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• Instructors
➢ Karan Singh 
o dgp.toronto.edu/~karan, karan@dgp, BA 5258

o SEC 5101 and 5201

➢ Nisarg Shah 
o cs.toronto.edu/~nisarg, nisarg@cs, SF 2301C

o SEC 5301

• TAs: Too many to list



Introduction
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• Lectures
➢ 5101: Tue 1–3 in BA1170, Thu 2–3 in BA1170

➢ 5201: Tue 3–4 in BA1170, Thu 3–5 in SS 2117

• Tutorials
➢ Every Mon 5-6pm

➢ Divided by birth month

➢ 5101: Jan-Jun: SS 1070, Jul-Dec: SS 1073

➢ 5201: Jan-Jun: SS 1074, Jul-Dec: UC 244

• Office Hours Tue noon-1, Thu 1-2 in BA5258



No tutorial on Sep 9

Check the course webpage 
for further announcements
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Course Information
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• Course Page
www.cs.toronto.edu/~nisarg/teaching/373f19/

➢ All the information below is in the course information 
sheet, available on the course page

• Discussion Board 
piazza.com/utoronto.ca/fall2019/csc373

• Grading – MarkUs system
➢ Link will be distributed after about two weeks

➢ LaTeX preferred, scans are OK!

➢ An arbitrary subset of questions may be graded…

http://www.cs.toronto.edu/~nisarg/teaching/373f19/
http://piazza.com/utoronto.ca/fall2019/csc373


Course Organization
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• Tutorials
➢ A problem sheet will be posted ahead of the tutorial

➢ Easier problems that are warm-up to assignments/exams

➢ You’re expected to try them before coming to the tutorial

➢ TAs will solve the problems on the board

➢ No written/typed solutions will be posted



Course Organization
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• Assignments
➢ 4 assignments

➢ In groups of up to three students

➢ Final marks will be taken from best 3 out of 4

➢ Questions will be more difficult
o May need to mull them over for several days; do not expect to 

start and finish the assignment on the same day!

o May include bonus questions

➢ Submit a single PDF on MarkUs
o May need to compress the PDF



Course Organization
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• Exams
➢ Two term tests, one final exam

➢ Details will be posted on the course webpage

➢ In each exam, you’ll be allowed to bring one 8.5” x 11” 
sheet of handwritten notes on one side



Grading Policy
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• 3 homeworks * 10% = 30%

• 2 term tests * 20% = 40%

• Final exam * 30% = 30%

• NOTE: If you earn less than 40% on the final exam, 
your final course grade will be reduced below 50



Textbook
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• Primary reference: lecture slides

• Primary textbook (required)
➢ [CLRS] Cormen, Leiserson, Rivest, Stein: Introduction to 

Algorithms.

• Supplementary textbooks (optional)
➢ [DPV] Dasgupta, Papadimitriou, Vazirani: Algorithms.

➢ [KT] Kleinberg; Tardos: Algorithm Design.



Other Policies
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• Collaboration
➢ Free to discuss with classmates or read online material

➢ Must write solutions in your own words 
o Easier if you do not take any pictures/notes from discussions 

• Citation
➢ For each question, must cite the peer (write the name) or 

the online sources (provide links), if you obtained a 
significant insight directly pertinent to the question

➢ Failing to do this is plagiarism!



Other Policies
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• “No Garbage” Policy

➢ Borrowed from: Prof. Allan Borodin (citation!)

1. Partial marks for viable approaches

2. Zero marks if the answer makes no sense

3. 20% marks if you admit to not knowing how to 

approach the question (“I do not know how to 

approach this question”)

• 20% > 0% !!



Other Policies
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• Late Days

➢ 4 total late days across all 4 assignments

➢ Managed by MarkUs

➢ At most 2 late days can be applied to a single assignment

➢ Already covers legitimate reasons such as illness, 

university activities, etc.

o Petitions will only be granted for circumstances which cannot be 

covered by this



Enough with the 
boring stuff.
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What will we study?

Why will we study it?
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Muhammad ibn Musa al-Khwarizmi
c. 780 – c. 850



What is this course about?
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• Algorithms
➢ Ubiquitous in the real world
o From your smartphone to self-driving cars

o From graph problems to graphics problems

➢ Important to be able to design and analyze algorithms

➢ For some problems, good algorithms are hard to find
o For some of these problems, we can formally establish complexity 

results

o We’ll often find that one problem is easy, but its minor variants 
are suddenly hard



What is this course about?
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• Algorithms
➢ Algorithmic prefixes… distributed, parallel, streaming, 

sublinear time, spectral, genetic…

➢ There are also other concerns with algorithms
o Fairness, ethics, …

…mostly beyond the scope of this course.



