CSC304 Lecture 12

Mechanism Design w/ Money: Revenue maximization Myerson's Auction

Revenue Maximization

Welfare vs Revenue

- In welfare maximization, we want to maximize $\sum_i v_i(a)$
 - VCG = strategyproof + maximizes welfare on every single instance
 - > Beautiful!
- In revenue maximization, we want to maximize $\sum_i p_i$
 - > We can still use strategyproof mechanisms (revelation principle).
 - > BUT...

Welfare vs Revenue

- Different strategyproof mechanisms are better for different instances.
- Example: 1 item, 1 bidder, unknown value v
 - > strategyproof = fix a price r, let the agent decide to "take it" ($v \ge r$) or "leave it" (v < r)
 - \rightarrow Maximize welfare \rightarrow set r=0
 - Must allocate item as long as the agent has a positive value
 - \rightarrow Maximize revenue $\rightarrow r = ?$
 - Different r are better for different v

Welfare vs Revenue

- We cannot optimize revenue on every instance
 - Need to optimize the expected revenue in the Bayesian framework
- If we want to achieve higher expected revenue than VCG, we cannot always allocate the item
 - > Revenue equivalence principle!

Single Item + Single Bidder

- Value v is drawn from distribution with CDF F
- Goal: post the optimal price r on the item
- Revenue from price $r = r \cdot (1 F(r))$ (Why?)
- Optimal $r^* = \operatorname{argmax}_r r \cdot (1 F(r))$
 - "Monopoly price"
 - > Note: r^* depends on F, but not on v, so the mechanism is strategyproof.

Example

- Suppose F is the CDF of the uniform distribution over [0,1] (denote by U[0,1]).
 - \triangleright CDF is given by F(x) = x for all $x \in [0,1]$.
- Recall: E[Revenue] from price r is $r \cdot (1 F(r))$
 - Q: What is the optimal posted price?
 - > Q: What is the corresponding optimal revenue?
- Compare this to the revenue of VCG, which is 0
 - > This is because if the value is less than r^* , we are willing to risk not selling the item.

Single Item + Two Bidders

- $v_1, v_2 \sim U[0,1]$
- VCG revenue = 2^{nd} highest bid = $min(v_1, v_2)$
 - > $E[\min(v_1, v_2)] = 1/3$ (Exercise!)
- Improvement: "VCG with reserve price"
 - > Reserve price *r*
 - \triangleright Highest bidder gets the item if bid more than r
 - \triangleright Pays max(r, 2nd highest bid)
 - "Critical payment": Pay the least value you could have bid and still won the item

Single Item + Two Bidders

- Reserve prices are ubiquitous
 - > E.g., opening bids in eBay auctions
 - > Guarantee a certain revenue to auctioneer if item is sold
- $E[\text{revenue}] = E[\max(r, \min(v_1, v_2))]$
 - > Maximize over r? Hard to think about.
- What about a strategyproof mechanism that is not VCG + reserve price?
 - What about just BNIC mechanisms?

Single-Parameter Environments

 Roger B. Myerson solved revenue optimal auctions in "single-parameter environments"

 Proposed a simple auction that maximizes expected revenue

Single-Parameter Environments

• Each agent i...

- \succ has a private value v_i drawn from a distribution with CDF F_i and PDF f_i
- \succ is "satisfied" at some level $x_i \in [0,1]$, which gives the agent value $x_i \cdot v_i$
- \triangleright is asked to pay p_i

Examples

- > Single divisible item
- > Single indivisible item $(x_i \in \{0,1\} \text{this is okay too!})$
- \triangleright Many items, single-minded bidders (again $x_i \in \{0,1\}$)

Myerson's Lemma

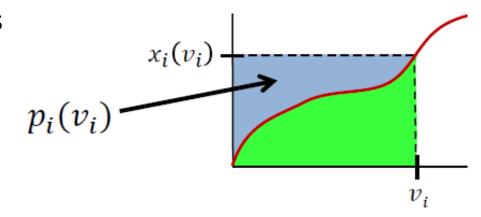
• Myerson's Lemma:

For a single-parameter environment, a mechanism is strategyproof if and only if for all i

