CSC373

Algorithm Design,
Analysis & Complexity

Karan Singh

Introduction

* Instructors

» Karan Singh
o dgp.toronto.edu/~karan, karan@dgp, BA 5258
o SEC 5101 and 5201

> Nisarg Shah

o cs.toronto.edu/~nisarg, nisarg@cs, SF 2301C
o SEC 5301

* TAs: Too many to list

373F19 - Karan Singh 2

Introduction

* Lectures
> 5101: Tue 1-3in BA1170, Thu 2-3 in BA1170
> 5201: Tue 3—4in BA1170, Thu 3-5in SS 2117

e Tutorials
» Every Mon 5-6pm
> Divided by birth month
> 5101: Jan-Jun: SS 1070, Jul-Dec: SS 1073
> 5201: Jan-Jun: SS 1074, Jul-Dec: UC 244

e Office Hours Tue noon-1, Thu 1-2 in BA5258

373F19 - Karan Singh 3

No tutorial on Sep 9

Check the course webpage
for further announcements

373F19 - Karan Singh

Course Information

* Course Page
www.CsS.toronto.edu/~nisarq/teaching/373f19/

> All the information below is in the course information
sheet, available on the course page

e Discussion Board
piazza.com/utoronto.ca/fall12019/csc373

* Grading — MarkUs system
> Link will be distributed after about two weeks
> LaTeX preferred, scans are OK!
> An arbitrary subset of questions may be graded...

373F19 - Karan Singh 5

http://www.cs.toronto.edu/~nisarg/teaching/373f19/
http://piazza.com/utoronto.ca/fall2019/csc373

Course Organization

* Tutorials
> A problem sheet will be posted ahead of the tutorial
> Easier problems that are warm-up to assighments/exams
> You're expected to try them before coming to the tutorial
> TAs will solve the problems on the board
> No written/typed solutions will be posted

373F19 - Karan Singh 6

Course Organization

* Assighments
» 4 assignments
> In groups of up to three students

> Final marks will be taken from best 3 out of 4
> Questions will be more difficult

o May need to mull them over for several days; do not expect to
start and finish the assignment on the same day!

o May include bonus questions

> Submit a single PDF on MarkUs
o May need to compress the PDF

373F19 - Karan Singh 7

Course Organization

* Exams
> Two term tests, one final exam
> Details will be posted on the course webpage

> In each exam, you’ll be allowed to bring one 8.5” x 11”
sheet of handwritten notes on one side

373F19 - Karan Singh 8

Grading Policy

e 3 homeworks * 10% = 30%
e 2 term tests * 20% = 40%
* Final exam * 30% = 30%

* NOTE: If you earn less than 40% on the final exam,
your final course grade will be reduced below 50

373F19 - Karan Singh 9

Textbook

* Primary reference: lecture slides

* Primary textbook (required)

> [CLRS] Cormen, Leiserson, Rivest, Stein: Introduction to
Algorithms.

* Supplementary textbooks (optional)
> [DPV] Dasgupta, Papadimitriou, Vazirani: Algorithms.
> [KT] Kleinberg; Tardos: Algorithm Design.

373F19 - Karan Singh

Other Policies

e Collaboration
> Free to discuss with classmates or read online material

> Must write solutions in your own words
o Easier if you do not take any pictures/notes from discussions

e Citation

> For each question, must cite the peer (write the name) or
the online sources (provide links), if you obtained a
significant insight directly pertinent to the question

> Failing to do this is plagiarism!

373F19 - Karan Singh

Other Policies

* “No Garbage” Policy

> Borrowed from: Prof. Allan Borodin (citation!)

1. Partial marks for viable approaches
2. Zero marks if the answer makes no sense

3. 20% marks if you admit to not knowing how to
approach the question (“I do not know how to

approach this question”)

* 20% > 0% !

