CSC373

Week 2: Greedy Algorithms

Karan Singh

Recap

- Divide & Conquer
 - Master theorem
 - > Counting inversions in $O(n \log n)$
 - > Finding closest pair of points in \mathbb{R}^2 in $O(n \log n)$
 - > Fast integer multiplication in $O(n^{\log_2 3})$
 - > Fast matrix multiplication in $O(n^{\log_2 7})$
 - Finding kth smallest element (in particular, median) in O(n)

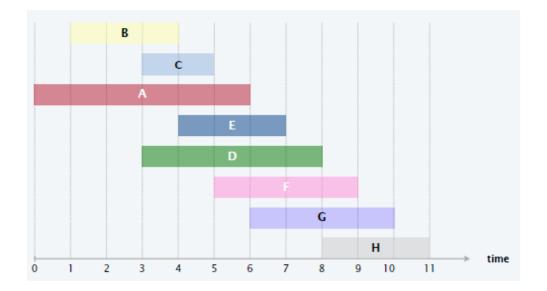
Greedy Algorithms

- Greedy (also known as myopic) algorithm outline
 - We want to find a solution x that maximizes some objective function f
 - But the space of possible solutions x is too large
 - The solution x is typically composed of several parts (e.g. x may be a set, composed of its elements)
 - Instead of directly computing x...
 - $\circ\,$ Compute it one part at a time
 - Select the next part "greedily" to get maximum immediate benefit (this needs to be defined carefully for each problem)
 - $\circ\,$ May not be optimal because there is no foresight
 - \circ But sometimes this can be optimal too!

Problem

- > Job *j* starts at time s_i and finishes at time f_i
- > Two jobs are compatible if they don't overlap

Goal: find maximum-size subset of mutually compatible jobs



Greedy template

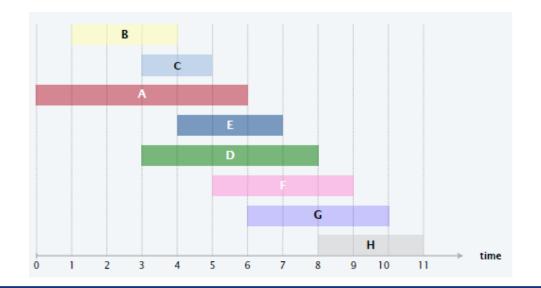
- > Consider jobs in some "natural" order
- Take each job if it's compatible with the ones already chosen

• What order?

- > Earliest start time: ascending order of s_i
- > Earliest finish time: ascending order of f_i
- > Shortest interval: ascending order of $f_j s_j$
- Fewest conflicts: ascending order of c_j, where c_j is the number of remaining jobs that conflict with j

Example

- Earliest start time: ascending order of s_i
- Earliest finish time: ascending order of f_i
- Shortest interval: ascending order of $f_j s_j$
- Fewest conflicts: ascending order of c_j , where c_j is the number of remaining jobs that conflict with j



• Does it work?

- 1				
- 1				

Counterexamples for

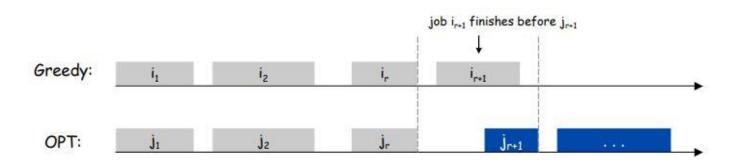
earliest start time

shortest interval

fewest conflicts

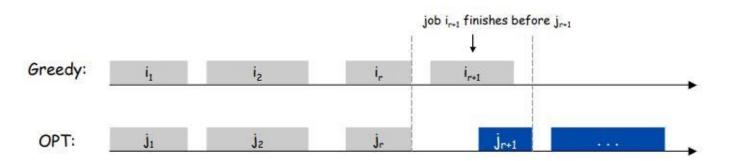
- Implementing greedy with earliest finish time (EFT)
 - \succ Sort jobs by finish time. Say $f_1 \leq f_2 \leq \cdots \leq f_n$
 - > When deciding whether job j should be included, we need to check whether it's compatible with all previously added jobs
 - We only need to check if $s_j \ge f_{i^*}$, where i^* is the *last added job*
 - This is because for any jobs *i* added before i^* , $f_i ≤ f_{i^*}$
 - $\,\circ\,$ So we can simply store and maintain the finish time of the last added job
 - > Running time: $O(n \log n)$

