
CSC373

Week 2: Greedy Algorithms

373F19 - Karan Singh 1

Karan Singh

Recap

373F19 - Karan Singh 2

• Divide & Conquer
 Master theorem

 Counting inversions in 𝑂(𝑛 log 𝑛)

 Finding closest pair of points in ℝ2 in 𝑂 𝑛 log 𝑛

 Fast integer multiplication in 𝑂 𝑛log2 3

 Fast matrix multiplication in 𝑂 𝑛log2 7

 Finding 𝑘𝑡ℎ smallest element (in particular, median) in
𝑂(𝑛)

Greedy Algorithms

373F19 - Karan Singh 3

• Greedy (also known as myopic) algorithm outline
 We want to find a solution 𝑥 that maximizes some

objective function 𝑓

 But the space of possible solutions 𝑥 is too large

 The solution 𝑥 is typically composed of several parts (e.g.
𝑥 may be a set, composed of its elements)

 Instead of directly computing 𝑥…
o Compute it one part at a time

o Select the next part “greedily” to get maximum immediate benefit
(this needs to be defined carefully for each problem)

o May not be optimal because there is no foresight

o But sometimes this can be optimal too!

Interval Scheduling

373F19 - Karan Singh 4

• Problem
 Job 𝑗 starts at time 𝑠𝑗 and finishes at time 𝑓𝑗
 Two jobs are compatible if they don’t overlap

 Goal: find maximum-size subset of mutually compatible jobs

Interval Scheduling

373F19 - Karan Singh 5

• Greedy template
 Consider jobs in some “natural” order

 Take each job if it’s compatible with the ones already
chosen

• What order?
 Earliest start time: ascending order of 𝑠𝑗
 Earliest finish time: ascending order of 𝑓𝑗
 Shortest interval: ascending order of 𝑓𝑗 − 𝑠𝑗
 Fewest conflicts: ascending order of 𝑐𝑗, where 𝑐𝑗 is the

number of remaining jobs that conflict with 𝑗

Example

373F19 - Karan Singh 6

• Earliest start time: ascending order of 𝑠𝑗

• Earliest finish time: ascending order of 𝑓𝑗

• Shortest interval: ascending order of 𝑓𝑗 − 𝑠𝑗

• Fewest conflicts: ascending order of 𝑐𝑗, where 𝑐𝑗 is the number of
remaining jobs that conflict with 𝑗

Interval Scheduling

373F19 - Karan Singh 7

• Does it work?

earliest start time

Counterexamples for

shortest interval

fewest conflicts

Interval Scheduling

373F19 - Karan Singh 8

• Implementing greedy with earliest finish time (EFT)
 Sort jobs by finish time. Say 𝑓1 ≤ 𝑓2 ≤ ⋯ ≤ 𝑓𝑛
 When deciding whether job 𝑗 should be included, we

need to check whether it’s compatible with all previously
added jobs
o We only need to check if 𝑠𝑗 ≥ 𝑓𝑖∗, where 𝑖∗ is the last added job

o This is because for any jobs 𝑖 added before 𝑖∗, 𝑓𝑖 ≤ 𝑓𝑖∗

o So we can simply store and maintain the finish time of the last
added job

 Running time: 𝑂 𝑛 log 𝑛

Interval Scheduling

373F19 - Karan Singh 9

• Optimality of greedy with EFT
 Suppose for contradiction that greedy is not optimal

 Say greedy selects jobs 𝑖1, 𝑖2, … , 𝑖𝑘 sorted by finish time

 Consider the optimal solution 𝑗1, 𝑗2, … , 𝑗𝑚 (also sorted by
finish time) which matches greedy for as long as possible
o That is, we want 𝑗1 = 𝑖1, … , 𝑗𝑟 = 𝑖𝑟 for greatest possible 𝑟

Interval Scheduling

373F19 - Karan Singh 10

• Optimality of greedy with EFT
 Both 𝑖𝑟+1 and 𝑗𝑟+1 were compatible with the previous

selection (𝑖1 = 𝑗1, … , 𝑖𝑟 = 𝑗𝑟)

 Consider the solution 𝑖1, 𝑖2, … , 𝑖𝑟 , 𝑖𝑟+1, 𝑗𝑟+2, … , 𝑗𝑚
o It should still be feasible (since 𝑓𝑖𝑟+1 ≤ 𝑓𝑗𝑟+1)

o It is still optimal

o And it matches with greedy for one more step (contradiction!)

Another standard
method is induction

Interval Partitioning

373F19 - Karan Singh 11

• Problem
 Job 𝑗 starts at time 𝑠𝑗 and finishes at time 𝑓𝑗
 Two jobs are compatible if they don’t overlap

 Goal: group jobs into fewest partitions such that jobs in
the same partition are compatible

• One idea
 Find the maximum compatible set using the previous

greedy EFT algorithm, call it one partition, recurse on the
remaining jobs.

