
CSC373

Week 2: Greedy Algorithms

373F19 - Karan Singh 1

Karan Singh

Recap

373F19 - Karan Singh 2

• Divide & Conquer
 Master theorem

 Counting inversions in 𝑂(𝑛 log 𝑛)

 Finding closest pair of points in ℝ2 in 𝑂 𝑛 log 𝑛

 Fast integer multiplication in 𝑂 𝑛log2 3

 Fast matrix multiplication in 𝑂 𝑛log2 7

 Finding 𝑘𝑡ℎ smallest element (in particular, median) in
𝑂(𝑛)

Greedy Algorithms

373F19 - Karan Singh 3

• Greedy (also known as myopic) algorithm outline
 We want to find a solution 𝑥 that maximizes some

objective function 𝑓

 But the space of possible solutions 𝑥 is too large

 The solution 𝑥 is typically composed of several parts (e.g.
𝑥 may be a set, composed of its elements)

 Instead of directly computing 𝑥…
o Compute it one part at a time

o Select the next part “greedily” to get maximum immediate benefit
(this needs to be defined carefully for each problem)

o May not be optimal because there is no foresight

o But sometimes this can be optimal too!

Interval Scheduling

373F19 - Karan Singh 4

• Problem
 Job 𝑗 starts at time 𝑠𝑗 and finishes at time 𝑓𝑗
 Two jobs are compatible if they don’t overlap

 Goal: find maximum-size subset of mutually compatible jobs

Interval Scheduling

373F19 - Karan Singh 5

• Greedy template
 Consider jobs in some “natural” order

 Take each job if it’s compatible with the ones already
chosen

• What order?
 Earliest start time: ascending order of 𝑠𝑗
 Earliest finish time: ascending order of 𝑓𝑗
 Shortest interval: ascending order of 𝑓𝑗 − 𝑠𝑗
 Fewest conflicts: ascending order of 𝑐𝑗, where 𝑐𝑗 is the

number of remaining jobs that conflict with 𝑗

Example

373F19 - Karan Singh 6

• Earliest start time: ascending order of 𝑠𝑗

• Earliest finish time: ascending order of 𝑓𝑗

• Shortest interval: ascending order of 𝑓𝑗 − 𝑠𝑗

• Fewest conflicts: ascending order of 𝑐𝑗, where 𝑐𝑗 is the number of
remaining jobs that conflict with 𝑗

Interval Scheduling

373F19 - Karan Singh 7

• Does it work?

earliest start time

Counterexamples for

shortest interval

fewest conflicts

Interval Scheduling

373F19 - Karan Singh 8

• Implementing greedy with earliest finish time (EFT)
 Sort jobs by finish time. Say 𝑓1 ≤ 𝑓2 ≤ ⋯ ≤ 𝑓𝑛
 When deciding whether job 𝑗 should be included, we

need to check whether it’s compatible with all previously
added jobs
o We only need to check if 𝑠𝑗 ≥ 𝑓𝑖∗, where 𝑖∗ is the last added job

o This is because for any jobs 𝑖 added before 𝑖∗, 𝑓𝑖 ≤ 𝑓𝑖∗

o So we can simply store and maintain the finish time of the last
added job

 Running time: 𝑂 𝑛 log 𝑛

Interval Scheduling

373F19 - Karan Singh 9

• Optimality of greedy with EFT
 Suppose for contradiction that greedy is not optimal

 Say greedy selects jobs 𝑖1, 𝑖2, … , 𝑖𝑘 sorted by finish time

 Consider the optimal solution 𝑗1, 𝑗2, … , 𝑗𝑚 (also sorted by
finish time) which matches greedy for as long as possible
o That is, we want 𝑗1 = 𝑖1, … , 𝑗𝑟 = 𝑖𝑟 for greatest possible 𝑟

Interval Scheduling

373F19 - Karan Singh 10

• Optimality of greedy with EFT
 Both 𝑖𝑟+1 and 𝑗𝑟+1 were compatible with the previous

selection (𝑖1 = 𝑗1, … , 𝑖𝑟 = 𝑗𝑟)

 Consider the solution 𝑖1, 𝑖2, … , 𝑖𝑟 , 𝑖𝑟+1, 𝑗𝑟+2, … , 𝑗𝑚
o It should still be feasible (since 𝑓𝑖𝑟+1 ≤ 𝑓𝑗𝑟+1)

o It is still optimal

o And it matches with greedy for one more step (contradiction!)

Another standard
method is induction

Interval Partitioning

373F19 - Karan Singh 11

• Problem
 Job 𝑗 starts at time 𝑠𝑗 and finishes at time 𝑓𝑗
 Two jobs are compatible if they don’t overlap

 Goal: group jobs into fewest partitions such that jobs in
the same partition are compatible

• One idea
 Find the maximum compatible set using the previous

greedy EFT algorithm, call it one partition, recurse on the
remaining jobs.