373F19 - Karan Singh

Other Policies

* Late Days
> 4 total late days across all 4 assignments
» Managed by MarkUs
> At most 2 late days can be applied to a single assighnment

> Already covers legitimate reasons such as illness,
university activities, etc.

o Petitions will only be granted for circumstances which cannot be
covered by this

373F19 - Karan Singh

Enough with the
boring stuff.

What will we study?

Why will we study it?

Muhammad ibn Musa al-Khwarizmi
c. 780 —c. 850

373F19 — Karan Singh

What is this course about?

e Algorithms
> Ubiquitous in the real world

o From your smartphone to self-driving cars
o From graph problems to graphics problems

> Important to be able to design and analyze algorithms

» For some problems, good algorithms are hard to find

o For some of these problems, we can formally establish complexity
results

o WEe’'ll often find that one problem is easy, but its minor variants
are suddenly hard

373F19 - Karan Singh

What is this course about?

e Algorithms

> Algorithmic prefixes... distributed, parallel, streaming,
sublinear time, spectral, genetic...

> There are also other concerns with algorithms

o Fairness, ethics, ...

...mostly beyond the scope of this course.

373F19 - Karan Singh

What is this course about?

* Algorithm design paradigms in this course
> Divide and Conquer
> Greedy
» Dynamic programming
> Network flow
» Linear programming
> Approximation algorithms
> Randomized algorithms

373F19 - Karan Singh

What is this course about?

* How do we know which paradigm is right for a
given problem?
> A very interesting question!

> Subject of much ongoing research...
o Sometimes, you just know it when you see it...

* How do we analyze an algorithm?
> Proof of correctness

> Proof of running time
o We'll try to prove the algorithm is efficient in the worst case
o In practice, average case matters just as much (or even more)

373F19 - Karan Singh

What is this course about?

 What does it mean for an algorithm to be efficient
in the worst case?
> Polynomial time

> It should use at most poly(n) steps on any n-bit input
on,n? nt% 100n® + 237n? + 432, ...

> How much is too much?

373F19 - Karan Singh

What is this course about?

Better Balance by Being Biased.:
A 0.8776-Approximation for Max Bisection

. W . L . . :
Per Austrin , Siavosh Benabbas , and Konstantinos Georgiou’

has a lot of flexibility, indicating that further improvements may be possible. We remark that,
while polynomial, the running time of the algorithm is somewhat abysmal; loose estimates places

. 100 . . . - s a s
it somewhere around O (ﬂ.m): the running time of the algorithm of [RT12] is similar.

373F19 - Karan Singh

What is this course about?

Picture-Hanging Puzzles*

Erik D. Demaine’ Martin L. Demaine’ Yair N. Minsky* Joseph S. B. Mitchell®

Ronald L. Rivest! Mihai Patrascu’

Theorem 7 For anyn > k > 1, there is a picture hanging on n nails, of length n® for a constant ¢/,
that falls wpon the removal of any k of the natls.

-

n: 100l ¢ Tging the ¢ < 1,078 upper bound, we obtain an upper bound of ¢ < 6,575,800. Using

=0, while this construction is polynomial, it is a rather large polynomial. For small values of n,
we can use known small sorting networks to obtain somewhat reasonable constructions.

373F19 - Karan Singh

What is this course about?

 What if we can’t find an efficient algorithm for a
problem?
> Try to prove that the problem is hard
> Formally establish complexity results
> NP-completeness, NP-hardness, ...

* We'll often find that one problem may be easy, but
its simple variants may suddenly become hard...
MST vs. Steiner Tree or bounded degree MST,

shortest vs. longest simple path,
2-colorability vs. 3-colorability.

373F19 - Karan Singh

[’'m not convinced.

Will I really ever need to
know how to design
abstract algorithms?

At the very least...

This will help you prepare for your
technical job interview!

Microsoft: Four people with one flashlight, need to cross a rickety
bridge at night. Two people max. can cross the bridge at one time, and
anyone crossing must walk with the flashlight. A takes 1 minute to
cross the bridge, B takes 2, C takes 5, and D takes 10 minutes. A pair
must walk together. Find the fastest way for them to cross.