- Optimality of greedy with EFT
 - Suppose for contradiction that greedy is not optimal
 - > Say greedy selects jobs i_1, i_2, \dots, i_k sorted by finish time
 - Consider the optimal solution j₁, j₂, ..., j_m (also sorted by finish time) which matches greedy for as long as possible
 That is, we want j₁ = i₁, ..., j_r = i_r for greatest possible r



Another standard method is induction

- Optimality of greedy with EFT
 - > Both i_{r+1} and j_{r+1} were compatible with the previous selection ($i_1 = j_1, ..., i_r = j_r$)
 - ➤ Consider the solution $i_1, i_2, ..., i_r, i_{r+1}, j_{r+2}, ..., j_m$ It should still be feasible (since $f_{i_{r+1}} \leq f_{j_{r+1}}$)
 - \circ It is still optimal
 - And it matches with greedy for one more step (contradiction!)



• Problem

- > Job *j* starts at time s_j and finishes at time f_j
- > Two jobs are compatible if they don't overlap
- Goal: group jobs into fewest partitions such that jobs in the same partition are compatible

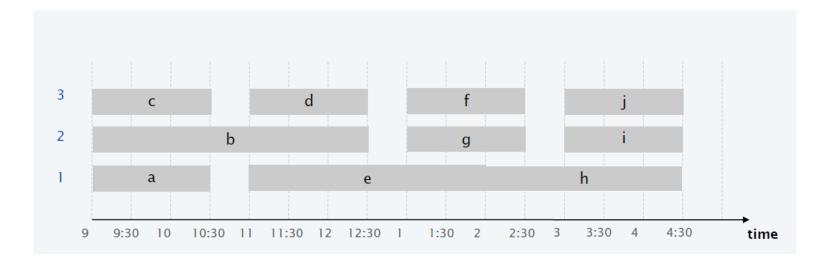
• One idea

- Find the maximum compatible set using the previous greedy EFT algorithm, call it one partition, recurse on the remaining jobs.
- > Doesn't work (check by yourselves)

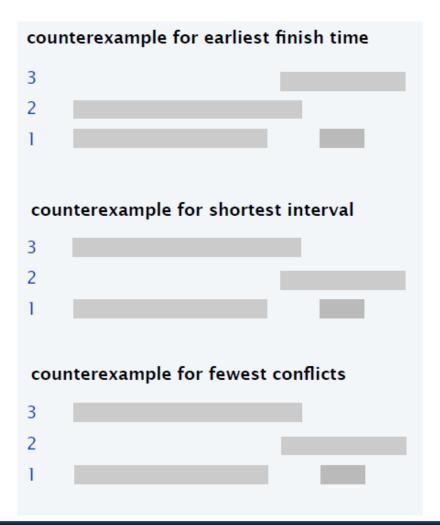
- Think of scheduling lectures for various courses into as few classrooms as possible
- This schedule uses 4 classrooms for scheduling 10 lectures



- Think of scheduling lectures for various courses into as few classrooms as possible
- This schedule uses 3 classrooms for scheduling 10 lectures



- Let's go back to the greedy template!
 - > Go through lectures in some "natural" order
 - > Assign each lecture to a compatible classroom (which?), and create a new classroom if the lecture conflicts with every existing classroom
- Order of lectures?
 - > Earliest start time: ascending order of s_i
 - > Earliest finish time: ascending order of f_i
 - > Shortest interval: ascending order of $f_j s_j$
 - Fewest conflicts: ascending order of c_j, where c_j is the number of remaining jobs that conflict with j



- At least when you assign each lecture to an arbitrary feasible classroom, three of these heuristics do not work.
- The fourth one works! (next slide)

EARLIESTSTARTTIMEFIRST($n, s_1, s_2, ..., s_n, f_1, f_2, ..., f_n$)

SORT lectures by start time so that $s_1 \leq s_2 \leq \ldots \leq s_n$.

