#### CSC304 Lecture 7

Game Theory:
Security games,
Applications to security

#### Until now...

Simultaneous-move Games

All players act simultaneously

Nash equilibria = stable outcomes

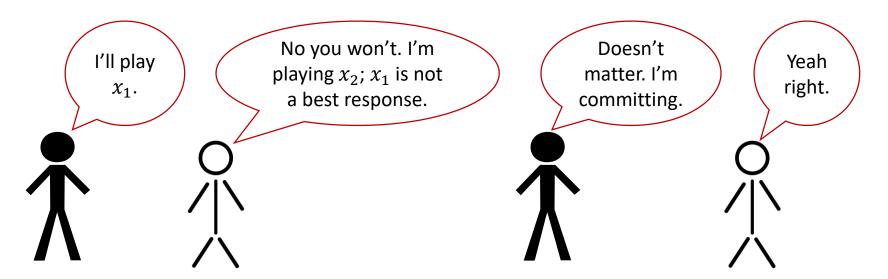
 Each player is best responding to the strategies of all other players

### Sequential Move Games

- Focus on two players: "leader" and "follower"
- 1. Leader commits to a (possibly mixed) strategy  $x_1$ 
  - Cannot change later
- 2. Follower learns about  $x_1$ 
  - > Follower must believe that leader's commitment is credible
- 3. Follower chooses the best response  $x_2$ 
  - > Can assume to be a pure strategy without loss of generality
  - If multiple actions are best response, break ties in favor of the leader

### Sequential Move Games

- Wait. Does this give us anything new?
  - $\triangleright$  Can't I, as player 1, commit to playing  $x_1$  in a simultaneous-move game too?
  - Player 2 wouldn't believe you.



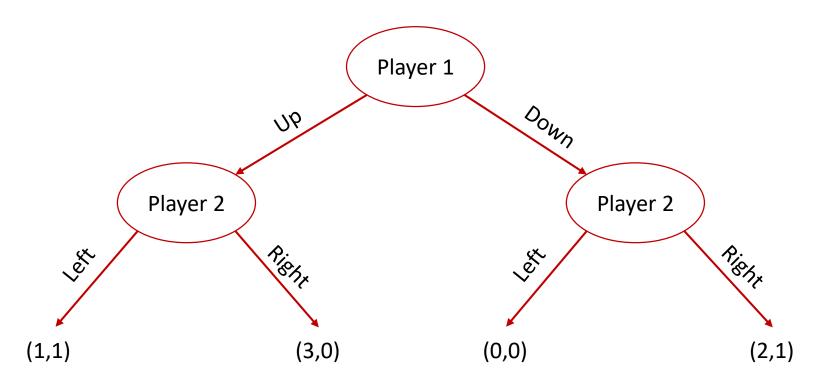
#### That's unless...

You're as convincing as this guy.



### How to represent the game?

- Extensive form representation
  - > Can also represent "information sets", multiple moves, ...



#### A Curious Case

| P2   | Left  | Right |
|------|-------|-------|
| Up   | (1,1) | (3,0) |
| Down | (0,0) | (2,1) |

Q: What are the Nash equilibria of this game?

• Q: You are P1. What is your reward in Nash equilibrium?

#### A Curious Case

| P2   | Left  | Right |
|------|-------|-------|
| Up   | (1,1) | (3,0) |
| Down | (0,0) | (2,1) |

Q: As P1, you want to commit to a pure strategy.
 Which strategy would you commit to?

Q: What would your reward be now?

# Commitment Advantage

| P2   | Left  | Right |
|------|-------|-------|
| Up   | (1,1) | (3,0) |
| Down | (0,0) | (2,1) |

- Reward in the unique Nash equilibrium = 1
- Reward when committing to Down = 2

### Commitment Advantage

| P2   | Left  | Right |
|------|-------|-------|
| Up   | (1,1) | (3,0) |
| Down | (0,0) | (2,1) |

- Higher reward in committing to a mixed strategy
  - > P1 commits to: Up w.p.  $0.5 \epsilon$ , Down w.p.  $0.5 + \epsilon$
  - > P2 is still better off playing Right
  - $\triangleright$  E[Reward] to P1  $\approx$  2.5
  - Note: If P1 plays both actions with probability exactly 0.5, we assume P2 plays Right (break ties in favor of leader)

# Stackelberg vs Nash

 Committing first is always better than playing a simultaneous-move game?

#### Yes!

- > If  $(x_1^*, x_2^*)$  is a NE, P1 can always commit to  $x_1^*$ , ensure that P2 will play  $x_2^*$ , and achieve the reward in the NE
- $\gt$  P1 may be able to commit to a better strategy than  $x_1^*$
- Applications to security
  - > Law enforcement is better off committing to a mixed patrolling strategy, and announcing the strategy publicly!

# Stackelberg in Zero-Sum

Recall the minimax theorem:

$$\max_{x_1} \min_{x_2} x_1^T A x_2 = \min_{x_2} \max_{x_1} x_1^T A x_2$$

- P1 goes first → P1 chooses her minimax strategy
- P2 goes first → P2 chooses her minimax strategy
- Minimax Theorem: It doesn't make a difference!
  - > Simultaneous-move, P1 going first, and P2 going first are essentially identical scenarios.

