CSC373

Week 2: Greedy Algorithms

Karan Singh

Recap

* Divide & Conquer
» Master theorem
» Counting inversions in O (n logn)
> Finding closest pair of points in R? in O(nlogn)
> Fast integer multiplication in O(nh’g2 3)
> Fast matrix multiplication in O(nlogz 7)

> Finding k" smallest element (in particular, median) in
0(n)

373F19 - Karan Singh 2

Greedy Algorithms

e Greedy (also known as myopic) algorithm outline

> We want to find a solution x that maximizes some
objective function f

> But the space of possible solutions x is too large

> The solution x is typically composed of several parts (e.g.
X may be a set, composed of its elements)

> Instead of directly computing x...
o Compute it one part at a time

o Select the next part “greedily” to get maximum immediate benefit
(this needs to be defined carefully for each problem)

o May not be optimal because there is no foresight
o But sometimes this can be optimal too!

373F19 - Karan Singh 3

Interval Scheduling
"o

Problem
> Job j starts at time s; and finishes at time f;

> Two jobs are compatible if they don’t overlap
> Goal: find maximum-size subset of mutually compatible jobs

J

_

time

373F19 - Karan Singh 4

Interval Scheduling

* Greedy template
> Consider jobs in some “natural” order

> Take each job if it’s compatible with the ones already
chosen

I”

* What order?
> Earliest start time: ascending order of s;
> Earliest finish time: ascending order of f;
> Shortest interval: ascending order of f; — s;

> Fewest conflicts: ascending order of ¢;, where ¢; is the
number of remaining jobs that conflict with j

373F19 - Karan Singh 5

Example

Earliest start time: ascending order of s;

Earliest finish time: ascending order offj

Shortest interval: ascending order of f; — s;

Fewest conflicts: ascending order of ¢;, where ¢; is the number of
remaining jobs that conflict with j

time
0 1 2 3 4 5] 7 3 9 10 11

373F19 - Karan Singh 6

Interval Scheduling

e Does it work? Counterexamples for

earliest start time

shortest interval

o fewest conflicts

373F19 - Karan Singh

Interval Scheduling

* Implementing greedy with earliest finish time (EFT)
> Sort jobs by finish time.Say f; < f, < -+ < f,

» When deciding whether job j should be included, we
need to check whether it’s compatible with all previously
added jobs
o We only need to checkif s; = f;, where i" is the last added job
o This is because for any jobs i added before i, f; < f;

o So we can simply store and maintain the finish time of the last
added job

> Running time: O(nlogn)

373F19 - Karan Singh 8

Interval Scheduling

* Optimality of greedy with EFT
> Suppose for contradiction that greedy is not optimal
» Say greedy selects jobs iy, i5, ..., I sorted by finish time

» Consider the optimal solution j4, j,, ..., i, (also sorted by
finish time) which matches greedy for as long as possible

o Thatis, we want j; = iy, ..., J, = [, for greatest possible r

job i, finishes before j..,

}

rel

Greedy:

iy i i i

-
>

OPT: b i i . R

373F19 - Karan Singh 9

Interval SCheduling Another standard

method is induction

* Optimality of greedy with EFT
» Bothi,.1 and j,q were compatible with the previous
selection (iy = jq1, «e, Iy = J;)
» Consider the solutlon 11, L, ey Uy L 10 Jr 2y woos Jm
o It should still be feasible (since f; .. < f; . .)

o Itis still optimal
o And it matches with greedy for one more step (contradiction!)

job i, finishes before j..,

}

rel

Greedy: i i i i

-
>

OPT: b i I . R

373F19 - Karan Singh

[nterval Partitioning
/°Problem A

> Job j starts at time s; and finishes at time f;
> Two jobs are compatible if they don’t overlap

> Goal: group jobs into fewest partitions such that jobs in
\ the same partition are compatible /

* One idea

» Find the maximum compatible set using the previous
greedy EFT algorithm, call it one partition, recurse on the
remaining jobs.