 $d \leftarrow 0 \quad \longleftarrow \quad \text{number of allocated classrooms}$

For j = 1 to n

IF lecture j is compatible with some classroom Schedule lecture j in any such classroom k.

Else

Allocate a new classroom d + 1.

Schedule lecture *j* in classroom d + 1.

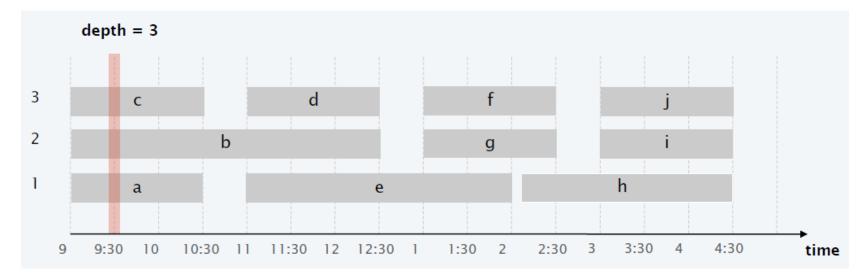
 $d \leftarrow d + 1$

RETURN schedule.

• Running time

- Key step: check if the next lecture can be scheduled at some classroom
- Store classrooms in a priority queue
 - \circ key = finish time of its last lecture
- > Is lecture *j* compatible with some classroom?
 - \circ Same as "Is s_j at least as large as the minimum key?"
 - \circ If yes: add lecture *j* to classroom *k* with minimum key, and increase its key to f_j
 - \circ Otherwise: create a new classroom, add lecture *j*, set key to f_j
- > O(n) priority queue operations, $O(n \log n)$ time

- Proof of optimality (lower bound)
 - > # classrooms needed ≥ maximum "depth" at any point
 depth = number of lectures running at that time
 - > We now show that our greedy algorithm uses only these many classrooms!



- Proof of optimality (upper bound)
 - Let d = # classrooms used by greedy
 - Classroom d was opened because there was a schedule j which was incompatible with some lectures already scheduled in each of d – 1 other classrooms
 - > All these d lectures end after s_i
 - Since we sorted by start time, they all start at/before s_i
 - > So at time s_i , we have d overlapping lectures
 - > Hence, depth $\geq d$
 - > So all schedules use $\geq d$ classrooms.
 - > QED!

Interval Graphs

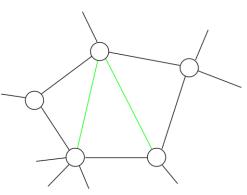
 Interval scheduling and interval partitioning can be seen as graph problems

• Input

- \succ Graph G = (V, E)
- Vertices V = jobs/lectures
- > Edge $(i, j) \in E$ if jobs *i* and *j* are incompatible
- Interval scheduling = maximum independent set (MIS)
- Interval partitioning = graph colouring

Interval Graphs

- MIS and graph colouring are NP-hard for general graphs
- But they're efficiently solvable for interval graphs
 - Interval graphs = graphs which can be obtained from incompatibility of intervals
 - In fact, this holds even when we are not given an interval representation of the graph
- Can we extend this result further?
 - Yes! Chordal graphs
 - $\,\circ\,$ Every cycle with 4 or more vertices has a chord



Problem

- > We have a single machine
- > Each job j requires t_j units of time and is due by time d_j
- > If it's scheduled to start at s_j , it will finish at $f_j = s_j + t_j$
- > Lateness: $\ell_j = \max\{0, f_j d_j\}$
- > Goal: minimize the maximum lateness, $L = \max \ell_j$

> Total lateness minimization is NP-complete

- Contrast with interval scheduling
 - > We can decide the start time
 - > All jobs must be scheduled on a single machine

• Example

		1	2	3	4	5	6	
Input	tj	3	2	1	4	3	2	
	dj	6	8	9	9	14	15	

An example schedule

								laten	ess =	2	I	ateness = (0		max la	teness =	6
								4	1			4				4	
$d_3 = 9$		$d_2 = 8$	($d_6 = 15$		d ₁ =	6			d ₅ =	14			d ₄ = 9			
0	1	2	3	4	5	6	7	8	8	9	10	11	12	13	14	15	•

