CSC304 Lecture 20

Fair Division 1: Cake-Cutting

[Image and Illustration Credit: Ariel Procaccia]

Announcements

- Plan for the rest of the course
 - > Fri, Nov 29 lecture
 - Last lecture that covers new material
 - Mon, Dec 2 tutorial
 - O Going over midterm 2 solutions?
 - > Wed, Dec 4 lecture
 - Review
 - > Thu, Dec 5 tutorial
 - Make-up Monday
 - o GB 248 (everyone), 3-4pm
 - Going over assignment 3 solutions

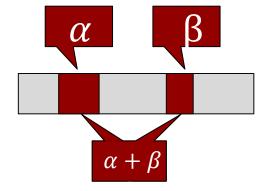
Cake-Cutting

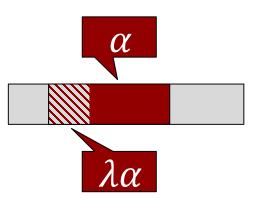
- A heterogeneous, divisible good
 - Heterogeneous: it may be valued differently by different individuals
 - Divisible: we can share/divide it between individuals
- Represented as [0,1]
 - > Almost without loss of generality
- Set of players $N = \{1, ..., n\}$
- Piece of cake $X \subseteq [0,1]$
 - > A finite union of disjoint intervals

Agent Valuations

• Each player i has a valuation V_i that is very much like a probability distribution over [0,1]

- Additive: For $X \cap Y = \emptyset$, $V_i(X) + V_i(Y) = V_i(X \cup Y)$
- Normalized: $V_i([0,1]) = 1$
- Divisible: $\forall \lambda \in [0,1]$ and X, $\exists Y \subseteq X \text{ s.t. } V_i(Y) = \lambda V_i(X)$





Fairness Goals

- Allocation: disjoint partition $A = (A_1, ..., A_n)$
 - $A_i =$ piece of the cake given to player i

- Desired fairness properties:
 - > Proportionality (Prop):

$$\forall i \in N \colon V_i(A_i) \ge \frac{1}{n}$$

> Envy-Freeness (EF):

$$\forall i, j \in N: V_i(A_i) \ge V_i(A_j)$$

Fairness Goals

- Prop: $\forall i \in N: V_i(A_i) \geq 1/n$
- EF: $\forall i, j \in N: V_i(A_i) \geq V_i(A_j)$
- Question: What is the relation between proportionality and EF?
 - 1. Prop \Rightarrow EF
 - (2.) EF \Rightarrow Prop
 - 3. Equivalent
 - 4. Incomparable

CUT-AND-CHOOSE

• Algorithm for n=2 players

- Player 1 divides the cake into two pieces X,Y s.t. $V_1(X) = V_1(Y) = 1/2$
- Player 2 chooses the piece she prefers.

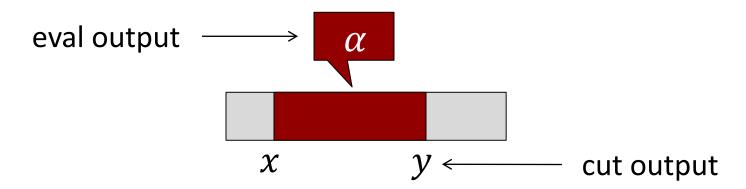
- This is envy-free and therefore proportional.
 - > Why?

Input Model

- How do we measure the "time complexity" of a cake-cutting algorithm for n players?
- Typically, time complexity is a function of the length of input encoded as binary.
- Our input consists of functions V_i , which require infinite bits to encode.
- We want running time as a function of n.

Robertson-Webb Model

- We restrict access to valuation V_i through two types of queries:
 - $\triangleright \text{Eval}_i(x, y) \text{ returns } \alpha = V_i([x, y])$
 - > $\operatorname{Cut}_i(x,\alpha)$ returns any y such that $V_i([x,y]) = \alpha$ o If $V_i([x,1]) < \alpha$, return 1.

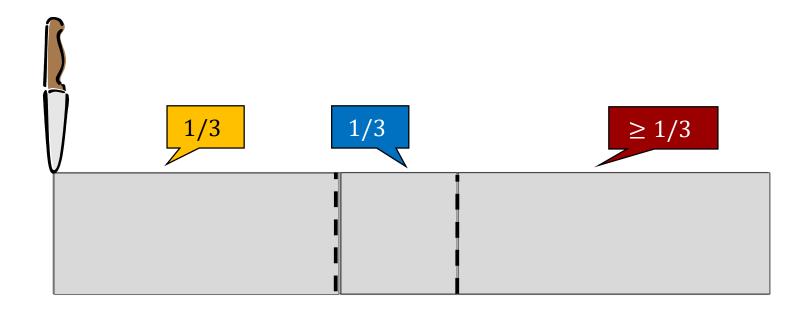


Robertson-Webb Model

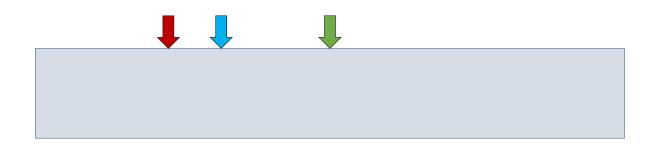
- Two types of queries:
 - $\triangleright \text{Eval}_i(x, y) = V_i([x, y])$
 - $ightharpoonup \operatorname{Cut}_i(x,\alpha) = y \text{ s.t. } V_i([x,y]) = \alpha$
- Question: How many queries are needed to find an EF allocation when n=2?
- Answer: 2

