > Return $\widehat{d} = \min_i d_{S_i}$

• Analysis beyond the scope of this course

But doesn't use anything other than Hoeffding's inequality, Markov's inequality, linearity of expectation, and union bound