
CSC373

Week 3: Dynamic Programming

373F19 - Karan Singh 1

Karan Singh

Recap

373F19 - Karan Singh 2

• Greedy Algorithms
 Interval scheduling

 Interval partitioning

 Minimizing lateness

 Huffman encoding

 …

373F19 - Karan Singh 3

Jeff Erickson on greedy algorithms…

373F19 - Karan Singh 4

The 1950s were not good years for mathematical research.
We had a very interesting gentleman in Washington named
Wilson. He was secretary of Defense, and he actually had a
pathological fear and hatred of the word ‘research’. I’m not
using the term lightly; I’m using it precisely. His face would
suffuse, he would turn red, and he would get violent if
people used the term ‘research’ in his presence. You can
imagine how he felt, then, about the term ‘mathematical’.
The RAND Corporation was employed by the Air Force, and
the Air Force had Wilson as its boss, essentially. Hence, I felt
I had to do something to shield Wilson and the Air Force
from the fact that I was really doing mathematics inside the
RAND Corporation. What title, what name, could I choose?

— Richard Bellman, on the origin of his term ‘dynamic
programming’ (1984)

Richard Bellman’s quote from Jeff Erickson’s book

Dynamic Programming

373F19 - Karan Singh 5

• Outline
 Breaking the problem down into simpler subproblems,

solve each subproblem just once, and store their
solutions.

 The next time the same subproblem occurs, instead of
recomputing its solution, simply look up its previously
computed solution.

 Hopefully, we save a lot of computation at the expense of
modest increase in storage space.

 Also called “memoization”

• How is this different from divide & conquer?

373F19 - Karan Singh 6

• Problem
 Job 𝑗 starts at time 𝑠𝑗 and finishes at time 𝑓𝑗

 Each job 𝑗 has a weight 𝑤𝑗

 Two jobs are compatible if they don’t overlap

 Goal: find a set 𝑆 of mutually compatible jobs with highest
total weight σ𝑗∈𝑆 𝑤𝑗

• Recall: If all 𝑤𝑗 = 1, then this is simply the interval
scheduling problem from last week
 Greedy algorithm based on earliest finish time ordering was

optimal for this case

Weighted Interval Scheduling

373F19 - Karan Singh 7

Recall: Interval Scheduling

373F19 - Karan Singh 8

• What if we simply try to use it again?
 Fails spectacularly!

Weighted Interval Scheduling

373F19 - Karan Singh 9

• What if we use other orderings?
 By weight: choose jobs with highest 𝑤𝑗 first

 Maximum weight per time: choose jobs with highest
𝑤𝑗/(𝑓𝑗 − 𝑠𝑗) first

 ...

• None of them work!
 They’re arbitrarily worse than the optimal solution

 In fact, under a certain formalization, “no greedy
algorithm” can produce any “decent approximation” in the
worst case (beyond this course!)

Weighted Interval Scheduling

373F19 - Karan Singh 10

• Convention
 Jobs are sorted by finish time: 𝑓1 ≤ 𝑓2 ≤ ⋯ ≤ 𝑓𝑛

 𝑝 𝑗 = largest index 𝑖 < 𝑗 such that job 𝑖 is compatible
with job 𝑗 (i.e. 𝑓𝑖 < 𝑠𝑗)

Among jobs before
job 𝑗, the ones

compatible with it
are precisely 1 … 𝑖

E.g.
𝑝[8] = 1,
𝑝[7] = 3,
𝑝[2] = 0

Weighted Interval Scheduling

373F19 - Karan Singh 11

• The DP approach
 Let OPT be an optimal solution

 Two cases regarding job 𝑛:
o Option 1: Job 𝑛 is in OPT

• Can’t use incompatible jobs 𝑝 𝑛 + 1, … , 𝑛 − 1

• Must select optimal subset of jobs from {1, … , 𝑝 𝑛 }

o Option 2: Job 𝑛 is not in OPT

• Must select optimal subset of jobs from {1, … , 𝑛 − 1}

 OPT is best of both

 Note: In both cases, knowing how to solve any prefix of
our ordering is enough solve the overall problem