What is this course about?
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• Algorithm design paradigms in this course
➢ Divide and Conquer

➢ Greedy

➢ Dynamic programming

➢ Network flow

➢ Linear programming

➢ Approximation algorithms

➢ Randomized algorithms



What is this course about?
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• How do we know which paradigm is right for a 
given problem?
➢ A very interesting question!

➢ Subject of much ongoing research…
o Sometimes, you just know it when you see it…

• How do we analyze an algorithm?
➢ Proof of correctness

➢ Proof of running time
o We’ll try to prove the algorithm is efficient in the worst case

o In practice, average case matters just as much (or even more)



What is this course about?
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• What does it mean for an algorithm to be efficient 
in the worst case?
➢ Polynomial time

➢ It should use at most poly(n) steps on any n-bit input
o 𝑛, 𝑛2, 𝑛100, 100𝑛6 + 237𝑛2 + 432, …

➢ How much is too much?



What is this course about?
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What is this course about?
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What is this course about?
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• What if we can’t find an efficient algorithm for a 
problem?
➢ Try to prove that the problem is hard

➢ Formally establish complexity results

➢ NP-completeness, NP-hardness, …

• We’ll often find that one problem may be easy, but 
its simple variants may suddenly become hard…
MST vs. Steiner Tree or bounded degree MST,
shortest vs. longest simple path, 
2-colorability vs. 3-colorability.



I’m not convinced.

Will I really ever need to 
know how to design 
abstract algorithms?
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At the very least…

This will help you prepare for your 
technical job interview!

Microsoft: Four people with one flashlight, need to cross a rickety 
bridge at night. Two people max. can cross the bridge at one time, and 
anyone crossing must walk with the flashlight. A takes 1 minute to 
cross the bridge, B takes 2, C takes 5, and D takes 10 minutes. A pair 
must walk together. Find the fastest way for them to cross.

Divide & Conquer? Greedy?
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Disclaimer
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• The course is theoretical in nature
➢ You’ll be working with abstract notations, proving 

correctness of algorithms, analyzing the running time of 
algorithms, designing new algorithms, and proving 
complexity results. 

• Question
➢ How many of you are somewhat scared going into the 

course?
➢ How many of you feel comfortable with proofs, and want 

challenging problems to solve?
➢ How many prefer concrete examples to abstract symbols?

We’ll have something for everyone to enjoy this course



Related/Follow-up Courses
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• Direct follow-up
➢ CSC473: Advanced Algorithms

➢ CSC438: Computability and Logic

➢ CSC463: Computational Complexity and Computability

• Algorithms in other contexts
➢ CSC304: Algorithmic Game Theory and Mechanism 

Design (Nisarg Shah)

➢ CSC384: Introduction to Artificial Intelligence

➢ CSC436: Numerical Algorithms

➢ CSC418: Computer Graphics



Divide & Conquer
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History?
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• How many of you saw some divide & conquer 
algorithms in, say, CSC236/CSC240 and/or 
CSC263/CSC265?

• Maybe you saw a subset of these algorithms?
➢ Mergesort - 𝑂 𝑛 log 𝑛

➢ Karatsuba algorithm for fast multiplication - 𝑂 𝑛log2 3

rather than 𝑂 𝑛2

➢ Largest subsequence sum in 𝑂 𝑛

➢ …



Divide & Conquer
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• General framework
➢ Break (a large chunk of) a problem into smaller 

subproblems of the same type

➢ Solve each subproblem recursively

➢ At the end, quickly combine solutions from the 
subproblems and/or solve any remaining part of the 
original problem

• Hard to formally define when a given algorithm is 
divide-and-conquer…

• Let’s see some examples!
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Raytracing: Where is the light coming from?
Divide&Conquer: Shoot multiple rays (sub-problems) recursively 
reflecting/refracting off objects in the scene and combine the results to 
determine color of pixels.



Master Theorem
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• Here’s the master theorem, as it appears in CLRS
➢ Useful for analyzing divide-and-conquer running time

➢ If you haven’t already seen it, please spend some time 
understanding it



Master Theorem
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Intuition: 

Compare the function f(n) with the function nlog
b

a. The larger 
of the two functions determines the recurrence solution.



