CSC373

Week 3: Dynamic Programming

Karan Singh

Recap

* Greedy Algorithms
> Interval scheduling
» Interval partitioning
> Minimizing lateness
> Huffman encoding

>

373F19 - Karan Singh

5.4 Warning: Greed is Stupid

If we’re very very very very lucky, we can bypass all the recurrences and tables and so forth, and solve the
problem using a greedy algorithm. The general greedy strategy is look for the best first step, take it, and
then continue. While this approach seems very natural, it almost never works; optimization problems
that can be solved correctly by a greedy algorithm are very rare. Nevertheless, for many problems that
should be solved by dynamic programming, many students’ first intuition is to apply a greedy strategy.

For example, a greedy algorithm for the edit distance problem might look for the longest common
substring of the two strings, match up those substrings (since those substitutions don’t cost anything),
and then recursively look for the edit distances between the left halves and right halves of the strings.
If there is no common substring—that is, if the two strings have no characters in common—the edit
distance is clearly the length of the larger string. If this sounds like a stupid hack to you, pat yourself on
the back. It isn’t even close to the correct solution.

Everyone should tattoo the following sentence on the back of their hands, right under all the rules
about logarithms and big-Oh notation:

Greedy algorithms never work!

Use dynamic programming instead!

What, never?
No, never!

What, never? . .
Well. . . hardly ever.® Jeff Erickson on greedy algorithms...

373F19 - Karan Singh 3

The 1950s were not good years for mathematical research.
We had a very interesting gentleman in Washington named
Wilson. He was secretary of Defense, and he actually had a
pathological fear and hatred of the word ‘research’. I’'m not
using the term lightly; I’'m using it precisely. His face would
suffuse, he would turn red, and he would get violent if
people used the term ‘research’ in his presence. You can
imagine how he felt, then, about the term ‘mathematical’.
The RAND Corporation was employed by the Air Force, and
the Air Force had Wilson as its boss, essentially. Hence, | felt
I had to do something to shield Wilson and the Air Force
from the fact that | was really doing mathematics inside the
RAND Corporation. What title, what name, could | choose?

— Richard Bellman, on the origin of his term ‘dynamic
programming’ (1984)

Richard Bellman’s quote from Jeff Erickson’s book

373F19 - Karan Singh 4

Dynamic Programming

e Qutline

> Breaking the problem down into simpler subproblems,
solve each subproblem just once, and store their
solutions.

> The next time the same subproblem occurs, instead of
recomputing its solution, simply look up its previously
computed solution.

> Hopefully, we save a lot of computation at the expense of
modest increase in storage space.

> Also called “memoization”

* How is this different from divide & conquer?

373F19 - Karan Singh 5

EUROGRAPHICS Workshop on Sketch-Based Interfaces and Modeling (2008)

C. Alvarado and M.- P. Cani (Editors)

Sketching Piecewise Clothoid Curves

J. McCrae and K. Singh

Dynamic Graphics Project, University of Toronto, Canada

Abstract

We present a novel approach to sketching 2D curves with minimally varying curvature as piecewise clothoids.
A stable and efficient algorithm fits a sketched piecewise linear curve using a number of clothoid segments with
G continuity based on a specified error tolerance. Further, adjacent clothoid segments can be locally blended to
result in a G curve with curvature that predominantly varies linearly with arc length. We also handle intended
sharp corners or G' discontinuities, as independent rotations of clothoid pieces. Our formulation is ideally suited

to conceptual design applications where aesthetic fairness of the sketched curve takes precedence over the precise
interpolation of geometric constraints. We show the effectiveness of our results within a system for sketch-based

road and robot-vehicle path design, where clothoids are already widely used.