 Doesn’t work (check by yourselves)

Interval Partitioning

373F19 - Karan Singh 12

• Think of scheduling lectures for various courses
into as few classrooms as possible

• This schedule uses 4 classrooms for scheduling 10
lectures

Interval Partitioning

373F19 - Karan Singh 13

• Think of scheduling lectures for various courses
into as few classrooms as possible

• This schedule uses 3 classrooms for scheduling 10
lectures

Interval Partitioning

373F19 - Karan Singh 14

• Let’s go back to the greedy template!
 Go through lectures in some “natural” order

 Assign each lecture to a compatible classroom (which?),
and create a new classroom if the lecture conflicts with
every existing classroom

• Order of lectures?
 Earliest start time: ascending order of 𝑠𝑗
 Earliest finish time: ascending order of 𝑓𝑗
 Shortest interval: ascending order of 𝑓𝑗 − 𝑠𝑗
 Fewest conflicts: ascending order of 𝑐𝑗, where 𝑐𝑗 is the

number of remaining jobs that conflict with 𝑗

Interval Partitioning

373F19 - Karan Singh 15

• At least when you
assign each lecture to
an arbitrary feasible
classroom, three of
these heuristics do not
work.

• The fourth one works!
(next slide)

Interval Partitioning

373F19 - Karan Singh 16

Interval Partitioning

373F19 - Karan Singh 17

• Running time
 Key step: check if the next lecture can be scheduled at

some classroom

 Store classrooms in a priority queue
o key = finish time of its last lecture

 Is lecture 𝑗 compatible with some classroom?
o Same as “Is 𝑠𝑗 at least as large as the minimum key?”

o If yes: add lecture 𝑗 to classroom 𝑘 with minimum key, and
increase its key to 𝑓𝑗

o Otherwise: create a new classroom, add lecture 𝑗, set key to 𝑓𝑗

 𝑂(𝑛) priority queue operations, 𝑂(𝑛 log 𝑛) time

Interval Partitioning

373F19 - Karan Singh 18

• Proof of optimality (lower bound)
 # classrooms needed ≥ maximum “depth” at any point
o depth = number of lectures running at that time

 We now show that our greedy algorithm uses only these
many classrooms!

Interval Partitioning

373F19 - Karan Singh 19

• Proof of optimality (upper bound)
 Let 𝑑 = # classrooms used by greedy

 Classroom 𝑑 was opened because there was a schedule 𝑗
which was incompatible with some lectures already
scheduled in each of 𝑑 − 1 other classrooms

 All these 𝑑 lectures end after 𝑠𝑗
 Since we sorted by start time, they all start at/before 𝑠𝑗
 So at time 𝑠𝑗, we have 𝑑 overlapping lectures

 Hence, depth ≥ 𝑑

 So all schedules use ≥ 𝑑 classrooms.

 QED!

Interval Graphs

373F19 - Karan Singh 20

• Interval scheduling and interval partitioning can be
seen as graph problems

• Input
 Graph 𝐺 = (𝑉, 𝐸)

 Vertices 𝑉 = jobs/lectures

 Edge 𝑖, 𝑗 ∈ 𝐸 if jobs 𝑖 and 𝑗 are incompatible

• Interval scheduling = maximum independent set
(MIS)

• Interval partitioning = graph colouring

Interval Graphs

373F19 - Karan Singh 21

• MIS and graph colouring are NP-hard for general
graphs

• But they’re efficiently solvable for interval graphs
 Interval graphs = graphs which can be obtained from

incompatibility of intervals

 In fact, this holds even when we are not given an interval
representation of the graph

• Can we extend this result further?
 Yes! Chordal graphs
o Every cycle with 4 or more vertices has a chord

Minimizing Lateness

373F19 - Karan Singh 22

• Problem
 We have a single machine
 Each job 𝑗 requires 𝑡𝑗 units of time and is due by time 𝑑𝑗
 If it’s scheduled to start at 𝑠𝑗, it will finish at 𝑓𝑗 = 𝑠𝑗 + 𝑡𝑗
 Lateness: ℓ𝑗 = max 0, 𝑓𝑗 − 𝑑𝑗
 Goal: minimize the maximum lateness, 𝐿 = max

𝑗
ℓ𝑗

 Total lateness minimization is NP-complete

• Contrast with interval scheduling
 We can decide the start time
 All jobs must be scheduled on a single machine

