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• We introduced a plethora of voting rules

➢ Plurality

➢ Borda

➢ Veto

➢ 𝑘-Approval

➢ STV

➢ Plurality with 
runoff

➢ Kemeny

➢ Copeland

➢ Maximin

• Which is the right way to aggregate preferences?
➢ GS Theorem: There is no good strategyproof voting rule.

➢ For now, let us forget about incentives. Let us focus on 
how to aggregate given truthful votes.
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• Set of voters 𝑁 = {1,… , 𝑛}

• Set of alternatives 𝐴, 𝐴 = 𝑚

• Voter 𝑖 has a preference 
ranking ≻𝑖 over the 
alternatives

1 2 3

a c b

b a a

c b c

• Preference profile ≻ = collection of all voter rankings 

• Voting rule (social choice function) 𝑓
➢ Takes as input a preference profile ≻

➢ Returns an alternative 𝑎 ∈ 𝐴
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• Goal: Define a set of reasonable desiderata, and 
find voting rules satisfying them
➢ Ultimate hope: a unique voting rule satisfies the axioms 

we are interested in!

• Sadly, it’s often the opposite case. 
➢ Many combinations of reasonable axioms cannot be 

satisfied by any voting rule. 

➢ GS theorem: nondictatorship + ontoness + 
strategyproofness = ∅

➢ Arrow’s theorem: we’ll see

➢ …
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• Unanimity: If all voters have the same top choice, 
that alternative is the winner. 

𝑡𝑜𝑝 ≻𝑖 = 𝑎 ∀𝑖 ∈ 𝑁 ⇒ 𝑓 ≻ = 𝑎

➢ I used 𝑡𝑜𝑝 ≻𝑖 = 𝑎 to denote 𝑎 ≻𝑖 𝑏 ∀𝑏 ≠ 𝑎

• Pareto optimality: If all voters prefer 𝑎 to 𝑏, then 𝑏 is 
not the winner.

𝑎 ≻𝑖 𝑏 ∀𝑖 ∈ 𝑁 ⇒ 𝑓 ≻ ≠ 𝑏

• Q: What is the relation between these axioms?

➢ Pareto optimality ⇒ Unanimity
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• Anonymity: Permuting votes does not change the 
winner (i.e., voter identities don’t matter).
➢ E.g., these two profiles must have the same winner:

{voter 1: 𝑎 ≻ 𝑏 ≻ 𝑐, voter 2: 𝑏 ≻ 𝑐 ≻ 𝑎}
{voter 1: 𝑏 ≻ 𝑐 ≻ 𝑎, voter 2: 𝑎 ≻ 𝑏 ≻ 𝑐}

• Neutrality: Permuting the alternative names 
permutes the winner accordingly.
➢ E.g., say 𝑎 wins on {voter 1: 𝑎 ≻ 𝑏 ≻ 𝑐, voter 2: 𝑏 ≻ 𝑐 ≻ 𝑎}

➢ We permute all names: 𝑎 → 𝑏, 𝑏 → 𝑐, and 𝑐 → 𝑎

➢ New profile: {voter 1: 𝑏 ≻ 𝑐 ≻ 𝑎, voter 2: 𝑐 ≻ 𝑎 ≻ 𝑏}

➢ Then, the new winner must be 𝑏.
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• Neutrality is tricky

➢ As we defined it, it is inconsistent with anonymity!
o Imagine {voter 1: 𝑎 ≻ 𝑏, voter 2: 𝑏 ≻ 𝑎}

o Without loss of generality, say 𝑎 wins

o Imagine a different profile: {voter 1: 𝑏 ≻ 𝑎, voter 2: 𝑎 ≻ 𝑏}

• Neutrality: We just exchanged 𝑎 ↔ 𝑏, so winner is 𝑏.

• Anonymity: We just exchanged the votes, so winner stays 𝑎.

➢ Typically, we only require neutrality for…
o Randomized rules: E.g., a rule could satisfy both by choosing 𝑎 and 
𝑏 as the winner with probability ½ each, on both profiles

o Deterministic rules allowed to return ties: E.g., a rule could return 
{𝑎, 𝑏} as tied winners on both profiles.
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• Majority consistency: If a majority of voters have the same 
top choice, that alternative wins.

𝑖: 𝑡𝑜𝑝 ≻𝑖 = 𝑎 >
𝑛

2
⇒ 𝑓 ≻ = 𝑎

➢ Satisfied by plurality, but not by Borda count

• Condorcet consistency: If 𝑎 defeats every other alternative 
in a pairwise election, 𝑎 wins.