Categories and Subject Descriptors (according to ACM CCS): 1.3.3 [Computer Graphics]: Line and Curve Genera-

tion

1. Introduction

Curves are ubiquitous in Computer Graphics, as primitives
to construct shape or define shape features, as strokes for
sketch-based interaction and rendering or as paths for navi-
gation and animation. Motivated originally by curve and sur-
face design for engineering applications, complex shapes are
typically represented in a piecewise manner, by smoothly
joining primitive shapes (see Figure 1). Traditionally, re-
search on curve primitives has focused on parametric poly-
nomial representations defined using a set of geometric con-
straints, such as Bezier or NURBS curves [Far90]. Such
curves have a compact, analytically smooth representation
and possess many attractive properties for curve and surface
design. Increased computing power, however, has made less
efficient curve primitives like the clothoid a feasible alter-
native for interactive design. Dense piecewise linear repre-
sentations of continuous curves have also become increas-
ingly popular. Desirable geometric properties, however, are
not intrinsically captured by these polylines but need to be
imposed by the curve creation and editing techniques used
[GBS03, TBSR04, CS04].

An important curve design property is fairness [FRSW87,
qSzL.89, M592], which attempts to capture the visual aes-
thetic of a curve. Fairness is closely related to how lit-
tle and how smoothly a curve bends [MS92] and for pla-
nar curves, described as curvature continuous curves with a

73F19 - Karan Singh

dathaid \/‘_\

circular arc

f

curvature|

arclength —

Figure 1: A curve composed of clothoids, line and circular-
are segments.

small number of segments of almost piecewise linear curva-
ture [FRSWR7].

The family of curves whose curvature varies linearly with
arc-length were described by Euler in 1774 in connection
with a coiled spring held taut horizontally with a weight at
its extremity. Studied in various contexts in science and en-
gineering, such a curve is also referred to as an Euler spi-
ral, Cornu spiral, linarc, lince or clothoid (see Figure 2).

(A

—
arc-length

7

—
arc-length

S~

\/

—
arc-length

=

N/

—
arc-length

Weighted Interval Scheduling
(Problem)

> Job j starts at time s; and finishes at time f;

> Each job j has a weight w;
> Two jobs are compatible if they don’t overlap
> Goal: find a set S of mutually compatible jobs with highest

\ total weight . ;s W; /

* Recall: If all w; = 1, then this is simply the interval
scheduling problem from last week

> Greedy algorithm based on earliest finish time ordering was
optimal for this case

373F19 - Karan Singh 7

Recall: Interval Scheduling

* What if we simply try to use it again?
> Fails spectacularly!

weight = 999 ——— b
weight = 1
weight=1 —— a //
' ‘ » time
0 1 2 3 = 5 6 7 8 9 10 11

373F19 - Karan Singh 8

Weighted Interval Scheduling

* What if we use other orderings?
> By weight: choose jobs with highest w; first
> Maximum weight per time: choose jobs with highest
w;/(f; — sj) first
> .

* None of them work!
» They’re arbitrarily worse than the optimal solution

> In fact, under a certain formalization, “no greedy
algorithm” can produce any “decent approximation” in the
worst case (beyond this course!)

373F19 - Karan Singh 9

Weighted Interval Scheduling

e Convention

> Jobs are sorted by finish time: f; < f, < - < f,
> plj] = largest index i < j such that job i is compatible

with job j (i.e. f; < s;)

1

373F19 - Karan Singh

0 1 2 3 4 5 6 7 3

Among jobs before

job j, the ones
compatible with it
are precisely 1 ...1

E.g.
p8] =1
pl7] =3,

» time p[z] = 0

Weighted Interval Scheduling

* The DP approach
> Let OPT be an optimal solution

> Two cases regarding job n:
o Option 1: Jobnis in OPT
e Can’t use incompatible jobs {p[n] + 1, ...,n — 1}
* Must select optimal subset of jobs from {1, ..., p[n]}
o Option 2:Job n is not in OPT
* Must select optimal subset of jobs from {1, ..., n — 1}

> OPT is best of both

> Note: In both cases, knowing how to solve any prefix of
our ordering is enough solve the overall problem

373F19 - Karan Singh

Weighted Interval Scheduling

* The DP approach

> OPT(j) = maximum value from compatible jobs in {1, ..., j}
> Base case: OPT(0) =0

> Two cases regarding job j:
o Job j is selected: optimal value is w; + OPT (p[j])
o Job j is not selected: optimal value is OPT(j — 1)

> OPT (j) is best of both worlds
> Bellman equation:

OPT(i 0 ifj=0
() = max{OPT (j — 1), w; + OPT(p[j1)} ifj>0

373F19 - Karan Singh

Brute Force Solution

BRUTE-FORCE (1, S1, ..., Sn, f15 «evs fu, W1, ooy Wh)

A
=

Sort jobs by finish time and renumber so that fi < f» < ..
Compute p[1], p[2], ..., p[n] via binary search.