- Let's go back to greedy template
 - > Consider jobs one-by-one in some "natural" order
 - Schedule jobs in this order (nothing special to do here, since we have to schedule all jobs and there is only one machine available)
- Natural orders?
 - Shortest processing time first: ascending order of processing time t_j
 - > Earliest deadline first: ascending order of due time d_i
 - > Smallest slack first: ascending order of $d_j t_j$

Counterexamples

Shortest processing time first
 Ascending order of processing time t_j

> Smallest slack first \circ Ascending order of $d_j - t_j$

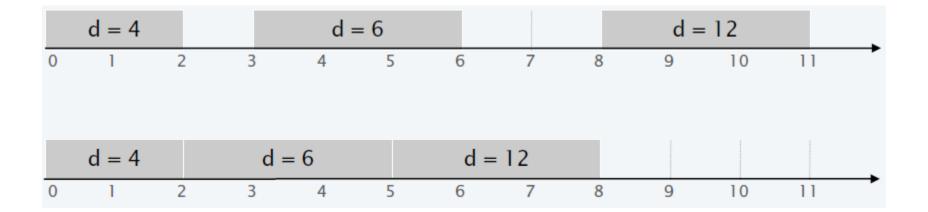
	1	2
tj	1	10
dj	100	10
	1	2
	1	2
tj	1	2 10

- By now, you should know what's coming...
- We'll prove that earliest deadline first works!

EARLIEST DEADLINEFIRST $(n, t_1, t_2, \ldots, t_n, d_1, d_2, \ldots, d_n)$ SORT *n* jobs so that $d_1 \leq d_2 \leq \ldots \leq d_n$. $t \leftarrow 0$ FOR j = 1 TO nAssign job *j* to interval $[t, t+t_i]$. $s_i \leftarrow t; f_i \leftarrow t + t_i$ $t \leftarrow t + t_i$ RETURN intervals $[s_1, f_1]$, $[s_2, f_2]$, ..., $[s_n, f_n]$.

Observation 1

> There is an optimal schedule with no idle time



Observation 2

> Earliest deadline first has no idle time

• Let us define an "inversion"

> (*i*, *j*) such that $d_i < d_j$ but *j* is scheduled before *i*

• Observation 3

> By definition, earliest deadline first has no inversions

• Observation 4

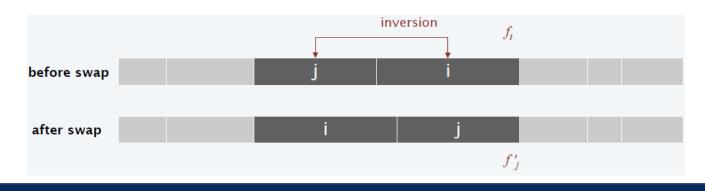
If a schedule with no idle time has an inversion, it has a pair of inverted jobs scheduled consecutively

Claim

Swapping adjacently scheduled inverted jobs doesn't increase lateness but reduces #inversions by one

Proof

- > Let ℓ and ℓ' denote lateness before/after swap
- \succ Clearly, $\ell_k = \ell'_k$ for all $k \neq i, j$
- > Also, clearly, $\ell'_i \leq \ell_i$



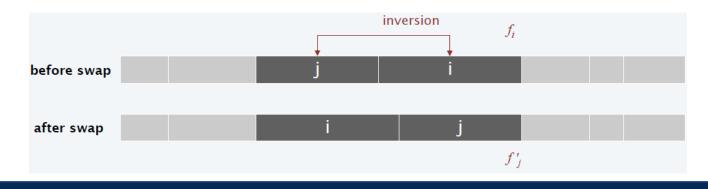
Claim

Swapping adjacently scheduled inverted jobs doesn't increase lateness but reduces #inversions by one