Weighted Interval Scheduling

373F19 - Karan Singh 12

• The DP approach
 𝑂𝑃𝑇(𝑗) = maximum value from compatible jobs in 1, … , 𝑗

 Base case: 𝑂𝑃𝑇 0 = 0

 Two cases regarding job 𝑗:
o Job 𝑗 is selected: optimal value is 𝑤𝑗 + 𝑂𝑃𝑇(𝑝 𝑗)

o Job 𝑗 is not selected: optimal value is 𝑂𝑃𝑇(𝑗 − 1)

 𝑂𝑃𝑇(𝑗) is best of both worlds

 Bellman equation:

𝑂𝑃𝑇 𝑗 = ൝
0 if 𝑗 = 0

max 𝑂𝑃𝑇 𝑗 − 1 , 𝑤𝑗 + 𝑂𝑃𝑇 𝑝 𝑗 if 𝑗 > 0

Brute Force Solution

373F19 - Karan Singh 13

Brute Force Solution

373F19 - Karan Singh 14

• Q: Worst-case running time of ComputeOPT(𝑛)?
a) Θ(𝑛)

b) Θ 𝑛 log 𝑛

c) Θ 1.618𝑛

d) Θ(2𝑛)

Brute Force Solution

373F19 - Karan Singh 15

• Brute force running time
 It is possible that 𝑝 𝑗 = 𝑗 − 1 for each 𝑗

 Then, we call ComputeOPT(𝑗 − 1) twice in ComputeOPT 𝑗

 So this might take 2𝑛 steps

 But we can just check if 𝑗 is compatible with 𝑗 − 1, and if
so, only execute the part where we select 𝑗

 Now the worst case is where 𝑝 𝑗 = 𝑗 − 2 for each 𝑗

 Running time: 𝑇 𝑛 = 𝑇 𝑛 − 1 + 𝑇 𝑛 − 2
o Fibonacci, golden ratio, … 

Dynamic Programming

373F19 - Karan Singh 16

• Why is the runtime high?
 Some solutions are being computed many, many times
o E.g. if 𝑝 5 = 3, then ComputeOPT(5) might call ComputeOPT(4)

and ComputeOPT(3)

o But ComputeOPT(4) might in tern call ComputeOPT(3)

• Memoization trick
 Simply remember what you’ve already computed, and re-

use the answer if needed in future

Dynamic Program: Top-Down

373F19 - Karan Singh 17

• Let’s store ComputeOPT(j) in 𝑀[𝑗]

Dynamic Program: Top-Down

373F19 - Karan Singh 18

• Claim: This memoized version takes 𝑂 𝑛 log 𝑛 time
 Sorting jobs takes 𝑂 𝑛 log 𝑛

 It also takes 𝑂(𝑛 log 𝑛) to do 𝑛 binary searches to
compute 𝑝(𝑗) for each 𝑗

 M-Compute-OPT(𝑗) is called at most once for each 𝑗

 Each such call takes 𝑂(1) time, not considering the time
taken by any subroutine calls

 So M-Compute-OPT(𝑛) takes only 𝑂 𝑛 time

 Overall time is 𝑂 𝑛 log 𝑛

Dynamic Program: Bottom-Up

373F19 - Karan Singh 19

• Find an order in which to call the functions so that
the sub-solutions are ready when needed

Top-Down vs Bottom-Up

373F19 - Karan Singh 20

• Top-Down may be preferred…
 …when not all sub-solutions need to be computed on

some inputs

 …because one does not need to think of the “right order”
in which to compute sub-solutions

• Bottom-Up may be preferred…
 …when all sub-solutions will anyway need to be

computed

 …because it is sometimes faster as it prevents recursive
call overheads and unnecessary random memory
accesses

Optimal Solution

373F19 - Karan Singh 21

• This approach gave us the optimal value

• What about the actual solution (subset of jobs)?
 Typically, this is done by maintaining the optimal value

and an optimal solution for each subproblem

 So, we compute two quantities:

𝑂𝑃𝑇 𝑗 = ൝
0 if 𝑗 = 0

max 𝑂𝑃𝑇 𝑗 − 1 , 𝑣𝑗 + 𝑂𝑃𝑇 𝑝 𝑗 if 𝑗 > 0

𝑆 𝑗 =

൞

∅ if 𝑗 = 0

𝑆(𝑗 − 1) if 𝑗 > 0 ∧ 𝑂𝑃𝑇 𝑗 − 1 ≥ 𝑣𝑗 + 𝑂𝑃𝑇 𝑝 𝑗

𝑗 ∪ 𝑆(𝑝 𝑗) if 𝑗 > 0 ∧ 𝑂𝑃𝑇 𝑗 − 1 < 𝑣𝑗 + 𝑂𝑃𝑇 𝑝 𝑗

Optimal Solution

373F19 - Karan Singh 22

𝑂𝑃𝑇 𝑗 = ൝
0 if 𝑗 = 0

max 𝑂𝑃𝑇 𝑗 − 1 , 𝑣𝑗 + 𝑂𝑃𝑇 𝑝 𝑗 if 𝑗 > 0

𝑆 𝑗 =

൞

∅ if 𝑗 = 0

𝑆(𝑗 − 1) if 𝑗 > 0 ∧ 𝑂𝑃𝑇 𝑗 − 1 ≥ 𝑣𝑗 + 𝑂𝑃𝑇 𝑝 𝑗

𝑗 ∪ 𝑆(𝑝 𝑗) if 𝑗 > 0 ∧ 𝑂𝑃𝑇 𝑗 − 1 < 𝑣𝑗 + 𝑂𝑃𝑇 𝑝 𝑗

This works with both top-down
(memoization) and bottom-up
approaches.

In this problem, we can do something
simpler: just compute 𝑂𝑃𝑇 first, and
later compute 𝑆 using only 𝑂𝑃𝑇.

Optimal Substructure Property

373F19 - Karan Singh 23

• Dynamic programming applies well to problems
that have optimal substructure property
 Optimal solution to a problem contains (or can be

computed easily given) optimal solution to subproblems.

• Recall: divide-and-conquer also uses this property
 You can think of divide-and-conquer as a special case of

dynamic programming, where the two (or more)
subproblems you need to solve don’t “overlap”

 So there’s no need for memoization

 In dynamic programming, one of the subproblems may in
turn require solution to the other subproblem…

Knapsack Problem

373F19 - Karan Singh 24

• Problem
 𝑛 items: item 𝑖 provides value 𝑣𝑖 > 0 and has weight 𝑤𝑖 > 0

 Knapsack has weight capacity 𝑊

 Assumption: 𝑊, each 𝑣𝑖, and each 𝑤𝑖 is an integer

 Goal: pack the knapsack with a collection of items with
highest total value given that their total weight is at most 𝑊

A First Attempt

373F19 - Karan Singh 25

• Let 𝑂𝑃𝑇(𝑤) = maximum value we can pack with a
knapsack of capacity 𝑤
 Goal: Compute 𝑂𝑃𝑇(𝑊)

 Claim? 𝑂𝑃𝑇(𝑤) must use at least one item 𝑗 with weight ≤
𝑤 and then optimally pack the remaining capacity of 𝑤 − 𝑤𝑗

 Let 𝑤∗ = min
𝑗

𝑤𝑗

 𝑂𝑃𝑇 𝑤 = ቐ
0 if 𝑤 < 𝑤∗

max
𝑗:𝑤𝑗≤𝑤

𝑣𝑗 + 𝑂𝑃𝑇 𝑤 − 𝑤𝑗 if 𝑤 ≥ 𝑤∗

• Why is this wrong?
 It might use an item more than once!

A Refined Attempt

373F19 - Karan Singh 26

• 𝑂𝑃𝑇(𝑖, 𝑤) = maximum value we can pack using
only items 1, … , 𝑖 given capacity 𝑤
 Goal: Compute 𝑂𝑃𝑇(𝑛, 𝑊)

• Consider item 𝑖
 If 𝑤𝑖 > 𝑤, then we can’t choose 𝑖. Just use 𝑂𝑃𝑇(𝑖 − 1, 𝑤)

 If 𝑤𝑖 ≤ 𝑤, there are two cases:
o If we choose 𝑖, the best is 𝑣𝑖 + 𝑂𝑃𝑇 𝑖 − 1, 𝑤 − 𝑤𝑖

o If we don’t choose 𝑖, the best is 𝑂𝑃𝑇(𝑖 − 1, 𝑤)

Running Time

373F19 - Karan Singh 27

• Consider possible evaluations 𝑂𝑃𝑇(𝑖, 𝑤)
 𝑖 ∈ 1, … , 𝑛

 𝑤 ∈ {1, … , 𝑊} (recall weights and capacity are integers)

 There are 𝑂(𝑛 ⋅ 𝑊) possible evaluations of 𝑂𝑃𝑇

 Each is evaluated at most once (memoization)

 Each takes 𝑂(1) time to evaluate

 So the total running time is 𝑂(𝑛 ⋅ 𝑊)

• Q: Is this polynomial in the input size?
 A: No! But it’s pseudo-polynomial.