RETURN COMPUTE-OPT(n).

COMPUTE-OPT(j)

IF (j = 0)
RETURN O.
ELSE

RETURN max {COMPUTE-OPT(j—1), w; + COMPUTE-OPT(p[j]) }.

373F19 - Karan Singh 13

Brute Force Solution

COMPUTE-OPT(J)

IF (j = 0)
RETURN 0.
ELSE

RETURN max {COMPUTE-OPT(j—1), w; + COMPUTE-OPT(p[j]) }.

* Q: Worst-case running time of ComputeOPT(n)?
a) O(n)
by O(nlogn)
o 0(1.618")
a 02"

373F19 - Karan Singh

Brute Force Solution

* Brute force running time
> It is possible that p(j) = j — 1 for each j
> Then, we call ComputeOPT(j — 1) twice in ComputeOPT(j)
> So this might take 2™ steps

» But we can just check if j is compatible with j — 1, and if
so, only execute the part where we select j

> Now the worst case is where p(j) = j — 2 for each j
> Running time: T(n) =T(n—1) + T(n — 2)

o Fibonacci, golden ratio, ... ©

373F19 - Karan Singh

Dynamic Programming

* Why is the runtime high?

> Some solutions are being computed many, many times

o E.g.if p(5) = 3, then ComputeOPT(5) might call ComputeOPT(4)
and ComputeOPT(3)

o But ComputeOPT(4) might in tern call ComputeOPT(3)

* Memoization trick

> Simply remember what you’ve already computed, and re-
use the answer if needed in future

373F19 - Karan Singh

Dynamic Program: Top-Down

* Let’s store ComputeOPT(j) in M[j]

TOP-DOWNQ@E, S15ccn5 8 f15 wus s MWiswmss W)

Sort jobs by finish time and renumber so that fi < f» < ... < fa.
Compute p[1], p[2], ..., p[n] via binary search.

M[O] « (), «— global array

RETURN M-COMPUTE-OPT(n).

M-COMPUTE-OPT()

IF (M][j] 1s uninitialized)
M[j] <= max { M-COMPUTE-OPT (j—1), w; + M-COMPUTE-OPT(p[j]) }.

RETURN M|[j].

373F19 - Karan Singh

Dynamic Program: Top-Down

* Claim: This memoized version takes O(nlogn) time
> Sorting jobs takes O(nlogn)

> It also takes O (nlogn) to do n binary searches to
compute p(j) for each j

» M-Compute-OPT(j) is called at most once for each j

» Each such call takes O(1) time, not considering the time
taken by any subroutine calls

> So M-Compute-OPT(n) takes only O(n) time

> Overall time is O(nlogn)

373F19 - Karan Singh

Dynamic Program: Bottom-Up

* Find an order in which to call the functions so that
the sub-solutions are ready when needed

BOTTOM-UP(7, S1, ...y Sns f15 cvvs fr1s Wiy ooey W)

Sort jobs by finish time and renumber so that f1 < f» < ...

A
Py

Compute p[l1],pl[2], ..., pln].

M|0] < 0. previously computed values

FORj=1TOn / \

MIjl < max { M[j—11, w; + MIp[j1l }.

373F19 - Karan Singh

Top-Down vs Bottom-Up

* Top-Down may be preferred...

> ...when not all sub-solutions need to be computed on
some inputs

> ...because one does not need to think of the “right order”
in which to compute sub-solutions

* Bottom-Up may be preferred...

> ...when all sub-solutions will anyway need to be
computed

> ...because it is sometimes faster as it prevents recursive
call overheads and unnecessary random memory
accesses

373F19 - Karan Singh

Optimal Solution

* This approach gave us the optimal value

* What about the actual solution (subset of jobs)?