• Proof

$$\ell'_{j} = f'_{j} - d_{j} = f_{i} - d_{j} \leq f_{i} - d_{i} = \ell_{i}$$

$$L' = \max\left\{\ell'_{i}, \ell'_{j}, \max_{k \neq i, j} \ell'_{k}\right\} \leq \max\left\{\ell_{i}, \ell_{i}, \max_{k \neq i, j} \ell_{k}\right\} \leq L$$



- Proof of optimality of earliest deadline first
 - Suppose for contradiction that it's not optimal
 - Consider an optimal schedule S* which has fewest inversions among all optimal schedules
 - $\,\circ\,$ We can assume it has no idle time
 - \circ If S^* has zero inversions, it's exactly earliest deadline first
 - \circ So assume S^* has at least one inversion
 - \circ So it must have an adjacent inversion (i, j)
 - $\,\circ\,$ But swapping these jobs doesn't increase lateness (so new schedule stays optimal) and reduces the number of inversions by 1
 - \circ Contradiction given that S^* has fewest inversions among all optimal schedules.
 - QED!

Problem

- \succ We have a document that is written using n distinct labels
- > Naïve encoding: represent each label using $k = \log n$ bits
- > If the document has length m, this uses $m \log n$ bits
- Say for English documents with no punctuations etc, we have n = 26, so we can use 5 bits.
 - o a = 00000
 - o b = 00001
 - $\circ \, c = 00010$
 - o d = 00011
 - 0 ...

• Is this optimal?

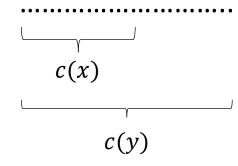
- What if a, e, r, s are much more frequent in the document than x, q, z?
- Can we assign shorter codes to more frequent letters?
- Say we assign...

> See a problem?

• What if we observe the encoding '01'?

 \circ Is it 'ab'? Or is it 'c'?

- To avoid conflicts, we need *prefix-free encoding*
 - Map each label x to a bit-string c(x) such that for all distinct labels x and y, c(x) is not a prefix of c(y)
 - > Then it's impossible to have a scenario like this



So we can read left to right, find the first point where it becomes a valid encoding, decode the label, and continue

Formal problem

> Given *n* symbols and their frequencies $(w_1, ..., w_n)$, find a prefix-free encoding with lengths $(\ell_1, ..., \ell_n)$ assigned to the symbols which minimizes $\sum_{i=1}^n w_i \cdot \ell_i$

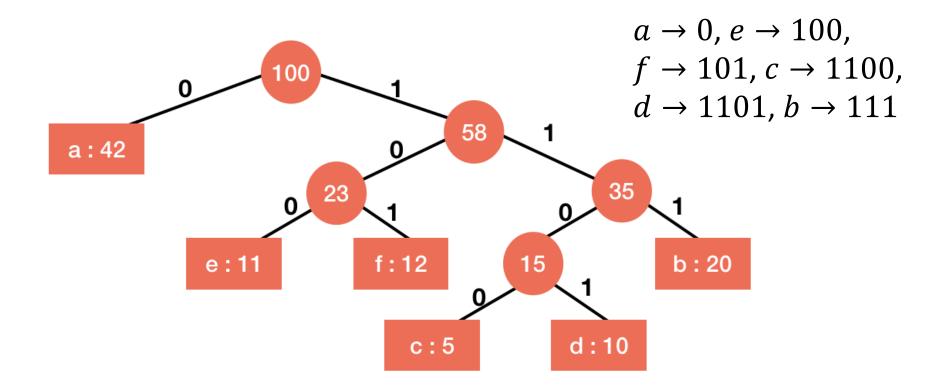
 \circ Note that $\sum_{i=1}^{n} w_i \cdot \ell_i$ is the length of the compressed document

• Example

> $(w_a, w_b, w_c, w_d, w_e, w_f) = (42, 20, 5, 10, 11, 12)$

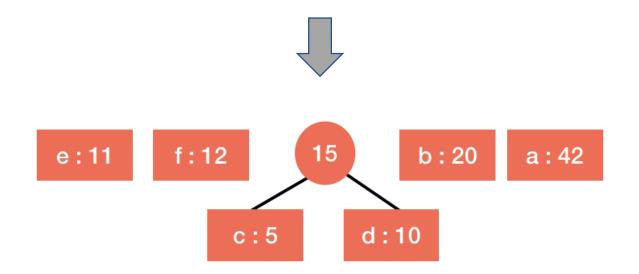
 \succ No need to remember the numbers \odot

