CSC304 Lecture 8

Mechanism Design with Money: VCG mechanism

RECAP: Game Theory

- Simultaneous-move Games
- Nash equilibria
- Prices of anarchy and stability
- Cost-sharing games, congestion games, Braess' paradox
- Zero-sum games and the minimax theorem
- Stackelberg games

Mechanism Design with Money

 Design the game structure in order to induce the desired behavior from the agents

Desired behavior?

We will mostly focus on incentivizing agents to truthfully reveal their private information

With money

Can pay agents or ask agents for money depending on what the agents report

- A set of outcomes A
 - > A might depend on which agents are participating.
- Each agent i has a private valuation $v_i:A \to \mathbb{R}$
- Auctions:
 - > A has a nice structure.
 - \circ Selling one item to n buyers = n outcomes ("give to i")
 - \circ Selling m items to n buyers $= n^m$ outcomes
 - > Agents only care about which items they receive
 - \circ A_i = bundle of items allocated to agent i
 - \circ Use $v_i(A_i)$ instead of $v_i(A)$ for notational simplicity
 - > But for now, we'll look at the general setup.

- Agent i might misreport: report \tilde{v}_i instead of v_i
- Mechanism: (f, p)
 - > Input: reported valuations $\tilde{v} = (\tilde{v}_1, ..., \tilde{v}_n)$
 - $> f(\tilde{v}) \in A$ decides what outcome is implemented
 - $p(\tilde{v}) = (p_1, ..., p_n)$ decides how much each agent pays
 - \circ Note that each p_i is a function of all reported valuations
- Utility to agent $i: u_i(\tilde{v}) = v_i(f(\tilde{v})) p_i(\tilde{v})$
 - "Quasi-linear utilities"

- Our goal is to design the mechanism (f, p)
 - > f is called the social choice function
 - > p is called the payment scheme
 - > We want to several things from our mechanism

- Truthfulness/strategyproofness
 - > For all agents i, all v_i , and all \tilde{v} , $u_i(v_i, \tilde{v}_{-i}) \ge u_i(\tilde{v}_i, \tilde{v}_{-i})$
 - An agent is at least as happy reporting the truth as telling any lie, irrespective of what other agents report

- Our goal is to design the mechanism (f, p)
 - > f is called the social choice function
 - > p is called the payment scheme
 - > We want to several things from our mechanism

- Individual rationality
 - > For all agents i and for all \tilde{v}_{-i} , $u_i(v_i, \tilde{v}_{-i}) \geq 0$
 - > An agent doesn't regret participating if she tells the truth.

- Our goal is to design the mechanism (f, p)
 - > f is called the social choice function
 - > p is called the payment scheme
 - > We want to several things from our mechanism

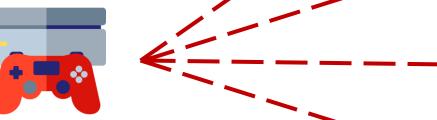
- No payments to agents
 - > For all agents i and for all \tilde{v} , $p_i(\tilde{v}) \geq 0$
 - > Agents pay the center. Not the other way around.

- Our goal is to design the mechanism (f, p)
 - > f is called the social choice function
 - > p is called the payment scheme
 - > We want to several things from our mechanism

Welfare maximization

- \triangleright Maximize $\sum_i v_i(f(\tilde{v}))$
 - In many contexts, payments are less important (e.g. ad auctions)
 - \circ Or think of the auctioneer as another agent with utility $\sum_i p_i(\tilde{v})$
 - Then, the total utility of all agents (including the auctioneer) is precisely the objective written above

Objective: The one who really needs it more should have it.



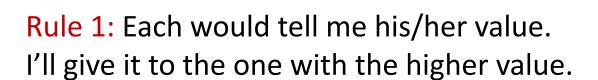


Image Courtesy: Freepik

Objective: The one who really needs it more should have it.