> Typically, this is done by maintaining the optimal value
and an optimal solution for each subproblem

» SO, we compute two quantities:
OPT(i 0 ifj=0
O = \max{oPT(- 1), v, + OPT@ID} ifj > 0

S() =
) ifj =0

] SG—1) ifj>0A0PT(j—1) = v; + OPT(p[j])

\{j} US(pljl) ifj>0A0PT(j—1) <wv;+ OPT(pljD

373F19 - Karan Singh

Optimal Solution

0 ifj =0

OPT() = max{OPT(j — 1),v; + OPT(p[j])} ifj >0

5() =

) ifj =0
] SG—1) ifj>0A0PT(j—1)=v;+ OPT(p[j])
\{j} US(plj) ifj>0A0PT(j—1) <wv;+ OPT(pljD

This works with both top-down In this problem, we can do something
(memoization) and bottom-up simpler: just compute OPT first, and
approaches. later compute S using only OPT.

373F19 - Karan Singh

Optimal Substructure Property

* Dynamic programming applies well to problems
that have optimal substructure property

> Optimal solution to a problem contains (or can be
computed easily given) optimal solution to subproblems.

* Recall: divide-and-conquer also uses this property

> You can think of divide-and-conquer as a special case of
dynamic programming, where the two (or more)
subproblems you need to solve don’t “overlap”

» So there’s no need for memoization

> In dynamic programming, one of the subproblems may in
turn require solution to the other subproblem...

373F19 - Karan Singh

Knapsack Problem
(Problem)

» n items: item i provides value v; > 0 and has weight w; > 0
> Knapsack has weight capacity W
» Assumption: W, each v;, and each w; is an integer

> Goal: pack the knapsack with a collection of items with
\ highest total value given that their total weight is at most I/Iy

i Vi Wi
< >
- 1 $1 1kg
2 $6 2kg
< 3 $18 S5kg
.j 4 $22 6 kg
5 $28 7 kg

knapsack instance
(weight limit W = 11)

_reative Commons Attribution-Share Alike 2.5

373F19 - Karan Singh

A First Attempt

* Let OPT (w) = maximum value we can pack with a
knapsack of capacity w
» Goal: Compute OPT (W)
> Claim? OPT (w) must use at least one item j with weight <

w and then optimally pack the remaining capacity of w — w;

> Lletw™ = mjin w;

(0 ifw<w”

> OPT(W) =1 max v + OPT(w —w;) ifw=w"

Jiwisw
\ J

* Why is this wrong?
> It might use an item more than once!

373F19 - Karan Singh

A Refined Attempt

* OPT(i,w) = maximum value we can pack using
only items 1, ..., [given capacity w
> Goal: Compute OPT (n,W)

* Consider item i
> If w; > w, then we can’t choose i. Just use OPT (i — 1, w)

> If w; < w, there are two cases:
o If we choose i, the bestis v; + OPT(i — 1,w — w;)
o If we don’t choose i, the bestis OPT (i — 1,w)

(0 if i =0
OPT(i,w) = ¢ OPT(i—1,w) if w; > w
| max { OPT(i — 1,w), v; + OPT(i — 1w —w;) } otherwise

373F19 - Karan Singh

Running Time

* Consider possible evaluations OPT (i, w)
>i €{1,..,n}
»w € {1, ..., W} (recall weights and capacity are integers)
> There are O(n - W) possible evaluations of OPT
> Each is evaluated at most once (memoization)
> Each takes O(1) time to evaluate
> So the total running timeis O(n - W)

* Q: Is this polynomial in the input size?
> A: No! But it’s pseudo-polynomial.

373F19 - Karan Singh

What if...?

* Note that this algorithm runs in polynomial time
when W is polynomially bounded in the length of
the input

* Q: What if instead of W, wy, ..., w,, being small
integers, we were told that vy, ..., v,, are small
integers?

> Then we can use a different dynamic programming
approach!

373F19 - Karan Singh

A Different DP

* OPT(i,v) =

minimum capacity needed to pack a

total value of at least v using items 1, ..., i
> Goal: Compute max{v € {1, ...,V}: OPT(i,v) < W}

e Consider item i

> |If we choos
> If we don’t

OPT(i,v) = ¢

e i, we need capacity w; + OPT(i — 1,v — v;)
choose i, we need capacity OPT(i — 1,v)

(0 ifv <0
00 ifr>0,i=0

OPT(i — 1,v)

373F19 - Karan Singh

min{wi-l_OPT(l_l'v_vi)'} ifvr>0,i>0
\

A Different DP

* OPT(i,v) = minimum capacity needed to pack a
total value of at least v using items 1, ..., i
> Goal: Compute max{v € {1, ...,V}: OPT(i,v) < W}
* This approach has running time O(n - V), where
V=v+--+v,

*SowecangetO(n-W)orO(n-V)

* Can we remove the dependence on both V and IW/?