𝑖: 𝑎 ≻𝑖 𝑏 >
𝑛

2
, ∀𝑏 ≠ 𝑎 ⇒ 𝑓 ≻ = 𝑎

➢ Condorcet consistency ⇒ Majority consistency

➢ Violated by both plurality and Borda count
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• Is even the weaker axiom majority consistency a 
reasonable one to expect?

1 2 3 4 5

a a a b b

b b b

a a
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• Consistency: If 𝑎 is the winner on two profiles, it 
must be the winner on their union.

𝑓 ≻1 = 𝑎 ∧ 𝑓 ≻2 = 𝑎 ⇒ 𝑓 ≻1+≻2 = 𝑎

➢ Example: ≻1= 𝑎 ≻ 𝑏 ≻ 𝑐 , ≻2= 𝑎 ≻ 𝑐 ≻ 𝑏, 𝑏 ≻ 𝑐 ≻ 𝑎

➢ Then, ≻1+≻2= 𝑎 ≻ 𝑏 ≻ 𝑐, 𝑎 ≻ 𝑐 ≻ 𝑏, 𝑏 ≻ 𝑐 ≻ 𝑎

• Is this reasonable?
➢ Young [1975] showed that subject to mild requirements, a voting rule 

is consistent if and only if it is a positional scoring rule!

➢ Thus, plurality with runoff, STV, Kemeny, Copeland, Maximin, etc are 
not consistent.
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• Weak monotonicity: If 𝑎 is the winner, and 𝑎 is 
“pushed up” in some votes, 𝑎 remains the winner.
➢ 𝑓 ≻ = 𝑎 ⇒ 𝑓 ≻′ = 𝑎 if

1. 𝑏 ≻𝑖 𝑐 ⇔ 𝑏 ≻𝑖
′ 𝑐, ∀𝑖 ∈ 𝑁, 𝑏, 𝑐 ∈ 𝐴\{𝑎}

“Order among other alternatives preserved in all votes”

2. 𝑎 ≻𝑖 𝑏 ⇒ 𝑎 ≻𝑖
′ 𝑏, ∀𝑖 ∈ 𝑁, 𝑏 ∈ 𝐴\{𝑎} (𝑎 only improves)

“In every vote, 𝑎 still defeats all the alternatives it defeated”

• Contrast: strong monotonicity requires 𝑓 ≻′ = 𝑎
even if ≻′ only satisfies the 2nd condition
➢ It is thus too strong. Equivalent to strategyproofness!

➢ Only satisfied by dictatorial/non-onto rules [GS theorem]
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• Weak monotonicity: If 𝑎 is the winner, and 𝑎 is 
“pushed up” in some votes, 𝑎 remains the winner.
➢ 𝑓 ≻ = 𝑎 ⇒ 𝑓 ≻′ = 𝑎, where 
o 𝑏 ≻𝑖 𝑐 ⇔ 𝑏 ≻𝑖

′ 𝑐, ∀𝑖 ∈ 𝑁, 𝑏, 𝑐 ∈ 𝐴\{𝑎} (Order of others preserved)

o 𝑎 ≻𝑖 𝑏 ⇒ 𝑎 ≻𝑖
′ 𝑏, ∀𝑖 ∈ 𝑁, 𝑏 ∈ 𝐴\{𝑎} (𝑎 only improves)

• Weak monotonicity is satisfied by most voting rules
➢ Only exceptions (among rules we saw): 

STV and plurality with runoff

➢ But this helps STV be hard to manipulate
o [Conitzer & Sandholm 2006]: “Every weakly monotonic voting rule is 

easy to manipulate on average.”
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• STV violates weak monotonicity

7 voters 5 voters 2 voters 6 voters

a b b c

b c c a

c a a b

• First 𝑐, then 𝑏 eliminated

• Winner: 𝑎

7 voters 5 voters 2 voters 6 voters

a b a c

b c b a

c a c b

• First 𝑏, then 𝑎 eliminated

• Winner: 𝑐
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• For social welfare functions that output a ranking:

• Independence of Irrelevant Alternatives (IIA):
➢ If the preferences of all voters between 𝑎 and 𝑏 are 

unchanged, then the social preference between 𝑎 and 𝑏
should not change.

• Arrow’s Impossibility Theorem
➢ No voting rule satisfies IIA, Pareto optimality, and 

nondictatorship. 