What if…?

373F19 - Karan Singh 28

• Note that this algorithm runs in polynomial time
when 𝑊 is polynomially bounded in the length of
the input

• Q: What if instead of 𝑊, 𝑤1, … , 𝑤𝑛 being small
integers, we were told that 𝑣1, … , 𝑣𝑛 are small
integers?
 Then we can use a different dynamic programming

approach!

A Different DP

373F19 - Karan Singh 29

• 𝑂𝑃𝑇(𝑖, 𝑣) = minimum capacity needed to pack a
total value of at least 𝑣 using items 1, … , 𝑖
 Goal: Compute max 𝑣 ∈ 1, … , 𝑉 ∶ 𝑂𝑃𝑇 𝑖, 𝑣 ≤ 𝑊

• Consider item 𝑖
 If we choose 𝑖, we need capacity 𝑤𝑖 + 𝑂𝑃𝑇(𝑖 − 1, 𝑣 − 𝑣𝑖)

 If we don’t choose 𝑖, we need capacity 𝑂𝑃𝑇 𝑖 − 1, 𝑣

𝑂𝑃𝑇 𝑖, 𝑣 =

0 if 𝑣 ≤ 0
∞ if 𝑣 > 0, 𝑖 = 0

min
𝑤𝑖 + 𝑂𝑃𝑇 𝑖 − 1, 𝑣 − 𝑣𝑖 ,

𝑂𝑃𝑇 𝑖 − 1, 𝑣
if 𝑣 > 0, 𝑖 > 0

A Different DP

373F19 - Karan Singh 30

• 𝑂𝑃𝑇(𝑖, 𝑣) = minimum capacity needed to pack a
total value of at least 𝑣 using items 1, … , 𝑖
 Goal: Compute max 𝑣 ∈ 1, … , 𝑉 ∶ 𝑂𝑃𝑇 𝑖, 𝑣 ≤ 𝑊

• This approach has running time 𝑂(𝑛 ⋅ 𝑉), where
𝑉 = 𝑣1 + ⋯ + 𝑣𝑛

• So we can get 𝑂(𝑛 ⋅ 𝑊) or 𝑂(𝑛 ⋅ 𝑉)

• Can we remove the dependence on both 𝑉 and 𝑊?
 Not likely. Knapsack problem is NP-complete (we’ll see

later).

Looking Ahead: FPTAS

373F19 - Karan Singh 31

• While we cannot hope to solve the problem exactly
in time 𝑂 𝑝𝑜𝑙𝑦 𝑛, log 𝑊 , log 𝑉 …
 For any 𝜖 > 0, we can get a value that is within 1 + 𝜖

multiplicative factor of the optimal value in time

𝑂 𝑝𝑜𝑙𝑦 𝑛, log 𝑊 , log 𝑉 ,
1

𝜖

 Such algorithms are known as fully polynomial-time
approximation scheme (FPTAS)

 Core idea behind FPTAS for knapsack:
o Approximate all weights and values up to the desired precision

o Solve knapsack on approximate input using DP

Single-Source Shortest Paths

373F19 - Karan Singh 32

• Problem
 Input: A directed graph 𝐺 = (𝑉, 𝐸) with edge lengths ℓ𝑣𝑤

on each edge (𝑣, 𝑤), and a source vertex 𝑠

 Goal: Compute the length of the shortest path from 𝑠 to
every vertex 𝑡

• When ℓ𝑣𝑤 ≥ 0 for each (𝑣, 𝑤)…
 Dijkstra’s algorithm can be used for this purpose

 But it fails when some edge lengths can be negative

 What do we do in this case?