Divide & Conquer? Greedy?

373F19 - Karan Singh

Disclaimer

* The course is theoretical in nature

> You'll be working with abstract notations, proving
correctness of algorithms, analyzing the running time of
algorithms, designing new algorithms, and proving
complexity results.
* Question

> How many of you are somewhat scared going into the
course?

» How many of you feel comfortable with proofs, and want
challenging problems to solve?

> How many prefer concrete examples to abstract symbols?

We’ll have something for everyone to enjoy this course

373F19 - Karan Singh

Related /Follow-up Courses

* Direct follow-up
> CSC473: Advanced Algorithms
> CSC438: Computability and Logic
» CSC463: Computational Complexity and Computability

* Algorithms in other contexts

> CSC304: Algorithmic Game Theory and Mechanism
Design (Nisarg Shah)

> CSC384: Introduction to Artificial Intelligence

» CSC436: Numerical Algorithms

» CSC418: Computer Graphics

373F19 - Karan Singh

Divide & Conquer

History?

* How many of you saw some divide & conquer
algorithms in, say, CSC236/CSC240 and/or
CSC263/CSC2657?

* Maybe you saw a subset of these algorithms?
> Mergesort - O(nlogn)

> Karatsuba algorithm for fast multiplication - O(n10g2 3)
rather than 0(n?)
> Largest subsequence sum in O(n)

> ..

373F19 - Karan Singh

Divide & Conquer

* General framework

> Break (a large chunk of) a problem into smaller
subproblems of the same type

> Solve each subproblem recursively

> At the end, quickly combine solutions from the
subproblems and/or solve any remaining part of the
original problem

* Hard to formally define when a given algorithm is
divide-and-conquer...

* Let’s see some examples!

373F19 - Karan Singh

373F19 - Karan Singh 32

Raytracing: Where is the light coming from?

Divide&Conguer: Shoot multiple rays (sub-problems) recursively
reflecting/refracting off objects in the scene and combine the results to
determine color of pixels.

373F19 - Karan Singh 33

Master Theorem

* Here’s the master theorem, as it appears in CLRS
> Useful for analyzing divide-and-conquer running time

> If you haven’t already seen it, please spend some time
understanding it

Theorem 4.1 (Master theorem)

Leta = 1 and b > 1 be constants, let f(n) be a function, and let 7'(n) be defined
on the nonnegative integers by the recurrence

T(n)=aT(n/b) + f(n),

where we interpret n/b to mean either |n/b| or [n/b]. Then T (n) has the follow-
ing asymptotic bounds:

1.

=

fad

If f(n) = O(n'"»9¢) for some constant € > 0, then T'(n) = @(n'er),
If f(n) = O(n'er9), then T(n) = O(n'e 9 1g n).

I[f f(n) = Q(n'e»97€) for some constant € > 0, and if af(n/b) < cf(n) for
some constant ¢ < 1 and all sufficiently large n, then T'(n) = ®(f(n)). u

373F19 - Karan Singh

Master Theorem

Intuition:

Compare the function f(n) with the function n9,9. The larger
of the two functions determines the recurrence solution.

A //7/(”\ o :
f(n/b) }r/h} f(n/b) wonndn: af(n/b)

.r TLH a_
u/bz}}‘(n/bz) f(n/b?) f(n/b?) f(H/bz} f(n/b?) H/bz}f(ﬁ/bz) f(n/b?) wwie a? f(n/b?)

l’\ b 1 R

Y 0.) 001) 6) 6() 6) 6) 0(1) 6() 61) 61) ... (1) O() O(1) wim O(n%)

logy n—1

Total: @(n"2r?) + Z a’ f(n/b’)

Jj=0

373F19 - Karan Singh

Counting Inversions

* Problem

> Given an array a of length n, count the number of pairs
(i,j) such thati < j but ali] > alJj]