➢ Proof omitted.

➢ Foundations of the axiomatic approach to voting

NOT IN 
SYLLABUS
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• Assume that there is a “true” ranking of 
alternatives
➢ Unknown to us apriori

• Votes {≻𝑖} are generated i.i.d. from a distribution 
parametrized by a ranking 𝜎∗

➢ Pr[≻ |𝜎∗] denotes the probability of drawing a vote ≻
given that the ground truth is 𝜎∗

• Maximum likelihood estimate (MLE):
➢ Given ≻, return argmax𝜎 Pr ≻ 𝜎 = ς𝑖=1

𝑛 Pr ≻𝑖 𝜎

NOT IN 
SYLLABUS
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• Example: Mallows’ model
➢ Recall Kendall-tau distance 𝑑 between two rankings: 

#pairs of alternatives on which they disagree

➢ Malllows’ model: Pr ≻ 𝜎∗ ∝ 𝜑𝑑 ≻,𝜎∗ , where 
o 𝜑 ∈ (0,1] is the “noise parameter”

o 𝜑 → 0 : Pr 𝜎∗ 𝜎∗ → 1

o 𝜑 = 1 : uniform distribution

o Normalization constant 𝑍𝜑 = σ≻𝜑
𝑑 ≻,𝜎∗ does not depend on 𝜎∗

➢ The greater the distance from the ground truth, the 
smaller the probability 

NOT IN 
SYLLABUS
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• Example: Mallows’ model
➢ What is the MLE ranking for Mallows’ model?

max
𝜎

ෑ

𝑖=1

𝑛

Pr ≻𝑖 𝜎∗ = max
𝜎

ෑ

𝑖=1

𝑛
𝜑𝑑 ≻𝑖,𝜎

∗

𝑍𝜑
= max

𝜎

𝜑σ𝑖=1
𝑛 𝑑 ≻𝑖,𝜎

∗

𝑍𝜑

➢ The MLE ranking 𝜎∗ minimizes σ𝑖=1
𝑛 𝑑(≻𝑖 , 𝜎

∗)

➢ This is precisely the Kemeny ranking!

• Statistical approach yields a unique rule, but is 
specific to the assumed distribution of votes

NOT IN 
SYLLABUS
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• Each voter 𝑖 still submits a ranking ≻𝑖

➢ But the voter has “implicit” numerical utilities {
}

𝑣𝑖 𝑎 ≥
0

Σ𝑎 𝑣𝑖 𝑎 = 1
𝑎 ≻𝑖 𝑏 ⇒ 𝑣𝑖 𝑎 ≥ 𝑣𝑖 𝑏

• Goal: 
➢ Select 𝑎∗ with the maximum social welfare σ𝑖 𝑣𝑖 𝑎

∗

o Cannot always find this given only rankings from voters

➢ Refined goal: Select 𝑎∗ that gives the best worst-case 
approximation of welfare
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• The distortion of a voting rule 𝑓 is its 
approximation ratio of social welfare, on the worst 
preference profile.

𝑑𝑖𝑠𝑡 𝑓 = sup
𝑣𝑎𝑙𝑖𝑑 {𝑣𝑖}

max
𝑏

σ𝑖 𝑣𝑖 𝑏

σ𝑖 𝑣𝑖 𝑓(≻)

➢ where each 𝑣𝑖 is valid if Σ𝑎 𝑣𝑖 𝑎 = 1

➢ ≻= ≻1, … , ≻𝑛 where ≻𝑖 represents the ranking of 
alternatives according to 𝑣𝑖
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• Suppose there are 2 voters and 3 alternatives

• Suppose our 𝑓 returns 𝑐 on this profile

1 2

a c

b a

c b

Rankings

1 2

a : 1.0 c : 0.5

b : 0.0 a : 0.5

c : 0.0 b : 0.0

Utilities

1 2

a : 0.4 c : 0.7

b : 0.3 a : 0.2

c : 0.3 b : 0.1

Utilities

Social welfare 
𝑎 = 1.5 (optimal)
𝑐 = 0.5
𝑑𝑖𝑠𝑡(𝑓) ≥ 3

…

Social welfare 
𝑐 = 1.0 (optimal)

𝑑𝑖𝑠𝑡(𝑓) ≥ 1

𝑑𝑖𝑠𝑡(𝑓) is the largest 
such number you can 
find by constructing 
consistent utility profiles
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• Theorem [Caragiannis et al. ‘17]:
Plurality achieves 𝑂 𝑚2 distortion. 