Single-Source Shortest Paths

373F19 - Karan Singh 33

• Cycle length = sum of lengths of edges in the cycle

• If there is a negative length cycle, shortest paths
are not even well defined…
 You can traverse the cycle arbitrarily many times to get

arbitrarily “short” paths

𝑠

Single-Source Shortest Paths

373F19 - Karan Singh 34

• But if there are no negative cycles…
 Shortest paths are well-defined even when some of the

edge lengths may be negative

• Claim: With no negative cycles, there is always a
shortest path from any vertex to any other vertex
that is simple
 Consider the shortest 𝑠 ⇝ 𝑡 path with the fewest edges

among all shortest 𝑠 ⇝ 𝑡 paths

 If it has a cycle, removing the cycle creates a path with
fewer edges that is no longer than the original path

Optimal Substructure Property

373F19 - Karan Singh 35

• Consider a simple shortest 𝑠 ⇝ 𝑡 path 𝑃
 It could be just a single edge

 But if 𝑃 has more than one edges, consider 𝑢 which
immediately precedes 𝑡 in the path

 If 𝑠 ⇝ 𝑡 is shortest, 𝑠 ⇝ 𝑢 must be shortest as well and it
must use one fewer edge than the 𝑠 ⇝ 𝑡 path

𝑡

Optimal Substructure Property

373F19 - Karan Singh 36

• 𝑂𝑃𝑇(𝑡, 𝑖) = shortest path from 𝑠 to 𝑡 using at most 𝑖
edges

• Then:
 Either this path uses at most 𝑖 − 1 edges ⇒ 𝑂𝑃𝑇(𝑡, 𝑖 − 1)

 Or it uses 𝑖 edges ⇒ min
𝑢

𝑂𝑃𝑇 𝑢, 𝑖 − 1 + ℓ𝑢𝑡

𝑡

Optimal Substructure Property

373F19 - Karan Singh 37

• 𝑂𝑃𝑇(𝑡, 𝑖) = shortest path from 𝑠 to 𝑡 using at most 𝑖
edges

• Then:
 Either this path uses at most 𝑖 − 1 edges ⇒ 𝑂𝑃𝑇(𝑡, 𝑖 − 1)
 Or it uses 𝑖 edges ⇒ min

𝑢
𝑂𝑃𝑇 𝑢, 𝑖 − 1 + ℓ𝑢𝑡

𝑂𝑃𝑇 𝑡, 𝑖 = ൞

0
∞

𝑖 = 0 ∨ 𝑡 = 𝑠
𝑖 = 0 ∧ 𝑡 ≠ 𝑠

min 𝑂𝑃𝑇 𝑡, 𝑖 − 1 , min
𝑢

𝑂𝑃𝑇 𝑢, 𝑖 − 1 + ℓ𝑢𝑡 otherwise

 Running time: 𝑂(𝑛2) calls, each takes 𝑂(𝑛) time ⇒ 𝑂 𝑛3

 Q: What do you need to store to also get the actual paths?

Side Notes

373F19 - Karan Singh 38

• Bellman-Ford-
Moore algorithm
 Improvement over

this DP

 Running time
remains 𝑂(𝑚 ⋅ 𝑛) for
𝑛 vertices, 𝑚 edges

 But the space
complexity reduces
to 𝑂(𝑚 + 𝑛)

Maximum Length Paths?

373F19 - Karan Singh 39

• Can we use a similar DP to compute maximum
length paths from 𝑠 to all other vertices?

• This is well defined when there are no positive
cycles, in which case, yes.

• What if there are positive cycles, but we want
maximum length simple paths?

Maximum Length Paths?

373F19 - Karan Singh 40

• What goes wrong?
 Our DP doesn’t work because its path from 𝑠 to 𝑡 might

use a path from 𝑠 to 𝑢 and edge from 𝑢 to 𝑡

 But path from 𝑠 to 𝑢 might in turn go through 𝑡

 The path may no longer remain simple

• In fact, maximum length simple path is NP-hard
 Hamiltonian path problem (i.e. is there a path of length

𝑛 − 1 in a given undirected graph?) is a special case

All-Pairs Shortest Paths

373F19 - Karan Singh 41

• Problem
 Input: A directed graph 𝐺 = (𝑉, 𝐸) with edge lengths ℓ𝑣𝑤

on each edge (𝑣, 𝑤) and no negative cycles

 Goal: Compute the length of the shortest path from all
vertices 𝑠 to all other vertices 𝑡

• Simple idea:
 Run single-source shortest paths from each source 𝑠

 Running time is 𝑂 𝑛4

 Actually, we can do this in 𝑂(𝑛3) as well

All-Pairs Shortest Paths

373F19 - Karan Singh 42

• Problem
 Input: A directed graph 𝐺 = (𝑉, 𝐸) with edge lengths ℓ𝑣𝑤

on each edge (𝑣, 𝑤) and no negative cycles

 Goal: Compute the length of the shortest path from all
vertices 𝑠 to all other vertices 𝑡