* Applications
> Voting theory
> Collaborative filtering
> Measuring the “sortedness” of an array
> Sensitivity analysis of Google's ranking function
> Rank aggregation for meta-searching on the Web
> Nonparametric statistics (e.g., Kendall's tau distance)

373F19 - Karan Singh

Counting Inversions

* Problem
> Count (i,j) such thati < j but ali] > alj]

* Brute force
> Check all ®(n?) pairs

* Divide & conquer
> Divide: break array into two equal halves x and y
> Conquer: count inversions in each half recursively

> Combine:
o Solve (remaining): count inversions with one entry in x and onein y
o Merge: add all three counts

373F19 - Karan Singh

Counting Inversions

From Kevin Wayne’s slides

373F19 - Karan Singh

SORT-AND-COUNT (L)

IF list L has one element
RETURN (0, L).

DIVIDE the list into two halves 4 and B.
(74, A) < SORT-AND-COUNT(A).
(r8 ., B) <= SORT-AND-COUNT(B).
(748, L") < MERGE-AND-COUNT(A. B).

RETURN (14 +rz+r4s, L)

Counting Inversions

Input

1 5 4 8 10 2 B 9 3 7

count inversions in left half A count inversions in right half B
1 5 4 8 10 2 6 9 3 7
5-4 6-3 9-3 9-7

count inversions {(a, b) witha=sAand b= B
1 5 4 8 10 2 6 9 3 7
4-2 4-3 5-2 5-3 8-2 8-3 B-6 8-7 10-2 10-3 10-6 10-7 10-9

output 1 + 3 + 13 =17

373F19 - Karan Singh

Counting Inversions

Q. How to count inversions (a, b) withae 4 and b€ B?
A. Easy if 4 and B are sorted!

Count inversions (a,) with a€ 4 and b € B, assuming 4 and B are sorted.
* Scan 4 and B from left to right.
* Compare a; and b;.

If a; < b;, then a; is not inverted with any element left in B.
If a; = b;, then &; is inverted with every element left in 4.

Append smaller element to sorted list C.

count inversions (a, b) witha=sAand b B

merge to form sorted list C

2 3 7 10 11

373F19 - Karan Singh

Counting Inversions

* How do we formally prove correctness?
> Induction on n is usually very helpful
> Allows you to assume correctness of subproblems

* Running time analysis
> Suppose T'(n) is the running time for inputs of size n
> Our algorithm satisfies T(n) = 2 T("/,) + 0(n)
> Master theorem says thisis T(n) = O(nlogn)

373F19 - Karan Singh

Without Master Theorem

Let'ssay T(n) = 2T("/,) + 2n

‘ Overall: 2nlogn

373F19 - Karan Singh

Closest Pair in R4

* Problem:

» Given n points of the form (x;, y;) in the plane, find the
closest pair of points.

* Applications:
» Basic primitive in graphics and computer vision

» Geographic information systems, molecular modeling, air
traffic control

> Special case of nearest neighbor

* Brute force: ®(n?)

373F19 - Karan Singh

Intuition from 1D?

* In 1D, the problem would be easily O(nlogn)

» Sort and check!

* Sorting attempt in 2D
> Find closest points by x coordinate
> Find closest points by y coordinate

* Non-degeneracy assumption
» No two points have the same x or y coordinate

373F19 - Karan Singh

Intuition from 1D?

* Sorting attempt in 2D
> Find closest points by x or y coordinate
» Doesn’t work!

373F19 - Karan Singh

Closest Pair in R4

e Let’s try divide-and-conquer!
> Divide: points in equal halves by drawing a vertical line L
> Conquer: solve each half recursively
> Combine: find closest pair with one point on each side of L

> Return the best of 3 solutions
Seems like Q(n?) ®
° L [

373F19 - Karan Singh

Closest Pair in R4

e Combine

> We can restrict our attention to points within of L on
each side, where 6 = best of the solutions in two halves

° L o . ®
N Ve
12 . ’
./. =] @ °

373F19 - Karan Singh

Closest Pair in R4

 Combine (let 0 = best of solutions in two halves)
> Only need to look at points within é of L on each side,
» Sort points on the strip by y coordinate

> Only need to check each point with next 11 points in
sorted list!