• Proof:
➢ The winner is the top choice of at least 𝑛/𝑚 voters. 

➢ Each voter must have utility at least 1/𝑚 for her top 
choice. (WHY?)

➢ Plurality achieves social welfare at least 
𝑛

𝑚
⋅
1

𝑚
=

𝑛

𝑚2

➢ No alternative can achieve social welfare more than 𝑛
(WHY?)

➢ QED!
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• Theorem [Caragiannis et al. ‘17]:
Every deterministic voting rule has Ω 𝑚2 distortion. 

• Proof:
➢ 𝑛 voters divided into 𝑚 − 1 blocks of equal size

➢ Preference profile:
o voters in block 𝑖 put 𝑎𝑖 first, 𝑎𝑚 next, and the rest arbitrarily

➢ If output = 𝑎𝑚 ⇒∞ distortion  (WHY?)

➢ If output ∈ {𝑎1, … , 𝑎𝑚−1} ⇒ Ω 𝑚2 distortion
o Derivation on the board! 𝑎1 ≻ 𝑎𝑚 ≻ ⋯

𝑎2 ≻ 𝑎𝑚 ≻ ⋯
𝑎3 ≻ 𝑎𝑚 ≻ ⋯
⋮
𝑎𝑚−1 ≻ 𝑎𝑚 ≻ ⋯

𝑛/(𝑚 − 1)
times
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• Theorem [Boutilier et al. ‘15]:
There is a randomized rule with O 𝑚 ⋅ log𝑚 distortion.

• Proof:

➢ Given profile ≻, define the harmonic score sc(𝑎, ≻):

o Each voter gives Τ1 𝑘 points to her 𝑘𝑡ℎ most preferred alternative

o sc(𝑎, ≻) = sum of points received by 𝑎 from all voters

➢ Want to compare sc 𝑎, ≻ to social welfare sw 𝑎, Ԧ𝑣

o sw 𝑎, Ԧ𝑣 ≤ sc(𝑎, ≻) (WHY?)

o σ𝑎 𝑠𝑐(𝑎, ≻) = 𝑛 ⋅ σ𝑘=1
𝑚 Τ1 𝑘 ≤ 𝑛 ⋅ (ln𝑚 + 1)
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• Proof (continued):

➢ Golden voting rule:
o Rule 1: Choose every 𝑎 w.p. proportional to sc(𝑎, ≻)

o Rule 2: Choose every 𝑎 w.p. Τ1 𝑚 (uniformly at random)

o Execute rule 1 and rule 2 with probability ½ each

➢ Distortion ≤ 2 𝑚 ⋅ (ln𝑚 + 1) (proof on the board!)

➢ Trick: Take optimal alternative 𝑎∗ ∈ argmax𝑎∈𝐴 sw 𝑎, Ԧ𝑣

o If sc 𝑎∗, ≻ ≥ 𝑛 (ln𝑚 + 1)/𝑚 :

• Rule 1 picks 𝑎∗ with enough probability

o Otherwise, we know sw 𝑎∗, Ԧ𝑣 ≤ sc 𝑎∗, ≻ ≤ 𝑛 (ln𝑚 + 1)/𝑚 :

• Rule 2 generates enough social welfare (𝑛/𝑚).
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• Theorem [Boutilier et al. ‘15]:
No randomized rule has distortion better than 𝑚/3.

• Proof:
➢ Pick 𝑚 special alternatives: 𝑎1, … , 𝑎 𝑚

➢ 𝑛 voters divided into 𝑚 equal-size blocks

➢ Preference profile:
o For 𝑖 ∈ 1,… , 𝑚 , voters in block 𝑖 put 𝑎𝑖 first, and others arbitrarily

➢ Pigeonhole principle:
o ∃𝑎𝑖 ∈ 𝑎1, … , 𝑎 𝑚 that the voting rule picks with probability at most 
1/ 𝑚

o Construct worst-case valuation to make 𝑎𝑖 look as good as possible in 
hindsight to derive 𝑚/3 distortion bound (proof on the board!)
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• Pros: Uses minimal assumptions and yields a 
uniquely optimal voting rule

• Cons: The optimal rule is difficult to compute and 
unintuitive to humans

• This approach is currently deployed on 
RoboVote.org
➢ It has been extended to select a set of alternatives, select 

a ranking, select public projects subject to a budget 
constraint, etc.
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