Counting Inversions
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• Problem
➢ Given an array 𝑎 of length 𝑛, count the number of pairs 

(𝑖, 𝑗) such that 𝑖 < 𝑗 but 𝑎 𝑖 > 𝑎[𝑗]

• Applications
➢ Voting theory

➢ Collaborative filtering

➢ Measuring the “sortedness” of an array

➢ Sensitivity analysis of Google's ranking function

➢ Rank aggregation for meta-searching on the Web

➢ Nonparametric statistics (e.g., Kendall's tau distance)



Counting Inversions
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• Problem
➢ Count (𝑖, 𝑗) such that 𝑖 < 𝑗 but 𝑎 𝑖 > 𝑎[𝑗]

• Brute force
➢ Check all Θ 𝑛2 pairs

• Divide & conquer
➢ Divide: break array into two equal halves 𝑥 and 𝑦

➢ Conquer: count inversions in each half recursively

➢ Combine:
o Solve (remaining): count inversions with one entry in 𝑥 and one in 𝑦

o Merge: add all three counts



Counting Inversions
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From Kevin Wayne’s slides



Counting Inversions
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Counting Inversions
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Counting Inversions
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• How do we formally prove correctness?
➢ Induction on 𝑛 is usually very helpful

➢ Allows you to assume correctness of subproblems

• Running time analysis
➢ Suppose 𝑇(𝑛) is the running time for inputs of size 𝑛

➢ Our algorithm satisfies 𝑇 𝑛 = 2 𝑇 Τ𝑛
2 + 𝑂(𝑛)

➢ Master theorem says this is 𝑇 𝑛 = 𝑂(𝑛 log 𝑛)



Without Master Theorem
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Let’s say 𝑇 𝑛 = 2 𝑇 Τ𝑛
2 + 2𝑛



Closest Pair in ℝ2
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• Problem:
➢ Given 𝑛 points of the form (𝑥𝑖 , 𝑦𝑖) in the plane, find the 

closest pair of points.

• Applications:
➢ Basic primitive in graphics and computer vision

➢ Geographic information systems, molecular modeling, air 
traffic control

➢ Special case of nearest neighbor

• Brute force: Θ 𝑛2



Intuition from 1D?
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• In 1D, the problem would be easily 𝑂(𝑛 log 𝑛)
➢ Sort and check!

• Sorting attempt in 2D
➢ Find closest points by x coordinate

➢ Find closest points by y coordinate

• Non-degeneracy assumption
➢ No two points have the same x or y coordinate



Intuition from 1D?
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• Sorting attempt in 2D
➢ Find closest points by x or y coordinate

➢ Doesn’t work!

1 + 𝜖

1

1 + 𝜖1

2



Closest Pair in ℝ2
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• Let’s try divide-and-conquer!
➢ Divide: points in equal halves by drawing a vertical line 𝐿

➢ Conquer: solve each half recursively

➢ Combine: find closest pair with one point on each side of 𝐿

➢ Return the best of 3 solutions
Seems like Ω(𝑛2)



Closest Pair in ℝ2
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• Combine
➢ We can restrict our attention to points within 𝛿 of 𝐿 on 

each side, where 𝛿 = best of the solutions in two halves



Closest Pair in ℝ2
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• Combine (let 𝛿 = best of solutions in two halves)
➢ Only need to look at points within 𝛿 of 𝐿 on each side, 

➢ Sort points on the strip by 𝑦 coordinate

➢ Only need to check each point with next 11 points in 
sorted list!

Wait, what? Why 11?



Why 11?
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• Claim: 
➢ If two points are at least 12

positions apart in the sorted list, 
their distance is at least 𝛿

• Proof:
➢ No two points lie in the same 

𝛿/2 × 𝛿/2 box

➢ Two points that are more than two 
rows apart are at distance at least 𝛿



Recap: Karatsuba’s Algorithm
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• Fast way to multiply two 𝑛 digit integers 𝑥 and 𝑦

• Brute force: 𝑂(𝑛2) operations

• Karatsuba’s observation:
➢ Divide each integer into two parts
o 𝑥 = 𝑥1 ∗ 10 Τ𝑛

2 + 𝑥2, 𝑦 = 𝑦1 ∗ 10 Τ𝑛
2 + 𝑦2

o 𝑥𝑦 = 𝑥1𝑦1 ∗ 10𝑛 + 𝑥1𝑦2 + 𝑥2𝑦1 ∗ 10 Τ𝑛
2 + (𝑥2𝑦2)

➢ Four Τ𝑛
2-digit multiplications can be replaced by three

o 𝑥1𝑦2 + 𝑥2𝑦1 = 𝑥1 + 𝑥2 𝑦1 + 𝑦2 − 𝑥1𝑦1 − 𝑥2𝑦2

➢ Running time
o 𝑇 𝑛 = 3 𝑇 Τ𝑛

2 + 𝑂(𝑛) ⇒ 𝑇 𝑛 = 𝑂 𝑛log2 3



Strassen’s Algorithm
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• Generalizes Karatsuba’s insight to design a fast 
algorithm for multiplying two 𝑛 × 𝑛 matrices
➢ Call 𝑛 the “size” of the problem