& = min(12, 21)

373F19 - Karan Singh

Why 117?

e Claim:

> If two points are at least 12 Q
positions apart in the sorted list,
their distance is at least 0

fm— g == = =

2 rows g

* Proof: o

» No two points lie in the same NV
0/2 X 6/2 box __________

» Two points that are more than two 26
rows apart are at distance at least

373F19 - Karan Singh

120

%0

158

Recap: Karatsuba’s Algorithm

* Fast way to multiply two n digit integers x and y
* Brute force: 0(n?) operations

- O - O O O|— O

e Karatsuba’s observation:
> Divide each integer into two parts

ollele|lo| o

olo = o = =

ol o — © = =

olo — o — o — ©

colo o — 0 - 0 0 =0 =
- 0 - 0 = O == -

1
11
0 0 O
1 1 0

—_ 0 = O =] = —
- O O O — O
- O = = =

o OO O

0

o
o

OX =X * 10"/ + X5,y =Yg * 10"/ + v,
o xy = (1) * 10™ + (x1¥, + x271) * 1072 + (x27)
» Four /,-digit multiplications can be replaced by three
0 X1Y2 + x2¥1 = (X1 + x2) (V1 + ¥2) — X1¥1 — X2
» Running time
oT(n)=3TM/,)+0n)=>Tn) = O(nIOg2 3)

373F19 - Karan Singh

0 0 0 O

1

Strassen’s Algorithm

* Generalizes Karatsuba’s insight to design a fast
algorithm for multiplying two n X n matrices

> Call n the “size” of the problem

Cll ClZ] — [All AlZ] " [Bll BlZ]
C21 C22 A21 A22 BZl BZZ

> Naively, this requires 8 multiplications of size n/2
0 A1 * B11,A12 * B31, 411 * By, A13 * By, ...

» Strassen’s insight: replace 8 multiplications by 7
o Running time: T(n) = 7 T("/,) + 0(n?) = T(n) = 0(n!°8: 7)

373F19 - Karan Singh

Strassen’s Algorithm
Cll ClZ All A12 Bll

— *

CZl 622 A21 A22 B21

STRASSEN (n, 4, B)

BlZ

el
/113444) RETURN A x B.
; ;SOU\E? zfisz Partition 4 and B mnto 2-by-2 block matrices.
P1 « STRASSEN(n/ 2, A1, (Biz — B2)). \
P, « STRASSEN(n/ 2, (A + A12), B22). keep track of indices of submatrices

P3; < STRASSEN(n/ 2, (421 + A22), Bn1).

P4 «— STRASSEN(n/2, A2, (B21—Bn)).

Ps « STRASSEN(n/2, (A1 + A22) x (B + B22)).
Ps <« STRASSEN (n/2, (A12 — A22) x (B21 + B22)).
P7 < STRASSEN(n/2, (A11 —A21) x (B11 + B12)).
Cin = Ps+Ps—Pr+ Ps.

Ci2 = Pi+Pa

Cn = P3+Pa

Cn = P1+Ps—P3;—P;.
RETURN C.

373F19 - Karan Singh

(don't copy matrix entries)

Median & Selection

Selection: Given n comparable elements, find kth smallest.
minimum: k = 1; maximum: k = n; median: k = [(n +1)/ 2]

* O(n) compares for min or max.
Can you do better than n-17

* O(n log n) compares by sorting.
* O(n log k) compares with a binary heap.

Applications: order statistics, "top k"; bottleneck paths, ...
* Q. Can we do it with O(n) compares?
* A. Yes! Selection is easier than sorting.

373F19 - Karan Singh

Quick (Randomized) Select

Partially sort array relative to a pivot element, and look for the
kth smallest in subarray to the left or right of pivot.