1. x_i is monotone non-decreasing in v_i

2.
$$p_i = v_i \cdot x_i(v_i) - \int_0^{v_i} x_i(z) dz + p_i(0)$$
 (typically, $p_i(0) = 0$)

- Generalizes critical payments
 - > For every " δ " allocation, pay the lowest value that would have won it



Myerson's Lemma

Note: allocation determines unique payments

$$p_{i} = v_{i} \cdot x_{i}(v_{i}) - \int_{0}^{v_{i}} x_{i}(z)dz + p_{i}(0)$$

- A corollary: revenue equivalence
 - \succ If two mechanisms use the same allocation x_i , they "essentially" have the same expected revenue
- Another corollary: optimal revenue auctions
 - Optimizing revenue = optimizing some function of allocation (easier to analyze)

Myerson's Theorem

• "Expected Revenue = Expected Virtual Welfare"

> Recall:
$$p_i = v_i \cdot x_i(v_i) - \int_0^{v_i} x_i(z) dz + p_i(0)$$

> Take expectation over draw of valuations + lots of calculus

$$E_{\{v_i \sim F_i\}}[\Sigma_i \ p_i] = E_{\{v_i \sim F_i\}}[\Sigma_i \ \varphi_i \cdot x_i]$$

• $\varphi_i = v_i - \frac{1 - F_i(v_i)}{f_i(v_i)} = \text{virtual value of bidder } i$

• $\sum_{i} \varphi_{i} \cdot x_{i}$ = virtual welfare

Myerson's Theorem

- Myerson's auction:
 - > A strategyproof auction maximizes the (expected) revenue if its allocation rule maximizes the virtual welfare subject to monotonicity and it charges critical payments.

- Charging critical payments is easy.
- But maximizing virtual welfare subject to monotonicity is tricky.
 - > Let's get rid of the monotonicity requirement!

Myerson's Theorem Simplified

Regular Distributions

- \Rightarrow A distribution F is regular if its virtual value function $\varphi(v) = v (1 F(v))/f(v)$ is non-decreasing in v.
- > Many important distributions are regular, e.g., uniform, exponential, Gaussian, power-law, ...

Lemma

 \triangleright If all F_i 's are regular, the allocation rule maximizing virtual welfare is already monotone.

Myerson's Corollary:

 \triangleright When all F_i 's are regular, the strategyproof auction maximizes virtual welfare and charges critical payments.

Single Item + Single Bidder

Setup:

 \succ Single indivisible item, single bidder, value v drawn from a regular distribution with CDF F and PDF f

Goal:

> Maximize $\varphi \cdot x$, where $\varphi = v - \frac{1 - F(v)}{f(v)}$ and $x \in \{0,1\}$

Optimal auction:

- $> x = 1 \text{ iff } \varphi \ge 0 \iff v \ge \frac{1 F(v)}{f(v)} \iff v \ge v^* \text{ where } v^* = \frac{1 F(v^*)}{f(v^*)}$
- \triangleright Critical payment: v^*
- > This is VCG with a reserve price of $\varphi^{-1}(0)$!

Example

Optimal auction:

$$\Rightarrow x = 1 \text{ iff } \varphi \ge 0 \Leftrightarrow v \ge \frac{1 - F(v)}{f(v)}$$

> Critical payment: v^* such that $v^* = \frac{1 - F(v^*)}{f(v^*)}$

• Distribution is U[0,1]:

$$> x = 1 \text{ iff } v \ge \frac{1-v}{1} \Leftrightarrow v \ge \frac{1}{2}$$

- > Critical payment = $\frac{1}{2}$
- \gt That is, we post the optimal price of 0.5

Single Item + n Bidders

Setup:

> Single indivisible item, each bidder i has value v_i drawn from a regular distribution with CDF F_i and PDF f_i

Goal:

> Maximize $\sum_i \varphi_i \cdot x_i$ where $\varphi_i = v_i - \frac{1 - F_i(v_i)}{f_i(v_i)}$ and $x_i \in \{0,1\}$ such that $\sum_i x_i \le 1$

Single Item + n Bidders

Optimal auction:

- > If all $\varphi_i < 0$:
 - Nobody gets the item, nobody pays anything
 - \circ For all i, $x_i = p_i = 0$
- > If some $\varphi_i \ge 0$:
 - \circ Agent with highest φ_i wins the item, pays critical payment
 - $0 i^* \in argmax_i \varphi_i(v_i), x_{i^*} = 1, x_i = 0 \forall i \neq i^*$
 - $\circ p_{i^*} = \varphi_{i^*}^{-1} \left(\max \left(0, \max_{j \neq i^*} \varphi_j(v_j) \right) \right)$

 Note: The item doesn't necessarily go to the highest value agent!