𝐶11 𝐶12

𝐶21 𝐶22
=

𝐴11 𝐴12

𝐴21 𝐴22
∗

𝐵11 𝐵12

𝐵21 𝐵22

➢ Naively, this requires 8 multiplications of size 𝑛/2
o 𝐴11 ∗ 𝐵11, 𝐴12 ∗ 𝐵21, 𝐴11 ∗ 𝐵12, 𝐴12 ∗ 𝐵22, …

➢ Strassen’s insight: replace 8 multiplications by 7
o Running time: 𝑇 𝑛 = 7 𝑇 Τ𝑛

2 + 𝑂(𝑛2) ⇒ 𝑇 𝑛 = 𝑂 𝑛log2 7



Strassen’s Algorithm
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𝐶11 𝐶12

𝐶21 𝐶22
=

𝐴11 𝐴12

𝐴21 𝐴22
∗

𝐵11 𝐵12

𝐵21 𝐵22



Median & Selection
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Selection: Given n comparable elements, find kth smallest.

minimum: k = 1; maximum: k = n; median: k = ⎣(n + 1) / 2⎦.

• O(n) compares for min or max.
Can you do better than n-1?

• O(n log n) compares by sorting.

• O(n log k) compares with a binary heap.

Applications: order statistics, "top k"; bottleneck paths, …

• Q. Can we do it with O(n) compares?

• A. Yes! Selection is easier than sorting.



Quick (Randomized) Select

373F19 - Karan Singh 54

Partially sort array relative to a pivot element, and look for the 
kth smallest in subarray to the left or right of pivot.

Look for kth smallest in array A[p..r]

QUICK-SELECT (A; p; r; k)

if p == r return A[p] // single element array, k must be 1.

q = QUICK-PARTITION(A; p; r) // A[p..q-1] <= A[q] <= A[q+1..r]

j =q-p+1 // k is size of p..q

if k == j return A[q] //  the pivot is kth smallest

elseif k < j return QUICK-SELECT(A;p;q-1; k) // search in p..q-1 

else return QUICK-SELECT(A;q+1;r;k –j) // search in q+1..r



Finding a good pivot
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• Divide n elements into ⎣n / 5⎦ groups of 5 elements each (plus extra).



Finding a good pivot
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• Divide n elements into ⎣n / 5⎦ groups of 5 elements each (plus extra).

• Find median of each group (except extra).



Finding a good pivot
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• Divide n elements into ⎣n/5⎦ groups of 5 elements each (plus extra).

• Find median of each group (except extra).

• Find median of medians recursively.

• Use median-of-medians as pivot element.
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Median-of-medians recurrence
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• Select called recursively with ⎣n / 5⎦ elements to compute MOM p.

• At least 3 ⎣n / 10⎦ elements ≤ p.

• At least 3 ⎣n / 10⎦ elements ≥ p.

• Select called recursively with at most n – 3 ⎣n / 10⎦ elements.

• O(n), 44n works!



Algorithm Design
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• Best algorithm for a problem?
➢ Typically hard to determine

➢ We still don’t know best algorithms for multiplying two 𝑛-
digit integers or two 𝑛 × 𝑛 matrices
o Integer multiplication

• Breakthrough in March 2019: first 𝑂(𝑛 log 𝑛) time algorithm

• It is conjectured that this is asymptotically optimal

o Matrix multiplication

• 1969 (Strassen): 𝑂(𝑛2.807)

• 1990: 𝑂(𝑛2.376)

• 2013: 𝑂(𝑛2.3729)

• 2014: 𝑂(𝑛2.3728639)



Algorithm Design
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• Best algorithm for a problem?
➢ Usually, we design an algorithm and then analyze its 

running time

➢ Sometimes we can do the reverse:

o E.g., if you know you want an 𝑂(𝑛2 log 𝑛) algorithm

o Master theorem suggests that you can get it by 
𝑇 𝑛 = 4 𝑇 ൗ𝑛

2 + 𝑂 𝑛2

o So maybe you want to break your problem into 4 problems of size 
𝑛/2 each, and then do 𝑂(𝑛2) computation to combine



Algorithm Design
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• Access to input
➢ For much of this analysis, we are assuming random access 

to elements of input

➢ So we’re ignoring underlying data structures (e.g. doubly 
linked list, binary tree, etc.)

• Machine operations
➢ We’re only counting comparison or arithmetic operations

➢ So we’re ignoring issues like how real numbers will be 
represented in closest pair problem

➢ When we get to P vs NP, representation will matter



Algorithm Design
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• Size of the problem
➢ Can be any reasonable parameter of the problem

➢ E.g., for matrix multiplication, we used 𝑛 as the size 

But an input consists of two matrices with 𝑛2 entries

➢ It doesn’t matter whether we call 𝑛 or 𝑛2 the size of the 
problem

➢ The actual running time of the algorithm won’t change