> Doesn’t work (check by yourselves)

373F19 - Karan Singh

[nterval Partitioning

* Think of scheduling lectures for various courses
into as few classrooms as possible

* This schedule uses 4 classrooms for scheduling 10

lectures
4 e J
3 C d g

1 a f i

9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30 3 3:30 4 4:30 time

373F19 - Karan Singh

[nterval Partitioning

* Think of scheduling lectures for various courses
into as few classrooms as possible

* This schedule uses 3 classrooms for scheduling 10
lectures

9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30 3 3:30 4 4:30 time

373F19 - Karan Singh

[nterval Partitioning

* Let’s go back to the greedy template!
> Go through lectures in some “natural” order

> Assign each lecture to a compatible classroom (which?),
and create a new classroom if the lecture conflicts with
every existing classroom

* Order of lectures?
> Earliest start time: ascending order of s;
> Earliest finish time: ascending order of f;
> Shortest interval: ascending order of f; — s;

> Fewest conflicts: ascending order of ¢;, where ¢; is the
number of remaining jobs that conflict with j

373F19 - Karan Singh

[nterval Partitioning

counterexample for earliest finish time

e At least when you
. assign each lecture to
2 . .
] an arbitrary feasible
classroom, three of
counterexample for shortest interval these heuriStiCS dO not

3 work.
2

[e The fourth one works!

(next slide)

counterexample for fewest conflicts

373F19 - Karan Singh

[nterval Partitioning

EARLIESTSTARTTIMEFIRST(7, $1, $2, ..., $n, f1, f2, ..., fn)

SORT lectures by start time so thats; < 52 < ... < s
d «— () <= number of allocated classrooms
FOR j=1TO n
IF lecture ;j 1s compatible with some classroom
Schedule lecture j 1in any such classroom £.
ELSE
Allocate a new classroom d + 1.
Schedule lecture j 1n classroom d + 1.
d—d +1

RETURN schedule.

373F19 - Karan Singh

[nterval Partitioning

* Running time
> Key step: check if the next lecture can be scheduled at
some classroom
> Store classrooms in a priority queue
o key = finish time of its last lecture
> Is lecture j compatible with some classroom?
o Same as “Is s; at least as large as the minimum key?”

o If yes: add lecture j to classroom k with minimum key, and
increase its key to f;

o Otherwise: create a new classroom, add lecture j, set key to f]
> 0 (n) priority queue operations, O(nlogn) time

373F19 - Karan Singh

[nterval Partitioning

* Proof of optimality (lower bound)

> # classrooms needed = maximum “depth” at any point
o depth = number of lectures running at that time

> We now show that our greedy algorithm uses only these
many classrooms!

depth = 3

9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30 3 3:30 4 4:30 time

373F19 - Karan Singh

[nterval Partitioning

* Proof of optimality (upper bound)
> Let d = # classrooms used by greedy

> Classroom d was opened because there was a schedule j
which was incompatible with some lectures already
scheduled in each of d — 1 other classrooms

> All these d lectures end after s;
> Since we sorted by start time, they all start at/before s;

> So at time s;, we have d overlapping lectures
> Hence, depth > d

> So all schedules use = d classrooms.

> QED!

373F19 - Karan Singh

Interval Graphs

* Interval scheduling and interval partitioning can be
seen as graph problems

* Input
> Graph G = (V, E)
> Vertices V = jobs/lectures
> Edge (i,j) € E if jobs i and j are incompatible

* Interval scheduling = maximum independent set
(MIS)

* Interval partitioning = graph colouring

373F19 - Karan Singh

Interval Graphs

* MIS and graph colouring are NP-hard for general
graphs

* But they’re efficiently solvable for interval graphs

> Interval graphs = graphs which can be obtained from
incompatibility of intervals

> In fact, this holds even when we are not given an interval
representation of the graph
e Can we extend this result further? /
> Yes! Chordal graphs

o Every cycle with 4 or more vertices has a chord

373F19 - Karan Singh

Minimizing Lateness

KProbIem \

> We have a single machine

> Each job j requires t; units of time and is due by time d;
> If it’s scheduled to start at s, it will finish at f] =Sj +t
> Lateness: £; = maX{O,fj — dj}