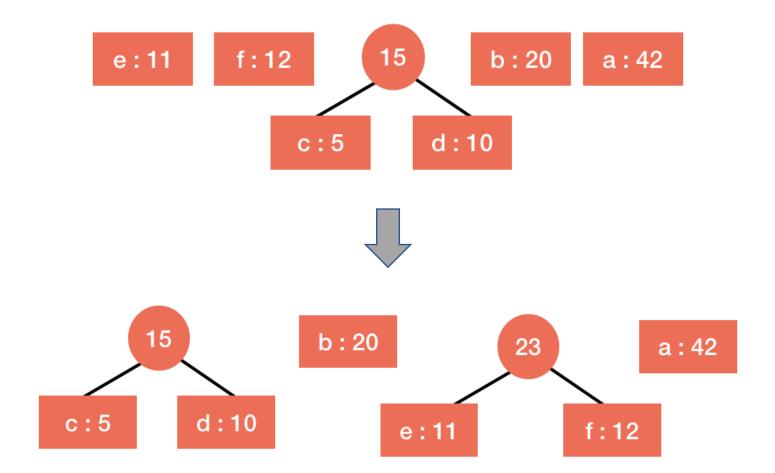
• Observation: prefix-free encoding = tree

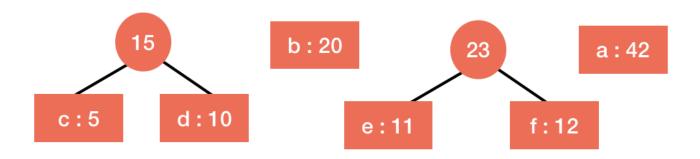


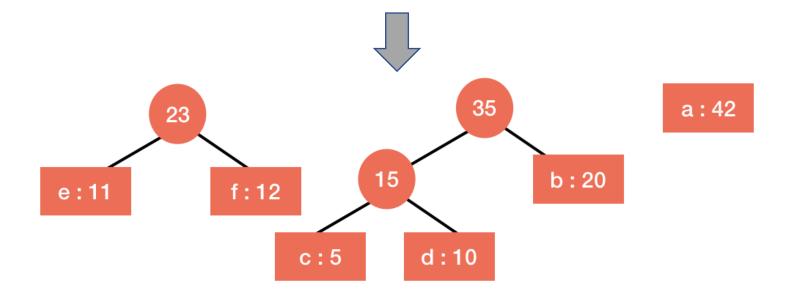
Huffman Coding

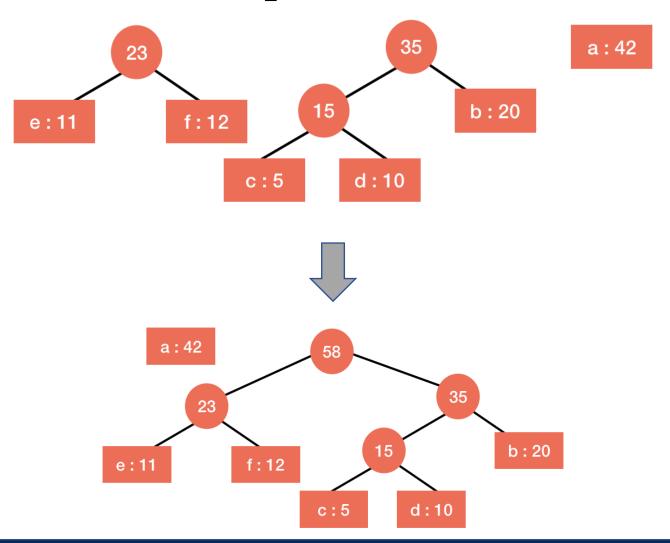
- > Build a priority queue by adding (x, w_x) for each symbol x
- > While $|queue| \ge 2$
 - Take the two symbols with the lowest weight (x, w_x) and (y, w_y)
 - \circ Merge them into one symbol with weight $w_x + w_y$
- Let's see this on the previous example