ullet Protocol for finding a proportional allocation for n players

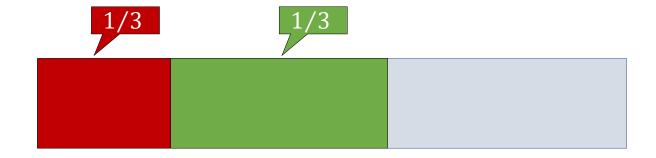
- ullet Referee starts at 0, and moves a knife to the right.
- Repeat: When the piece to the left of the knife is worth 1/n to some player, the player shouts "stop", gets that piece, and exits.
- The last player gets the remaining piece.

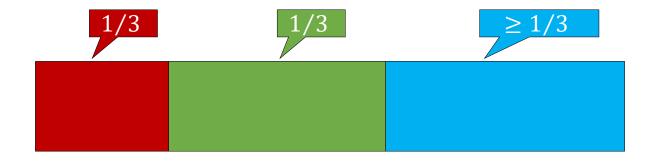


- Robertson-Webb model? Cut-Eval queries?
 - Moving knife is not really needed.
- At each stage, we want to find the remaining player that has value 1/n from the smallest next piece.
 - \gt Ask each remaining player a cut query to mark a point where her value is 1/n from the current point.
 - > Directly move the knife to the leftmost mark, and give that piece to that player.









• Question: What is the complexity of the Dubins-Spanier protocol in the Robertson-Webb model?

- 1. $\Theta(n)$
- 2. $\Theta(n \log n)$
- $\Theta(n^2)$
- 4. $\Theta(n^2 \log n)$

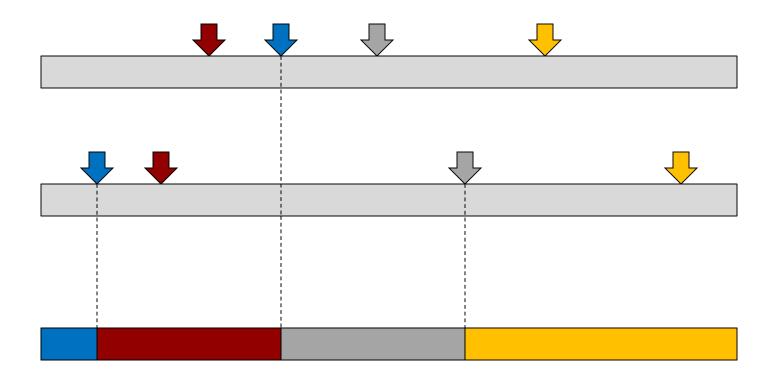
EVEN-PAZ (RECURSIVE)

- Input: Interval [x, y], number of players n> For simplicity, assume $n = 2^k$ for some k
- If n = 1, give [x, y] to the single player.
- Otherwise, let each player i mark z_i s.t.

$$V_i([x, z_i]) = \frac{1}{2} V_i([x, y])$$

- Let z^* be mark n/2 from the left.
- Recurse on $[x, z^*]$ with the left n/2 players, and on $[z^*, y]$ with the right n/2 players.

EVEN-PAZ



EVEN-PAZ

- Theorem: EVEN-PAZ returns a Prop allocation.
- Inductive Proof:
 - > Hypothesis: With n players, EVEN-PAZ ensures that for each player $i, V_i(A_i) \ge (1/n) \cdot V_i([x, y])$
 - o Prop follows because initially $V_i([x,y]) = V_i([0,1]) = 1$
 - > Base case: n=1 is trivial.
 - > Suppose it holds for $n = 2^{k-1}$. We prove for $n = 2^k$.
 - \triangleright Take the 2^{k-1} left players.
 - Every left player i has $V_i([x, z^*]) \ge (1/2) V_i([x, y])$
 - If it gets A_i , by induction, $V_i(A_i) \ge \frac{1}{2^{k-1}} V_i([x, z^*]) \ge \frac{1}{2^k} V_i([x, y])$

EVEN-PAZ

- Theorem: EVEN-PAZ uses $O(n \log n)$ queries.
- Simple Proof:
 - \triangleright Protocol runs for $\log n$ rounds.
 - > In each round, each player is asked one cut query.
 - > QED!

Complexity of Proportionality

• Theorem [Edmonds and Pruhs, 2006]: Any proportional protocol needs $\Omega(n \log n)$ operations in the Robertson-Webb model.

 Thus, the EVEN-PAZ protocol is (asymptotically) provably optimal!

Envy-Freeness?

- "I suppose you are also going to give such cute algorithms for finding envy-free allocations?"
- Bad luck. For *n*-player EF cake-cutting:
 - > [Brams and Taylor, 1995] give an unbounded EF protocol.
 - \triangleright [Procaccia 2009] shows $\Omega(n^2)$ lower bound for EF.
 - > Last year, the long-standing major open question of "bounded EF protocol" was resolved!

Next Lecture

- More desiderata
- Allocation of indivisible goods