### Stackelberg in General-Sum

• 2-player non-zero-sum game with reward matrices A and  $B \neq -A$  for the two players

$$\max_{x_1} x_1^T A f(x_1)$$

where 
$$f(x_1) = \underset{x_2}{\operatorname{argmax}} x_1^T B x_2$$

How do we compute this?

| P2   | Left  | Right |
|------|-------|-------|
| Up   | (1,1) | (3,0) |
| Down | (0,0) | (2,1) |

- Let us separately maximize the reward of P1 in 2 cases:
  - > Strategies that cause P2 to play Left
  - > Strategies that cause P2 to play Right

• Suppose P1 commits to Up w.p. p, Down w.p. 1-p

| P2   | Left  | Right |
|------|-------|-------|
| Up   | (1,1) | (3,0) |
| Down | (0,0) | (2,1) |

| P2   | Left  | Right |
|------|-------|-------|
| Up   | (1,1) | (3,0) |
| Down | (0,0) | (2,1) |

Strategies that cause P2 to play Left

Max 
$$p$$
s.t. Answer=1
$$p \ge 1 - p$$

$$p \in [0,1]$$

| P2   | Left  | Right |
|------|-------|-------|
| Up   | (1,1) | (3,0) |
| Down | (0,0) | (2,1) |

Strategies that cause P2 to play Right

Max 
$$p \cdot 3 + (1 - p) \cdot 2$$
 Answer=2.5   
s. t.   
 $p \cdot 1 + (1 - p) \cdot 0 \le p \cdot 0 + (1 - p) \cdot 1$    
 $p \in [0,1]$ 

# Stackelberg via LPs

#### High-level Idea:

- > For each action  $s_2^*$  of P2...
- > Write a *linear program* with the mixed strategy  $x_1$  of P1 as the unknown, which...
- > Maximizes the reward of P1 when P1 plays  $x_1$ , P2 responds with  $s_2^*$ ...
- > Subject to the constraint that  $x_1$  in fact incentivizes P2 to play  $s_2^*$

# Stackelberg via LPs

- $S_1$ ,  $S_2$  = sets of actions of leader and follower
- $|S_1| = m_1, |S_2| = m_2$

 $\Sigma_{S_1 \in S_1} x_1(S_1) = 1$ 

 $\forall s_1 \in S_1, x_1(s_1) \geq 0$ 

- $x_1(s_1)$  = probability of leader playing  $s_1$
- $\pi_1$ ,  $\pi_2$  = reward functions for leader and follower

$$\max \Sigma_{s_1 \in S_1} x_1(s_1) \cdot \pi_1(s_1, s_2^*)$$
  
subject to  
$$\forall s_2 \in S_2, \ \Sigma_{s_1 \in S_1} x_1(s_1) \cdot \pi_2(s_1, s_2^*) \geq$$
  
$$\Sigma_{s_1 \in S_1} x_1(s_1) \cdot \pi_2(s_1, s_2)$$

• The LP corresponding to  $s_2^*$  optimizes over all  $x_1$  for which  $s_2^*$  is the best response

• One LP for each  $s_2^*$ ,

over all  $m_2$  LPs

take the maximum

### Real-World Applications

#### Security Games

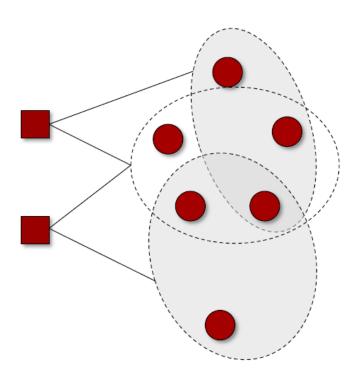
- Defender (leader) has k identical patrol units
- Defender wants to defend a set of n targets T
- > In a pure strategy, each resource can protect a subset of targets  $S \subseteq T$  from a given collection S
- A target is covered if it is protected by at least one resource
- Attacker wants to select a target to attack



### Real-World Applications

#### Security Games

- For each target, the defender and the attacker have two utilities: one if the target is covered, one if it is not.
- Defender commits to a mixed strategy; attacker follows by choosing a target to attack.



#### Ah!

 Q: Because this is a 2-player Stackelberg game, can we just compute the optimal strategy for the defender in polynomial time...?

- Time is polynomial in the number of pure strategies of the defender
  - > In security games, this is  $|S|^k$
  - $\triangleright$  Exponential in k

Intricate computational machinery required...

#### Newsweek National News

Subscribe Now Make Newsweek Your Homepage Newsletters RSS

#### The Element of Surprise

To help combat the terrorism threat, officials at Los Angeles Inter Airport are introducing a bold new idea into their arsenal: random of security checkpoints. Can game theory help keep us safe?

#### WEB EXCLUSIVE

By Andrew Murr

Newsweek

Updated: 1:00 p.m. PT Sept 28, 2007

Sept. 28, 2007 - Security officials at Los Angeles International Airport now have a new weapon in their fight against terrorism: complete, baffling randomness. Anxious to thwart future terror attacks in the early stages while plotters are casing the airport, LAX security patrols have begun using a new software program called ARMOR, NEWSWEEK has learned, to make the placement of security checkpoints completely unpredictable. Now all airport security officials have to do is press a button labeled



Security forces work the sidewalk :

"Randomize," and they can throw a sort of digital cloak of invisibility over where they place the cops' antiterror checkpoints on any given day.

LAX

#### Real-World Applications

- Protecting entry points to LAX
- Scheduling air marshals on flights
  - Must return home
- Protecting the Staten Island Ferry
  - > Continuous-time strategies
- Fare evasion in LA metro
  - > Bathroom breaks !!!
- Wildlife protection in Ugandan forests
  - > Poachers are not fully rational
- Cyber security

. . .