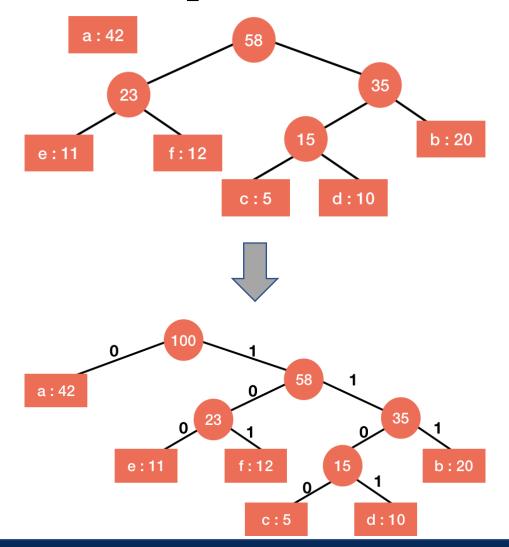




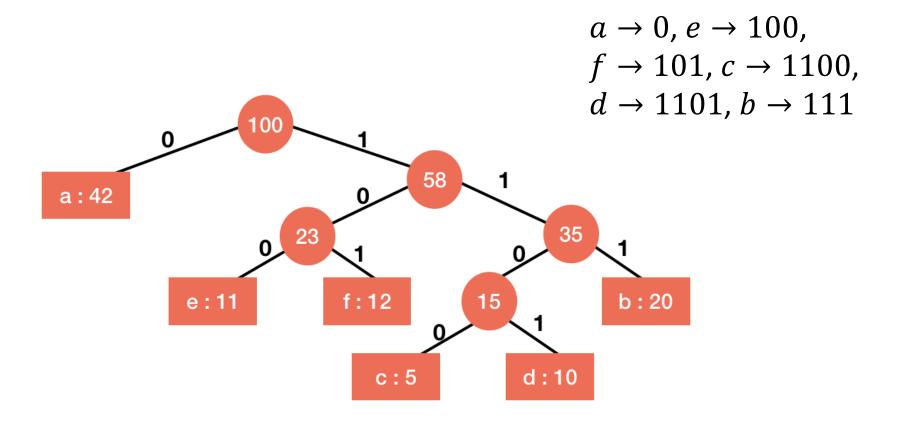








• Final Outcome



• Running time

- $> O(n \log n)$
- Can be made O(n) if the labels are given to you sorted by their frequencies
- Proof of optimality
 - Induction on the number of symbols n
 - Base case: For n = 2, there are only two possible encodings, both are optimal, assign 1 bit to each symbol
 - ► Hypothesis: Assume it returns an optimal encoding with n - 1 symbols

Proof of optimality

- Consider the case of n symbols
- > Lemma 1: If $w_x < w_y$, then $\ell_x \ge \ell_y$ in any optimal tree.
 - **Proof sketch**: Otherwise, swapping x and y would strictly reduce the overall length (exercise!).
- Lemma 2: There is an optimal tree T in which the two least frequent symbols are siblings.
 - Proof sketch: First prove that they must have the same longest length assigned to them. Then, if they're not siblings, chop and rearrange the tree to make them siblings (exercise!).
- Now, we can compare the tree H produced by Huffman vs such an optimal tree T

Proof of optimality

- Let x and y be the two least frequency symbols
- > In Huffman, we combine them in the first step into "xy"
- > Let H' and T' be trees obtained from H and T by treating xy as one symbol with frequency $w_x + w_y$
- > Use induction hypothesis: $Length(H') \leq Length(T')$
- > $Length(H) = Length(H') + (w_x + w_y) \cdot 1$
- > $Length(T) = Length(T') + (w_x + w_y) \cdot 1$
- > QED!

Other Greedy Algorithms

- If you aren't familiar with the following algorithms, spend some time checking them out!
 - > Dijkstra's shortest path algorithm
 - > Kruskal and Prim's minimum spanning tree algorithms