Minimizing Lateness

373F19 - Karan Singh 23

• Example

Input

An example schedule

Minimizing Lateness

373F19 - Karan Singh 24

• Let’s go back to greedy template
 Consider jobs one-by-one in some “natural” order

 Schedule jobs in this order (nothing special to do here,
since we have to schedule all jobs and there is only one
machine available)

• Natural orders?
 Shortest processing time first: ascending order of

processing time 𝑡𝑗
 Earliest deadline first: ascending order of due time 𝑑𝑗
 Smallest slack first: ascending order of 𝑑𝑗 − 𝑡𝑗

Minimizing Lateness

373F19 - Karan Singh 25

• Counterexamples

 Shortest processing time first
o Ascending order of processing time 𝑡𝑗

 Smallest slack first
o Ascending order of 𝑑𝑗 − 𝑡𝑗

Minimizing Lateness

373F19 - Karan Singh 26

• By now, you
should
know
what’s
coming…

• We’ll prove
that earliest
deadline
first works!

Minimizing Lateness

373F19 - Karan Singh 27

• Observation 1
 There is an optimal schedule with no idle time

Minimizing Lateness

373F19 - Karan Singh 28

• Observation 2
 Earliest deadline first has no idle time

• Let us define an “inversion”
 𝑖, 𝑗 such that 𝑑𝑖 < 𝑑𝑗 but 𝑗 is scheduled before 𝑖

• Observation 3
 By definition, earliest deadline first has no inversions

• Observation 4
 If a schedule with no idle time has an inversion, it has a

pair of inverted jobs scheduled consecutively

Minimizing Lateness

373F19 - Karan Singh 29

• Claim
 Swapping adjacently scheduled inverted jobs doesn’t

increase lateness but reduces #inversions by one

• Proof
 Let ℓ and ℓ′ denote lateness before/after swap

 Clearly, ℓ𝑘 = ℓ𝑘
′ for all 𝑘 ≠ 𝑖, 𝑗

 Also, clearly, ℓ𝑖
′ ≤ ℓ𝑖

Minimizing Lateness

373F19 - Karan Singh 30

• Claim
 Swapping adjacently scheduled inverted jobs doesn’t

increase lateness but reduces #inversions by one

• Proof
 ℓ𝑗

′ = 𝑓𝑗
′ − 𝑑𝑗 = 𝑓𝑖 − 𝑑𝑗 ≤ 𝑓𝑖 − 𝑑𝑖 = ℓ𝑖

 𝐿′ = max ℓ𝑖
′, ℓ𝑗

′, max
𝑘≠𝑖,𝑗

ℓ𝑘
′ ≤ max ℓ𝑖 , ℓ𝑖 , max

𝑘≠𝑖,𝑗
ℓ𝑘 ≤ 𝐿

Minimizing Lateness

373F19 - Karan Singh 31

• Proof of optimality of earliest deadline first
 Suppose for contradiction that it’s not optimal

 Consider an optimal schedule 𝑆∗ which has fewest inversions
among all optimal schedules
o We can assume it has no idle time

o If 𝑆∗ has zero inversions, it’s exactly earliest deadline first

o So assume 𝑆∗ has at least one inversion

o So it must have an adjacent inversion (𝑖, 𝑗)

o But swapping these jobs doesn’t increase lateness (so new schedule
stays optimal) and reduces the number of inversions by 1

o Contradiction given that 𝑆∗ has fewest inversions among all optimal
schedules.

o QED!

Lossless Compression

373F19 - Karan Singh 32

• Problem
 We have a document that is written using 𝑛 distinct labels

 Naïve encoding: represent each label using 𝑘 = log 𝑛 bits

 If the document has length 𝑚, this uses 𝑚 log 𝑛 bits

 Say for English documents with no punctuations etc, we
have 𝑛 = 26, so we can use 5 bits.
o 𝑎 = 00000

o 𝑏 = 00001

o 𝑐 = 00010

o 𝑑 = 00011

o …

Lossless Compression

373F19 - Karan Singh 33

• Is this optimal?
 What if 𝑎, 𝑒, 𝑟, 𝑠 are much more frequent in the

document than 𝑥, 𝑞, 𝑧?

 Can we assign shorter codes to more frequent letters?

• Say we assign…
 𝑎 = 0, 𝑏 = 1, 𝑐 = 01, …

 See a problem?
o What if we observe the encoding ‘01’?

o Is it ‘ab’? Or is it ‘c’?

Lossless Compression

373F19 - Karan Singh 34

• To avoid conflicts, we need prefix-free encoding
 Map each label 𝑥 to a bit-string 𝑐(𝑥) such that for all

distinct labels 𝑥 and 𝑦, 𝑐(𝑥) is not a prefix of 𝑐 𝑦

 Then it’s impossible to have a scenario like this
………………………..