> Not likely. Knapsack problem is NP-complete (we’ll see
later).

373F19 - Karan Singh

Looking Ahead: FPTAS

* While we cannot hope to solve the problem exactly
in time O(poly(n,logW ,logV)) ...

» For any € > 0, we can get a value that is within 1 + €
multiplicative factor of the optimal value in time

1
0, (poly (n, logW, logV,E))
> Such algorithms are known as fully polynomial-time

approximation scheme (FPTAS)
> Core idea behind FPTAS for knapsack:

o Approximate all weights and values up to the desired precision
o Solve knapsack on approximate input using DP

373F19 - Karan Singh

Single-Source Shortest Paths

(. Problem A
> Input: A directed graph ¢ = (V, E') with edge lengths £,
on each edge (v,w), and a source vertex s

> Goal: Compute the length of the shortest path from s to
\ every vertex t /

* When 4, = 0 for each (v, w)...

> Dijkstra’s algorithm can be used for this purpose
> But it fails when some edge lengths can be negative
> What do we do in this case?

373F19 - Karan Singh

Single-Source Shortest Paths

* Cycle length = sum of lengths of edges in the cycle

* If there is a negative length cycle, shortest paths
are not even well defined...

> You can traverse the cycle arbitrarily many times to get
arbitrarily “short” paths

(s) Q 0

W

t((w) =0

373F19 - Karan Singh

Single-Source Shortest Paths

e But if there are no negative cycles...

> Shortest paths are well-defined even when some of the
edge lengths may be negative

* Claim: With no negative cycles, there is always a
shortest path from any vertex to any other vertex
that is simple

> Consider the shortest s «» t path with the fewest edges
among all shortest s w t paths

> If it has a cycle, removing the cycle creates a path with
fewer edges that is no longer than the original path

373F19 - Karan Singh

Optimal Substructure Property

e Consider a simple shortest s w» t path P

> It could be just a single edge

> But if P has more than one edges, consider u which
immediately precedes t in the path

> If s w» tis shortest, s w u must be shortest as well and it
must use one fewer edge than the s w» t path

P
CNAVAVAVAVAVAVAVAVAVAVAVAVAVAVAV. .

373F19 - Karan Singh

Optimal Substructure Property

* OPT(t,i) = shortest path from s to t using at most i
edges

* Then:
> Either this path uses at mosti — 1 edges = OPT(t,i — 1)
> Orituses i edges = min OPT(u,i — 1) + £;
u

CNAVAVAVAVAVAVAVAVAVAVAVAVAVAVAV. .

v

u

373F19 - Karan Singh

Optimal Substructure Property

* OPT(t, 1) = shortest path from s to t using at most i
edges

* Then:
> Either this path uses at mosti — 1 edges = OPT(t,i — 1)
> Orituses i edges = min OPT(u,i — 1) + £;
u

(0 i=0Vt=s
OPT(t,i) = < 0 i=0At#s
\min {OPT(t,i — 1), minOPT(u,i — 1) + €ut} otherwise
u

> Running time: 0(n?) calls, each takes O(n) time = 0(n3)
> Q: What do you need to store to also get the actual paths?

373F19 - Karan Singh

Side Notes

e Bellman-Ford-
Moore algorithm

> Improvement over
this DP

» Running time
remains O(m - n) for
n vertices, m edges

> But the space

complexity reduces
toO(m+n)

373F19 - Karan Singh

1955 on*) Shimbel

1956 O(m > W) Ford

1958 O(m n) Bellman, Moore

1983 Om** mlog W) Gabow

1989 O(m n'” log(nW)) Gabow-Tarjan

1993 O(m n'? log W) Goldberg

2005 O(n** W) Sankowsi, Yuster-Zwick
2016 O™ log W) Cohen-Madry-Sankowski-Vladu
20xx ?)?_),

single-source shortest paths with weights between -W and W

Maximum Length Paths?

e Can we use a similar DP to compute maximum
length paths from s to all other vertices?