Look for kth smallest in array A[p..r]
QUICK-SELECT (A; p; r; k)

if p == r return A[p] // single element array, k must be 1.
g = QUICK-PARTITION(A; p; r) // Alp..q-1] <= A[q] <= A[g+1..r]

j =q-p+1 // kis size of p..q

if k ==j return A[q] // the pivot is kth smallest

elseif k < j return QUICK-SELECT(A;p;q-1; k) // search in p..g-1

else return QUICK-SELECT(A;q+1;r;k —j) // searchin g+1..r

373F19 - Karan Singh

Finding a good pivot

- Divide n elements into |n / 5 groups of 5 elements each (plus extra).

HOHDOH®O®®®®
HOEFOLEOOLOE®O®
HEOOOO®OOO®OH®®
WOOOOH®O®OEHEO®
@@@@@

Finding a good pivot
- Divide n elements into |n / 5 groups of 5 elements each (plus extra).

* Find median of each group (except extra).

373F19 - Karan Singh

Finding a good pivot
* Divide n elements into ln/SJ groups of 5 elements each (plus extra).
* Find median of each group (except extra).

* Find median of medians recursively.

* Use median-of-medians as pivot element.

medians

median of /
medians @ 0 e

\

373F19 - Karan Singh

Analysis of median-of-medians selection algorithm

* At least half of 5-element medians < p.

median of

medians p @ @ @

373F19 — Karan Singh

Analysis of median-of-medians selection algorithm

* At least half of 5-element medians < p.
* Atleast |[|n/5]/2|=|n/10] medians < p.

median of

medians p @

373F19 — Karan Singh

Analysis of median-of-medians selection algorithm

* At least half of 5-element medians < p.
* Atleast||n/5]/2]=|n/10] medians < p.
» Atleast 3|n/ 10| elements < p.

median of
medians p

N =54 15

373F19 — Karan Singh

Median-of-medians recurrence

Select called recursively with ln / 5] elements to compute MOM p.

At least 3 n / 10] elements < p.

At least 31n / 10l elements > p.

Select called recursively with at most n—3 ln / 10/ elements.

Def. C(n) = max # compares on an array of » elements.

C(n) = C(|_nf5J)+ C(n-3 LnflOJ) + Wp

median of recursive computing median of 5
medians select (6 compares per group)
partitioning

(n compares)

373F19 — Karan Singh

O(n), 44n works!

Algorithm Design

* Best algorithm for a problem?
> Typically hard to determine

> We still don’t know best algorithms for multiplying two n-
digit integers or two n X n matrices
o Integer multiplication
* Breakthrough in March 2019: first O(nlogn) time algorithm
* Itis conjectured that this is asymptotically optimal
o Matrix multiplication
e 1969 (Strassen): 0(n?897)
* 1990: 0(n?379)
¢ 2013: 0(n?3729)
. 2014: 0 (n?3728639)

373F19 - Karan Singh

Algorithm Design

* Best algorithm for a problem?

> Usually, we design an algorithm and then analyze its
running time

> Sometimes we can do the reverse:
o E.g., if you know you want an O (n? logn) algorithm

o Master theorem suggests that you can get it by
T(n) =4T("/,) + 0(n?

o So maybe you want to break your problem into 4 problems of size
n/2 each, and then do 0(n?) computation to combine

373F19 - Karan Singh

Algorithm Design

* Access to input

> For much of this analysis, we are assuming random access
to elements of input

> So we’re ignoring underlying data structures (e.g. doubly
linked list, binary tree, etc.)

* Machine operations
> We're only counting comparison or arithmetic operations

> So we’re ignoring issues like how real numbers will be
represented in closest pair problem

> When we get to P vs NP, representation will matter

373F19 - Karan Singh

Algorithm Design

* Size of the problem
> Can be any reasonable parameter of the problem

> E.g., for matrix multiplication, we used n as the size
But an input consists of two matrices with n? entries

> It doesn’t matter whether we call n or n? the size of the
problem

> The actual running time of the algorithm won’t change

373F19 - Karan Singh