> Goal: minimize the maximum lateness, L = max ¢;

J
\> Total lateness minimization is NP-complete /

e Contrast with interval scheduling
> We can decide the start time
> All jobs must be scheduled on a single machine

373F19 - Karan Singh

Minimizing Lateness

* Example

1203456
3 2 | 4 3 2
n 6 8 9 9 14 15

Input

An example schedule

lateness = 2 lateness = 0 max lateness =6
d3=9 d2=8 d5=|5 d]=6 d5=]4 d4=9
>
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

373F19 - Karan Singh

Minimizing Lateness

* Let’s go back to greedy template
> Consider jobs one-by-one in some “natural” order

> Schedule jobs in this order (nothing special to do here,
since we have to schedule all jobs and there is only one
machine available)

IH

 Natural orders?

> Shortest processing time first: ascending order of
processing time t;

> Earliest deadline first: ascending order of due time d;
> Smallest slack first: ascending order of d; — t;

373F19 - Karan Singh

Minimizing Lateness

* Counterexamples

> Shortest processing time first
o Ascending order of processing time ¢;

> Smallest slack first
o Ascending order of d; — t;

373F19 - Karan Singh

Minimizing Lateness

* By now, you EARLIESTDEADLINEFIRST(7, f1, 2, ..., ta, d1, d2, ..., dn)

should
know | .

) SORT n jobs so thatd; < d>» < ... < dh.
what’s)
coming... an

FOR j=1TO n
Assign job j to interval [7. t +1;].
* We'll prove G 11 fe—i+h

that earliest R

. J
deadline

RETURN intervals [s1, 1], [s2, 2], ..., [sn ful.

first works!

373F19 - Karan Singh

Minimizing Lateness

* Observation 1
> There is an optimal schedule with no idle time

d=4 d=6 d=12

0 1 2 3 4 5 6 7 8 9 10 11 g
d=4 d=06 d=12

0 1 2 3 4 5 6 7 8 9 10 1 "

373F19 - Karan Singh

Minimizing Lateness

 Observation 2
> Earliest deadline first has no idle time

* Let us define an “inversion”
> (i,j) such that d; < d; but j is scheduled before i

* Observation 3
> By definition, earliest deadline first has no inversions

 Observation 4

> |If a schedule with no idle time has an inversion, it has a
pair of inverted jobs scheduled consecutively

373F19 - Karan Singh

Minimizing Lateness

* Claim
> Swapping adjacently scheduled inverted jobs doesn’t
increase lateness but reduces #inversions by one
* Proof
> Let £ and £’ denote lateness before/after swap
> Clearly, £, = £} forallk # i,
> Also, clearly, ¢; < ¢;

inversion

J;

: |

b

373F19 - Karan Singh

Minimizing Lateness

* Claim
> Swapping adjacently scheduled inverted jobs doesn’t
increase lateness but reduces #inversions by one
* Proof
>€]'-=fj’—dj=fi—diji—di=£i

> L' = max {f{fj’ max f;{} < max{fi,fi, max #k} <L
kK#i,j k#Li,j

inversion

: |

b

J;

373F19 - Karan Singh

Minimizing Lateness

* Proof of optimality of earliest deadline first
> Suppose for contradiction that it’s not optimal

> Consider an optimal schedule S* which has fewest inversions
among all optimal schedules
o We can assume it has no idle time
o If $* has zero inversions, it’s exactly earliest deadline first
o So assume S* has at least one inversion
o So it must have an adjacent inversion (i, j)

o But swapping these jobs doesn’t increase lateness (so new schedule
stays optimal) and reduces the number of inversions by 1

o Contradiction given that S* has fewest inversions among all optimal
schedules.

o QED!

373F19 - Karan Singh

Lossless Compression

. Problem A
> We have a document that is written using n distinct labels
> Naive encoding: represent each label using k = log n bits

s If the document has length m, this uses mlogn bits)

> Say for English documents with no punctuations etc, we
have n = 26, so we can use 5 bits.

o a = 00000
o b =00001
oc =00010

od=00011
O ...