 Doesn’t work (check by yourselves)

Interval Partitioning

373F19 - Karan Singh 12

• Think of scheduling lectures for various courses
into as few classrooms as possible

• This schedule uses 4 classrooms for scheduling 10
lectures

Interval Partitioning

373F19 - Karan Singh 13

• Think of scheduling lectures for various courses
into as few classrooms as possible

• This schedule uses 3 classrooms for scheduling 10
lectures

Interval Partitioning

373F19 - Karan Singh 14

• Let’s go back to the greedy template!
 Go through lectures in some “natural” order

 Assign each lecture to a compatible classroom (which?),
and create a new classroom if the lecture conflicts with
every existing classroom

• Order of lectures?
 Earliest start time: ascending order of 𝑠𝑗
 Earliest finish time: ascending order of 𝑓𝑗
 Shortest interval: ascending order of 𝑓𝑗 − 𝑠𝑗
 Fewest conflicts: ascending order of 𝑐𝑗, where 𝑐𝑗 is the

number of remaining jobs that conflict with 𝑗

Interval Partitioning

373F19 - Karan Singh 15

• At least when you
assign each lecture to
an arbitrary feasible
classroom, three of
these heuristics do not
work.

• The fourth one works!
(next slide)

Interval Partitioning

373F19 - Karan Singh 16

Interval Partitioning

373F19 - Karan Singh 17

• Running time
 Key step: check if the next lecture can be scheduled at

some classroom

 Store classrooms in a priority queue
o key = finish time of its last lecture

 Is lecture 𝑗 compatible with some classroom?
o Same as “Is 𝑠𝑗 at least as large as the minimum key?”

o If yes: add lecture 𝑗 to classroom 𝑘 with minimum key, and
increase its key to 𝑓𝑗

o Otherwise: create a new classroom, add lecture 𝑗, set key to 𝑓𝑗

 𝑂(𝑛) priority queue operations, 𝑂(𝑛 log 𝑛) time

Interval Partitioning

373F19 - Karan Singh 18

• Proof of optimality (lower bound)
 # classrooms needed ≥ maximum “depth” at any point
o depth = number of lectures running at that time

 We now show that our greedy algorithm uses only these
many classrooms!

Interval Partitioning

373F19 - Karan Singh 19

• Proof of optimality (upper bound)
 Let 𝑑 = # classrooms used by greedy

 Classroom 𝑑 was opened because there was a schedule 𝑗
which was incompatible with some lectures already
scheduled in each of 𝑑 − 1 other classrooms

 All these 𝑑 lectures end after 𝑠𝑗
 Since we sorted by start time, they all start at/before 𝑠𝑗
 So at time 𝑠𝑗, we have 𝑑 overlapping lectures

 Hence, depth ≥ 𝑑

 So all schedules use ≥ 𝑑 classrooms.

 QED!

Interval Graphs

373F19 - Karan Singh 20

• Interval scheduling and interval partitioning can be
seen as graph problems

• Input
 Graph 𝐺 = (𝑉, 𝐸)

 Vertices 𝑉 = jobs/lectures

 Edge 𝑖, 𝑗 ∈ 𝐸 if jobs 𝑖 and 𝑗 are incompatible

• Interval scheduling = maximum independent set
(MIS)

• Interval partitioning = graph colouring

Interval Graphs

373F19 - Karan Singh 21

• MIS and graph colouring are NP-hard for general
graphs

• But they’re efficiently solvable for interval graphs
 Interval graphs = graphs which can be obtained from

incompatibility of intervals

 In fact, this holds even when we are not given an interval
representation of the graph

• Can we extend this result further?
 Yes! Chordal graphs
o Every cycle with 4 or more vertices has a chord

Minimizing Lateness

373F19 - Karan Singh 22

• Problem
 We have a single machine
 Each job 𝑗 requires 𝑡𝑗 units of time and is due by time 𝑑𝑗
 If it’s scheduled to start at 𝑠𝑗, it will finish at 𝑓𝑗 = 𝑠𝑗 + 𝑡𝑗
 Lateness: ℓ𝑗 = max 0, 𝑓𝑗 − 𝑑𝑗
 Goal: minimize the maximum lateness, 𝐿 = max

𝑗
ℓ𝑗

 Total lateness minimization is NP-complete

• Contrast with interval scheduling
 We can decide the start time
 All jobs must be scheduled on a single machine