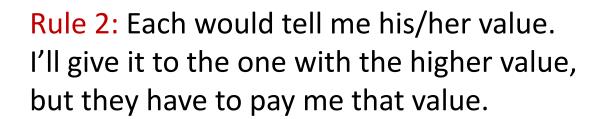
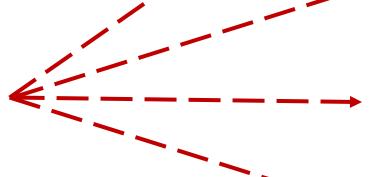


Image Courtesy: Freepik

Objective: The one who really needs it more should have it.



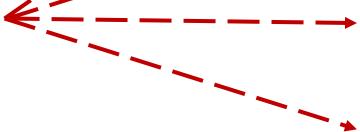




Image Courtesy: Freepik

Objective: The one who really needs it more should have it.

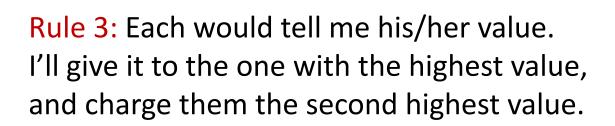


Image Courtesy: Freepik

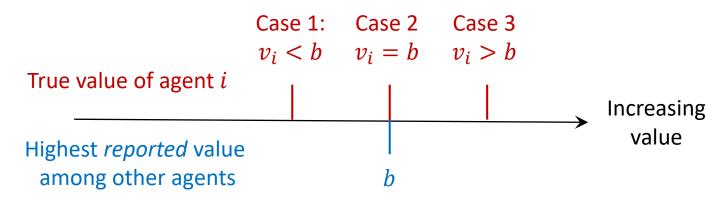
Single-item Vickrey Auction

- Simplifying notation: v_i = value of agent i for the item
- $f(\tilde{v})$: give the item to agent $i^* \in \operatorname{argmax}_i \tilde{v}_i$
- $p(\tilde{v}): p_{i^*} = \max_{j \neq i^*} \tilde{v}_j$, other agents pay nothing

Theorem:

Single-item Vickrey auction is strategyproof.

Proof sketch:



Vickrey Auction: Identical Items

- Two identical xboxes
 - \succ Each agent i only wants one, has value v_i
 - > Goal: give to the agents with the two highest values

Attempt 1

- > To agent with highest value, charge 2nd highest value.
- > To agent with 2nd highest value, charge 3rd highest value.

Attempt 2

- > To agents with highest and 2nd highest values, charge the 3rd highest value.
- Question: Which attempt(s) would be strategyproof?
 - Both, 1, 2, None?

VCG Auction

- Recall the general setup:
 - \Rightarrow A = set of outcomes, v_i = valuation of agent i, \tilde{v}_i = what agent i reports, f chooses the outcome, p decides payments
- VCG (Vickrey-Clarke-Groves Auction)
 - $> f(\tilde{v}) = a^* \in \operatorname{argmax}_{a \in A} \sum_i \tilde{v}_i(a)$

Maximize welfare

$$p_i(\tilde{v}) = \left[\max_{a} \sum_{j \neq i} \tilde{v}_j(a) \right] - \left[\sum_{j \neq i} \tilde{v}_j(a^*) \right]$$

i's payment = welfare that others lost due to presence of *i*

A Note About Payments

•
$$p_i(\tilde{v}) = \left[\max_{a} \sum_{j \neq i} \tilde{v}_j(a)\right] - \left[\sum_{j \neq i} \tilde{v}_j(a^*)\right]$$

- In the first term...
 - \triangleright Maximum is taken over alternatives that are feasible when i does not participate.
 - Agent i cannot affect this term, so can ignore in calculating incentives.
 - > Could be replaced with any function $h_i(\tilde{v}_{-i})$
 - This specific function has advantages (we'll see)

Strategyproofness:

- > Suppose agents other than i report \tilde{v}_{-i} .
- \triangleright Agent *i* reports $\tilde{v}_i \Rightarrow$ outcome chosen is $f(\tilde{v}) = a$
- > Utility to agent $i = v_i(a) \left(-\sum_{j \neq i} \tilde{v}_j(a) \right)$