373F19 - Karan Singh

Lossless Compression

* Is this optimal?
> What if a, e, 7, s are much more frequent in the
document than x, g, z?

> Can we assign shorter codes to more frequent letters?

* Say we assign...
»>a=0,b=1,c=01,..
> See a problem?

o What if we observe the encoding ‘01’?
o Isit ‘ab’? Orisit c’?

373F19 - Karan Singh

Lossless Compression

* To avoid conflicts, we need prefix-free encoding

> Map each label x to a bit-string c(x) such that for all
distinct labels x and y, c(x) is not a prefix of c(y)

> Then it’s impossible to have a scenario like this

c(y)
> So we can read left to right, find the first point where it
becomes a valid encoding, decode the label, and continue

373F19 - Karan Singh

Lossless Compression

/°Forma| problem A

> Given n symbols and their frequencies (w4, ..., w,,), find a
prefix-free encoding with lengths (£, ..., £,,) assigned to
the symbols which minimizes Y/, w; - ¢;

o Note that)/, w; - £; is the length of the compressed document

J

_

* Example
> (Wq, Wp, W, Wy, We, Wr) = (42,20,5,10,11,12)
> No need to remember the numbers ©

373F19 - Karan Singh

Lossless Compression

* Observation: prefix-free encoding = tree

a—0,e— 100,
f — 101, c - 1100,
d—> 1101, - 111

373F19 - Karan Singh

Lossless Compression

* Huffman Coding

> Build a priority queue by adding (x, w,.) for each symbol x

> While |queue|= 2
o Take the two symbols with the lowest weight (x, wy) and (y, wy,)
o Merge them into one symbol with weight w, + w,,

* Let’s see this on the previous example

373F19 - Karan Singh

Lossless Compression

s Jaofein J ez foofaie

4
Iz mm

Lossless Compression

e m e
i m

Lossless Compression

TPty

373F19 - Karan Singh

Lossless Compression

373F19 - Karan Singh

Lossless Compression

373F19 - Karan Singh

Lossless Compression

* Final Outcome

a—0,e— 100,
f — 101, ¢ - 1100,
d—> 1101, - 111

373F19 - Karan Singh

Lossless Compression

* Running time
> O0(nlogn)
> Can be made O(n) if the labels are given to you sorted by
their frequencies

* Proof of optimality
> Induction on the number of symbols n

> Base case: Forn = 2, there are only two possible
encodings, both are optimal, assign 1 bit to each symbol

> Hypothesis: Assume it returns an optimal encoding with
n — 1 symbols

373F19 - Karan Singh

Lossless Compression

* Proof of optimality
> Consider the case of n symbols

> Lemma 1: If w, < w,, then £, = £, in any optimal tree.

o Proof sketch: Otherwise, swapping x and y would strictly reduce
the overall length (exercise!).
> Lemma 2: There is an optimal tree T in which the two
least frequent symbols are siblings.

o Proof sketch: First prove that they must have the same longest
length assigned to them. Then, if they’re not siblings, chop and
rearrange the tree to make them siblings (exercise!).

> Now, we can compare the tree H produced by Huffman
vs such an optimal tree T

373F19 - Karan Singh

Lossless Compression

* Proof of optimality
> Let x and y be the two least frequency symbols
> In Huffman, we combine them in the first step into “xy”

> Let H and T’ be trees obtained from H and T by treating
xy as one symbol with frequency w, + w,,

> Use induction hypothesis: Length(H') < Length(T")
> Length(H) = Length(H") + (Wx + Wy) -1

> Length(T) = Length(T') + (Wx + Wy) -1

> QED!

373F19 - Karan Singh

Other Greedy Algorithms

* If you aren’t familiar with the following algorithms,
spend some time checking them out!
> Dijkstra’s shortest path algorithm
> Kruskal and Prim’s minimum spanning tree algorithms

373F19 - Karan Singh