Minimizing Lateness

373F19 - Karan Singh 23

• Example

Input

An example schedule

Minimizing Lateness

373F19 - Karan Singh 24

• Let’s go back to greedy template
 Consider jobs one-by-one in some “natural” order

 Schedule jobs in this order (nothing special to do here,
since we have to schedule all jobs and there is only one
machine available)

• Natural orders?
 Shortest processing time first: ascending order of

processing time 𝑡𝑗
 Earliest deadline first: ascending order of due time 𝑑𝑗
 Smallest slack first: ascending order of 𝑑𝑗 − 𝑡𝑗

Minimizing Lateness

373F19 - Karan Singh 25

• Counterexamples

 Shortest processing time first
o Ascending order of processing time 𝑡𝑗

 Smallest slack first
o Ascending order of 𝑑𝑗 − 𝑡𝑗

Minimizing Lateness

373F19 - Karan Singh 26

• By now, you
should
know
what’s
coming…

• We’ll prove
that earliest
deadline
first works!

Minimizing Lateness

373F19 - Karan Singh 27

• Observation 1
 There is an optimal schedule with no idle time

Minimizing Lateness

373F19 - Karan Singh 28

• Observation 2
 Earliest deadline first has no idle time

• Let us define an “inversion”
 𝑖, 𝑗 such that 𝑑𝑖 < 𝑑𝑗 but 𝑗 is scheduled before 𝑖

• Observation 3
 By definition, earliest deadline first has no inversions

• Observation 4
 If a schedule with no idle time has an inversion, it has a

pair of inverted jobs scheduled consecutively

Minimizing Lateness

373F19 - Karan Singh 29

• Claim
 Swapping adjacently scheduled inverted jobs doesn’t

increase lateness but reduces #inversions by one

• Proof
 Let ℓ and ℓ′ denote lateness before/after swap

 Clearly, ℓ𝑘 = ℓ𝑘
′ for all 𝑘 ≠ 𝑖, 𝑗

 Also, clearly, ℓ𝑖
′ ≤ ℓ𝑖

Minimizing Lateness

373F19 - Karan Singh 30

• Claim
 Swapping adjacently scheduled inverted jobs doesn’t

increase lateness but reduces #inversions by one

• Proof
 ℓ𝑗

′ = 𝑓𝑗
′ − 𝑑𝑗 = 𝑓𝑖 − 𝑑𝑗 ≤ 𝑓𝑖 − 𝑑𝑖 = ℓ𝑖

 𝐿′ = max ℓ𝑖
′, ℓ𝑗

′, max
𝑘≠𝑖,𝑗

ℓ𝑘
′ ≤ max ℓ𝑖 , ℓ𝑖 , max

𝑘≠𝑖,𝑗
ℓ𝑘 ≤ 𝐿

Minimizing Lateness

373F19 - Karan Singh 31

• Proof of optimality of earliest deadline first
 Suppose for contradiction that it’s not optimal

 Consider an optimal schedule 𝑆∗ which has fewest inversions
among all optimal schedules
o We can assume it has no idle time

o If 𝑆∗ has zero inversions, it’s exactly earliest deadline first

o So assume 𝑆∗ has at least one inversion

o So it must have an adjacent inversion (𝑖, 𝑗)

o But swapping these jobs doesn’t increase lateness (so new schedule
stays optimal) and reduces the number of inversions by 1

o Contradiction given that 𝑆∗ has fewest inversions among all optimal
schedules.

o QED!

Lossless Compression

373F19 - Karan Singh 32

• Problem
 We have a document that is written using 𝑛 distinct labels

 Naïve encoding: represent each label using 𝑘 = log 𝑛 bits

 If the document has length 𝑚, this uses 𝑚 log 𝑛 bits

 Say for English documents with no punctuations etc, we
have 𝑛 = 26, so we can use 5 bits.
o 𝑎 = 00000

o 𝑏 = 00001

o 𝑐 = 00010

o 𝑑 = 00011

o …

Lossless Compression

373F19 - Karan Singh 33

• Is this optimal?
 What if 𝑎, 𝑒, 𝑟, 𝑠 are much more frequent in the

document than 𝑥, 𝑞, 𝑧?

 Can we assign shorter codes to more frequent letters?

• Say we assign…
 𝑎 = 0, 𝑏 = 1, 𝑐 = 01, …

 See a problem?
o What if we observe the encoding ‘01’?

o Is it ‘ab’? Or is it ‘c’?

Lossless Compression

373F19 - Karan Singh 34

• To avoid conflicts, we need prefix-free encoding
 Map each label 𝑥 to a bit-string 𝑐(𝑥) such that for all

distinct labels 𝑥 and 𝑦, 𝑐(𝑥) is not a prefix of 𝑐 𝑦

 Then it’s impossible to have a scenario like this
………………………..