Term that agent i cannot affect

- > Agent i wants a to maximize $v_i(a) + \sum_{j \neq i} \tilde{v}_j(a)$
- > f chooses a to maximize $\tilde{v}_i(a) + \sum_{j \neq i} \tilde{v}_j(a)$
- \succ Hence, agent i is best off reporting $\widetilde{v}_i = v_i$
 - \circ f chooses a that maximizes the utility to agent i

Individual rationality:

- $> a^* \in \operatorname{argmax}_{a \in A} v_i(a) + \sum_{j \neq i} \tilde{v}_j(a)$
- $> \tilde{a} \in \operatorname{argmax}_{a \in A} \sum_{j \neq i} \tilde{v}_j(a)$

$$\begin{aligned} &u_i(v_i, \tilde{v}_{-i}) \\ &= v_i(a^*) - \left(\sum_{j \neq i} \tilde{v}_j(\tilde{a}) - \sum_{j \neq i} \tilde{v}_j(a^*)\right) \\ &= \left[v_i(a^*) + \sum_{j \neq i} \tilde{v}_j(a^*)\right] - \left[\sum_{j \neq i} \tilde{v}_j(\tilde{a})\right] \\ &= \text{Max welfare to all agents} \\ &\quad - \max \text{welfare to others when } i \text{ is absent} \\ &\geq 0 \end{aligned}$$

No payments to agents:

- \succ Suppose the agents report \widetilde{v}
- $> a^* \in \operatorname{argmax}_{a \in A} \sum_j \tilde{v}_j(a)$
- $> \tilde{a} \in \operatorname{argmax}_{a \in A} \sum_{j \neq i} \tilde{v}_j(a)$

$$\begin{split} p_i(\tilde{v}) \\ &= \sum_{j \neq i} \tilde{v}_j(\tilde{a}) - \sum_{j \neq i} \tilde{v}_j(a^*) \\ &= \text{Max welfare to others when } i \text{ is absent} \\ &- \text{welfare to others when } i \text{ is present} \\ &\geq 0 \end{split}$$

Welfare maximization:

▶ By definition, since f chooses the outcome maximizing the sum of reported values

Informal result:

Under minimal assumptions, VCG is the unique auction satisfying these properties.

- Suppose each agent has a value XBox and a value for PS4.
- Their value for $\{XBox, PS4\}$ is the max of their two values.

	A1	A2	А3	A4
XBox	3	4	8	7
PS4	4	2	6	1

Q: Who gets the xbox and who gets the PS4?

Q: How much do they pay?

	A1	A2	А3	A4
XBox	3	4	8	7
PS4	4	2	6	1

Allocation:

- A4 gets XBox, A3 gets PS4
- Achieves maximum welfare of 7 + 6 = 13

	A1	A2	А3	A4
XBox	3	4	8	7
PS4	4	2	6	1

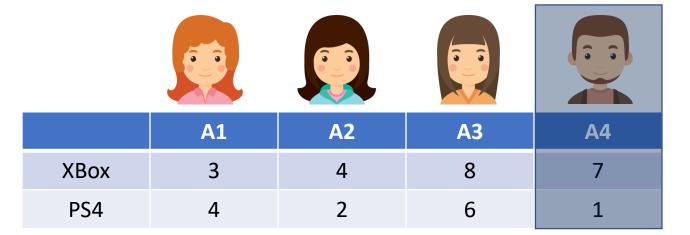
Payments:

- Zero payments charged to A1 and A2
 - > "Deleting" either does not change the outcome/payments for others

Can also be seen by individual rationality

Payments:

- Payment charged to A3 = 11 7 = 4
 - > Max welfare to others if A3 absent: 7 + 4 = 11
 - Give XBox to A4 and PS4 to A1
 - Welfare to others if A3 present: 7



Payments:

- Payment charged to A4 = 12 6 = 6
 - > Max welfare to others if A4 absent: 8 + 4 = 12
 - Give XBox to A3 and PS4 to A1
 - Welfare to others if A4 present: 6

	A1	A2	А3	A4
XBox	3	4	8	7
PS4	4	2	6	1

Final Outcome:

Allocation: A3 gets PS4, A4 gets XBox

• Payments: A3 pays 4, A4 pays 6

• Net utilities: A3 gets 6 - 4 = 2, A4 gets 7 - 6 = 1