* This is well defined when there are no positive
cycles, in which case, yes.

 What if there are positive cycles, but we want
maximum length simple paths?

373F19 - Karan Singh

Maximum Length Paths?

* What goes wrong?

> Our DP doesn’t work because its path from s to t might
use a path from s tou and edge fromu tot

> But path from s to u might in turn go through ¢t
» The path may no longer remain simple

* In fact, maximum length simple path is NP-hard

> Hamiltonian path problem (i.e. is there a path of length
n — 1 in a given undirected graph?) is a special case

373F19 - Karan Singh

All-Pairs Shortest Paths
/°Prob|em)

> Input: A directed graph ¢ = (V, E') with edge lengths £,
on each edge (v, w) and no negative cycles

> Goal: Compute the length of the shortest path from all
\ vertices s to all other vertices t /

e Simple idea:
> Run single-source shortest paths from each source s
> Running time is 0 (n*)
> Actually, we can do this in 0(n3) as well

373F19 - Karan Singh

All-Pairs Shortest Paths
/°Prob|em)

> Input: A directed graph ¢ = (V, E') with edge lengths £,
on each edge (v, w) and no negative cycles

> Goal: Compute the length of the shortest path from all
\ vertices s to all other vertices t /

* OPT(u, v, k) = length of shortest simple path from
u to v in which intermediate nodes from {1, ..., k}

e Exercise: Write down the recursion formula of OPT
such that given subsolutions, it requires O(1) time

* Running time: 0(n3) calls, O(1) per call = 0(n3)

373F19 - Karan Singh

Chain Matrix Product

@

N\

Problem

» Input: Matrices My, ..., M,, where the dimension of M; is
di—1 X d;
> Goal: Compute M; - M, - ... M,

But matrix multiplication is associative

>A-(B-C)=(A-B)-C

> So isn’t the optimal solution going to call the algorithm
for multiplying two matrices exactly n — 1 times?

> Insight: the time it takes to multiply two matrices
depends on their dimensions

373F19 - Karan Singh

Chain Matrix Product

* Assume
> We use the brute force approach for matrix multiplication

» So multiplying p X g and g X r matrices requiresp - q - r
operations

* Example
> My is 5 X 10, M, is 10 X 100, and M, is 100 X 50
> (M; - M,) - M5 requires5-10-100+5-100-50 =
30000 ops
> My - (M, - M3) requires 10 - 100 - 50+ 510 - 50 =
52500 ops

373F19 - Karan Singh

Chain Matrix Product

* Note

» Our input is simply the dimensions d,, d4, ..., d,; and not
the actual matrices

* Why is DP right for this problem?

> Optimal substructure property
> Think of the final product computed, say A - B

> A is the product of some prefix, B is the product of the
remaining suffix

> For the overall optimal computation, each of A and B
should be computed optimally

373F19 - Karan Singh

Chain Matrix Product

* OPT(i,j) = min ops required to compute M; - ...- M;
>»Here, 1<i<j<n
> Q: Why do we not just care about prefixes and suffices?

e (M1 - (M, - M5 - M4)) - Mz = need to know optimal solution for
M2 * M3 ° M4

N 0 L=]
OPT@.)) = min{OPT (i, k) + OPT(k + 1,j) + d;_qdpd; 1 i <k <j} ifi<j

> Running time: 0(n?) calls, O(n) time per call = 0(n3)

373F19 - Karan Singh

Chaln MatrlX PrOduct This slide is not in the

scope of the course

e Can we do better?

> Surprisingly, yes. But not by a DP algorithm (that | know of)

> Hu & Shing (1981) developed O (nlogn) time algorithm by
reducing chain matrix product to the problem of
“optimally” triangulating a regular polygon

Source: Wikipedia

Example

e Ais10x30,Bis30x5,Cis5x 60

* The cost of each triangle is the product
of its vertices

Polygon Palygon * Want to minimize total cost of all
representation of representation of triangles
(AB)C A(BC)

373F19 - Karan Singh