 So we can read left to right, find the first point where it
becomes a valid encoding, decode the label, and continue

𝑐(𝑥)

𝑐(𝑦)

Lossless Compression

373F19 - Karan Singh 35

• Formal problem
 Given 𝑛 symbols and their frequencies (𝑤1, … , 𝑤𝑛), find a

prefix-free encoding with lengths (ℓ1, … , ℓ𝑛) assigned to
the symbols which minimizes σ𝑖=1

𝑛 𝑤𝑖 ⋅ ℓ𝑖
o Note that σ𝑖=1

𝑛 𝑤𝑖 ⋅ ℓ𝑖 is the length of the compressed document

• Example
 (𝑤𝑎, 𝑤𝑏 , 𝑤𝑐 , 𝑤𝑑 , 𝑤𝑒 , 𝑤𝑓) = (42,20,5,10,11,12)

 No need to remember the numbers 

Lossless Compression

373F19 - Karan Singh 36

• Observation: prefix-free encoding = tree

𝑎 → 0, 𝑒 → 100,
𝑓 → 101, 𝑐 → 1100,
𝑑 → 1101, 𝑏 → 111

Lossless Compression

373F19 - Karan Singh 37

• Huffman Coding
 Build a priority queue by adding 𝑥,𝑤𝑥 for each symbol 𝑥

 While |queue|≥ 2
o Take the two symbols with the lowest weight (𝑥, 𝑤𝑥) and (𝑦, 𝑤𝑦)

o Merge them into one symbol with weight 𝑤𝑥 + 𝑤𝑦

• Let’s see this on the previous example

Lossless Compression

373F19 - Karan Singh 38

Lossless Compression

373F19 - Karan Singh 39

Lossless Compression

373F19 - Karan Singh 40

Lossless Compression

373F19 - Karan Singh 41

Lossless Compression

373F19 - Karan Singh 42

Lossless Compression

373F19 - Karan Singh 43

• Final Outcome

𝑎 → 0, 𝑒 → 100,
𝑓 → 101, 𝑐 → 1100,
𝑑 → 1101, 𝑏 → 111

Lossless Compression

373F19 - Karan Singh 44

• Running time
 𝑂(𝑛 log 𝑛)

 Can be made 𝑂(𝑛) if the labels are given to you sorted by
their frequencies

• Proof of optimality
 Induction on the number of symbols 𝑛

 Base case: For 𝑛 = 2, there are only two possible
encodings, both are optimal, assign 1 bit to each symbol

 Hypothesis: Assume it returns an optimal encoding with
𝑛 − 1 symbols

Lossless Compression

373F19 - Karan Singh 45

• Proof of optimality
 Consider the case of 𝑛 symbols

 Lemma 1: If 𝑤𝑥 < 𝑤𝑦, then ℓ𝑥 ≥ ℓ𝑦 in any optimal tree.
o Proof sketch: Otherwise, swapping 𝑥 and 𝑦 would strictly reduce

the overall length (exercise!).

 Lemma 2: There is an optimal tree 𝑇 in which the two
least frequent symbols are siblings.
o Proof sketch: First prove that they must have the same longest

length assigned to them. Then, if they’re not siblings, chop and
rearrange the tree to make them siblings (exercise!).

 Now, we can compare the tree 𝐻 produced by Huffman
vs such an optimal tree 𝑇

Lossless Compression

373F19 - Karan Singh 46

• Proof of optimality
 Let 𝑥 and 𝑦 be the two least frequency symbols

 In Huffman, we combine them in the first step into “xy”

 Let 𝐻′ and 𝑇′ be trees obtained from 𝐻 and 𝑇 by treating
𝑥𝑦 as one symbol with frequency 𝑤𝑥 +𝑤𝑦

 Use induction hypothesis: 𝐿𝑒𝑛𝑔𝑡ℎ 𝐻′ ≤ 𝐿𝑒𝑛𝑔𝑡ℎ(𝑇′)

 𝐿𝑒𝑛𝑔𝑡ℎ 𝐻 = 𝐿𝑒𝑛𝑔𝑡ℎ 𝐻′ + 𝑤𝑥 +𝑤𝑦 ⋅ 1

 𝐿𝑒𝑛𝑔𝑡ℎ 𝑇 = 𝐿𝑒𝑛𝑔𝑡ℎ 𝑇′ + 𝑤𝑥 +𝑤𝑦 ⋅ 1

 QED!

Other Greedy Algorithms

373F19 - Karan Singh 47

• If you aren’t familiar with the following algorithms,
spend some time checking them out!
 Dijkstra’s shortest path algorithm

 Kruskal and Prim’s minimum spanning tree algorithms