 So we can read left to right, find the first point where it
becomes a valid encoding, decode the label, and continue

𝑐(𝑥)

𝑐(𝑦)

Lossless Compression

373F19 - Karan Singh 35

• Formal problem
 Given 𝑛 symbols and their frequencies (𝑤1, … , 𝑤𝑛), find a

prefix-free encoding with lengths (ℓ1, … , ℓ𝑛) assigned to
the symbols which minimizes σ𝑖=1

𝑛 𝑤𝑖 ⋅ ℓ𝑖
o Note that σ𝑖=1

𝑛 𝑤𝑖 ⋅ ℓ𝑖 is the length of the compressed document

• Example
 (𝑤𝑎, 𝑤𝑏 , 𝑤𝑐 , 𝑤𝑑 , 𝑤𝑒 , 𝑤𝑓) = (42,20,5,10,11,12)

 No need to remember the numbers

Lossless Compression

373F19 - Karan Singh 36

• Observation: prefix-free encoding = tree

𝑎 → 0, 𝑒 → 100,
𝑓 → 101, 𝑐 → 1100,
𝑑 → 1101, 𝑏 → 111

Lossless Compression

373F19 - Karan Singh 37

• Huffman Coding
 Build a priority queue by adding 𝑥,𝑤𝑥 for each symbol 𝑥

 While |queue|≥ 2
o Take the two symbols with the lowest weight (𝑥, 𝑤𝑥) and (𝑦, 𝑤𝑦)

o Merge them into one symbol with weight 𝑤𝑥 + 𝑤𝑦

• Let’s see this on the previous example

Lossless Compression

373F19 - Karan Singh 38

Lossless Compression

373F19 - Karan Singh 39

Lossless Compression

373F19 - Karan Singh 40

Lossless Compression

373F19 - Karan Singh 41

Lossless Compression

373F19 - Karan Singh 42

Lossless Compression

373F19 - Karan Singh 43

• Final Outcome

𝑎 → 0, 𝑒 → 100,
𝑓 → 101, 𝑐 → 1100,
𝑑 → 1101, 𝑏 → 111

Lossless Compression

373F19 - Karan Singh 44

• Running time
 𝑂(𝑛 log 𝑛)

 Can be made 𝑂(𝑛) if the labels are given to you sorted by
their frequencies

• Proof of optimality
 Induction on the number of symbols 𝑛

 Base case: For 𝑛 = 2, there are only two possible
encodings, both are optimal, assign 1 bit to each symbol

 Hypothesis: Assume it returns an optimal encoding with
𝑛 − 1 symbols

Lossless Compression

373F19 - Karan Singh 45

• Proof of optimality
 Consider the case of 𝑛 symbols

 Lemma 1: If 𝑤𝑥 < 𝑤𝑦, then ℓ𝑥 ≥ ℓ𝑦 in any optimal tree.
o Proof sketch: Otherwise, swapping 𝑥 and 𝑦 would strictly reduce

the overall length (exercise!).

 Lemma 2: There is an optimal tree 𝑇 in which the two
least frequent symbols are siblings.
o Proof sketch: First prove that they must have the same longest

length assigned to them. Then, if they’re not siblings, chop and
rearrange the tree to make them siblings (exercise!).

 Now, we can compare the tree 𝐻 produced by Huffman
vs such an optimal tree 𝑇

Lossless Compression

373F19 - Karan Singh 46

• Proof of optimality
 Let 𝑥 and 𝑦 be the two least frequency symbols

 In Huffman, we combine them in the first step into “xy”

 Let 𝐻′ and 𝑇′ be trees obtained from 𝐻 and 𝑇 by treating
𝑥𝑦 as one symbol with frequency 𝑤𝑥 +𝑤𝑦

 Use induction hypothesis: 𝐿𝑒𝑛𝑔𝑡ℎ 𝐻′ ≤ 𝐿𝑒𝑛𝑔𝑡ℎ(𝑇′)

 𝐿𝑒𝑛𝑔𝑡ℎ 𝐻 = 𝐿𝑒𝑛𝑔𝑡ℎ 𝐻′ + 𝑤𝑥 +𝑤𝑦 ⋅ 1

 𝐿𝑒𝑛𝑔𝑡ℎ 𝑇 = 𝐿𝑒𝑛𝑔𝑡ℎ 𝑇′ + 𝑤𝑥 +𝑤𝑦 ⋅ 1

 QED!

Other Greedy Algorithms

373F19 - Karan Singh 47

• If you aren’t familiar with the following algorithms,
spend some time checking them out!
 Dijkstra’s shortest path algorithm

 Kruskal and Prim’s minimum spanning tree algorithms