• 𝑂𝑃𝑇 𝑢, 𝑣, 𝑘 = length of shortest simple path from
𝑢 to 𝑣 in which intermediate nodes from {1, … , 𝑘}

• Exercise: Write down the recursion formula of 𝑂𝑃𝑇
such that given subsolutions, it requires 𝑂(1) time

• Running time: 𝑂 𝑛3 calls, 𝑂 1 per call ⇒ 𝑂 𝑛3

Chain Matrix Product

373F19 - Karan Singh 43

• Problem
 Input: Matrices 𝑀1, … , 𝑀𝑛 where the dimension of 𝑀𝑖 is

𝑑𝑖−1 × 𝑑𝑖

 Goal: Compute 𝑀1 ⋅ 𝑀2 ⋅ … 𝑀𝑛

• But matrix multiplication is associative
 𝐴 ⋅ 𝐵 ⋅ 𝐶 = 𝐴 ⋅ 𝐵 ⋅ 𝐶

 So isn’t the optimal solution going to call the algorithm
for multiplying two matrices exactly 𝑛 − 1 times?

 Insight: the time it takes to multiply two matrices
depends on their dimensions

Chain Matrix Product

373F19 - Karan Singh 44

• Assume
 We use the brute force approach for matrix multiplication

 So multiplying 𝑝 × 𝑞 and 𝑞 × 𝑟 matrices requires 𝑝 ⋅ 𝑞 ⋅ 𝑟
operations

• Example
 𝑀1 is 5 X 10, 𝑀2 is 10 X 100, and 𝑀3 is 100 X 50

 𝑀1 ⋅ 𝑀2 ⋅ 𝑀3 requires 5 ⋅ 10 ⋅ 100 + 5 ⋅ 100 ⋅ 50 =
30000 ops

 𝑀1 ⋅ 𝑀2 ⋅ 𝑀3 requires 10 ⋅ 100 ⋅ 50 + 5 ⋅ 10 ⋅ 50 =
52500 ops

Chain Matrix Product

373F19 - Karan Singh 45

• Note
 Our input is simply the dimensions 𝑑0, 𝑑1, … , 𝑑𝑛 and not

the actual matrices

• Why is DP right for this problem?
 Optimal substructure property

 Think of the final product computed, say 𝐴 ⋅ 𝐵

 𝐴 is the product of some prefix, 𝐵 is the product of the
remaining suffix

 For the overall optimal computation, each of 𝐴 and 𝐵
should be computed optimally

Chain Matrix Product

373F19 - Karan Singh 46

• 𝑂𝑃𝑇(𝑖, 𝑗) = min ops required to compute 𝑀𝑖 ⋅ … ⋅ 𝑀𝑗

 Here, 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛

 Q: Why do we not just care about prefixes and suffices?
o 𝑀1 ⋅ 𝑀2 ⋅ 𝑀3 ⋅ 𝑀4 ⋅ 𝑀5 ⇒ need to know optimal solution for

𝑀2 ⋅ 𝑀3 ⋅ 𝑀4

 Running time: 𝑂 𝑛2 calls, 𝑂(𝑛) time per call ⇒ 𝑂 𝑛3

𝑂𝑃𝑇 𝑖, 𝑗 = ൝
0 𝑖 = 𝑗

min 𝑂𝑃𝑇 𝑖, 𝑘 + 𝑂𝑃𝑇 𝑘 + 1, 𝑗 + 𝑑𝑖−1𝑑𝑘𝑑𝑗 ∶ 𝑖 ≤ 𝑘 < 𝑗 if 𝑖 < 𝑗

Chain Matrix Product

373F19 - Karan Singh 47

• Can we do better?
 Surprisingly, yes. But not by a DP algorithm (that I know of)

 Hu & Shing (1981) developed 𝑂(𝑛 log 𝑛) time algorithm by
reducing chain matrix product to the problem of
“optimally” triangulating a regular polygon

Source: Wikipedia

Example
• 𝐴 is 10 × 30, 𝐵 is 30 × 5, 𝐶 is 5 × 60
• The cost of each triangle is the product

of its vertices
• Want to minimize total cost of all

triangles

This slide is not in the
scope of the course