Special Case: iid Values

• Suppose all distributions are identical (say CDF ${\cal F}$ and PDF ${\cal f}$)

- Check that the auction simplifies to the following
 - > Allocation: item goes to bidder i^* with highest value if her value $v_{i^*} \ge \varphi^{-1}(0)$
 - > Payment charged = $\max \left(\varphi^{-1}(0), \max_{j \neq i^*} v_j \right)$
- This is again VCG with a reserve price of $\varphi^{-1}(0)$

Example

• Two bidders, both drawing iid values from U[0,1]

$$\Rightarrow \varphi(v) = v - \frac{1-v}{1} = 2v - 1$$

$$\Rightarrow \varphi^{-1}(0) = 1/2$$

Auction:

- > Give the item to the highest bidder if their value is at least ½
- \triangleright Charge them max($\frac{1}{2}$, 2^{nd} highest bid)

Example

• Two bidders, one with value from U[0,1], one with value from U[3,5]

$$\Rightarrow \varphi_1(v_1) = 2v_1 - 1$$

$$\Rightarrow \varphi_2(v_2) = v_2 - \frac{1 - F_2(v_2)}{f_2(v_2)} = v_2 - \frac{1 - \frac{v_2 - 3}{2}}{\frac{1}{2}} = 2v_2 - 5$$

Auction:

- \triangleright If $v_1 < \frac{1}{2}$ and $v_2 < \frac{5}{2}$, the item remains unallocated.
- > Otherwise...
 - o If $2v_1 1 > 2v_2 5$, agent 1 gets it and pays $\max(\frac{1}{2}, v_2 2)$
 - o If $2v_1 1 < 2v_2 5$, agent 2 gets it and pays $\max(5/2, v_1 + 2)$

Extensions

- Irregular distributions:
 - > E.g., multi-modal or extremely heavy tail distributions
 - > Need to add the monotonicity constraint
 - > Turns out, we can "iron" irregular distributions to make them regular and then use Myerson's framework
- Relaxing DSIC to BNIC
 - Myerson's mechanism has optimal revenue among all DSIC mechanisms
 - > Turns out, it also has optimal revenue among the much larger class of BNIC mechanisms!

Approx. Optimal Auctions

- Optimal auctions become unintuitive and difficult to understand with unequal distributions, even if they are regular
 - > Simpler auctions preferred in practice
 - > We still want approximately optimal revenue
- Theorem [Hartline & Roughgarden, 2009]:
 - > For iid values from regular distributions, VCG with bidderspecific reserve prices gives a 2-approximation of the optimal revenue.

Approximately Optimal

- Still relies on knowing bidders' distributions
- Theorem [Bulow and Klemperer, 1996]:
 - \succ For i.i.d. values, $E[\text{Revenue of VCG with } n+1 \text{ bidders}] \geq E[\text{Optimal revenue with } n \text{ bidders}]$
- "Spend that effort in getting one more bidder than in figuring out the optimal auction"

Simple proof

- One can show that VCG with n+1 bidders has the max revenue among all n+1 bidder strategyproof auctions that always allocate the item
 - > Via revenue equivalence

- Consider the auction: "Run n-bidder Myerson on the first n bidders. If the item is unallocated, give it to agent n+1 for free."
 - > n + 1 bidder DSIC auction
 - \gt As much revenue as n-bidder Myerson auction

Optimizing Revenue is Hard

- Slow progress beyond single-parameter setting
 - > Even with just two items and one bidder with i.i.d. values for both items, the optimal auction DOES NOT run Myerson's auction on individual items!
 - "Take-it-or-leave-it" offers for the two items bundled might increase revenue
- But nowadays, the focus is on simple, approximately optimal auctions instead of complicated, optimal auctions.