
CSC304 Lecture 11

Mechanism Design w/ Money: Revelation principle; First price, second price, and ascending auctions; Revenue equivalence

Recap: Bayesian Framework

Recap: Bayesian Framework

- Strategy profile $\vec{s} = (s_1, ..., s_n)$
 - \triangleright Interim utility of agent i is

$$E_{\{v_j \sim D_j\}_{j \neq i}} [u_i(s_1(v_1), \dots, s_n(v_n))]$$

where utility u_i is "value derived – payment charged"

- $\Rightarrow \vec{s}$ is a Bayes-Nash equilibrium (BNE) if s_i is the best strategy for agent i given \vec{s}_{-i} (strategies of others)
 - NOTE: I don't know what others' values are. But I know they are rational players, so I can reason about what strategies they might use.

Recap: 1st Price Auction

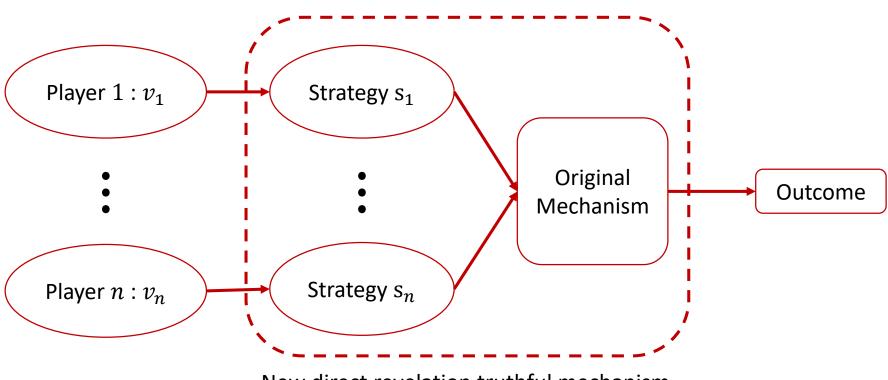
- Sealed-bid first price auction for a single item
 - \succ Each agent i privately submits a bid b_i
 - \triangleright Agent i^* with the highest bid wins the item, pays b_{i^*}
- Suppose there are two agents
 - \succ Common prior: each has valuation drawn from U[0,1]
- Claim: Both players using $s_i(v_i) = v_i/2$ is a BNE.
 - > Proof on the board.

Direct Revelation Mechanisms & The Revelation Principle

Direct Revelation

- Direct-revelation: mechanisms that ask you to report your private values
 - > Doesn't mean agents will report their true values.
 - Makes sense to ask "Would they, in equilibrium?"
- Non-direct-revelation: different action space than type space
 - Suppose your value for an item is in [0,1], but the mechanism asks you to either dive left or dive right.
 - > Strategy s_i : $[0,1] \rightarrow \{left, right\}$
 - > Truthfulness doesn't make much sense.
 - > But we can still ask: What is the outcome in equilibrium?

BNIC Mechanisms


- A direct revelation mechanism is Bayes-Nash incentive compatible (BNIC) if all players playing $s_i(v_i) = v_i$ is a BNE.
 - > I don't know what other's valuations are, only the distributions they're drawn from.
 - But as long as they report their true values, in expectation I would like to report my true value.
- Compare to strategyproofness
 - > I know what others' values are, and for every possible values they can have, I want to report my true values.

Revelation Principle

- Outcome = (allocation, payments)
- Strategyproof version [Gibbard, '73]
 - > If a mechanism implements an outcome in dominant strategies, there's a direct revelation strategyproof mechanism implementing the same outcome.
- BNIC version [Dasgupta et al. '79, Holmstrom '77, Myerson '79]
 - If a mechanism implements an outcome as BNE, there's a direct revelation BNIC mechanism implementing the same outcome.

Revelation Principle

• Informal proof:

New direct revelation truthful mechanism

Applying Revelation Principle

- We already saw...
 - > Sealed-bid 1st price auction
 - \gt 2 agents with valuations drawn from U[0,1]
 - > Each player halving his value was a BNE
 - Not naturally BNIC (players don't report value)
- Q: What is the BNIC variant of sealed-bid 1st price auction that we get using the revelation principle?

Can also be used on non-direct-revelation mechs

Revenue of Auction Mechanisms & Revenue Equivalence

1st Price Auction

• For n players with iid valuations from U[0,1], "shadowing" the bid by a factor of (n-1)/n is a BNE

• *E* [Revenue] to the auctioneer?

$$Fightharpoonup E_{\{v_i \sim U[0,1]\}_{i=1}^n} \left(\frac{n-1}{n}\right) * \max_i v_i = \frac{n-1}{n+1}$$
 (Exercise!)

• Interestingly, this is equal to E[Revenue] from 2nd price auction

>
$$E_{\{v_i \sim U[0,1]\}_{i=1}^n} [2^{\text{nd}} \text{ highest } v_i] = \frac{n-1}{n+1}$$
 (Exercise!)

Revenue Equivalence

If two BNIC mechanisms A and B:

- 1. Always produce the same allocation;
- 2. Have the same expected payment to agent i for some type v_i^0 (e.g., "zero value for all" \rightarrow zero payment);
- 3. Have agent valuations drawn from distributions with "path-connected support sets";

• Then they:

- > Charge the same expected payment to all agent types;
- > Have the same expected total revenue.

Revenue Equivalence

- Informally...
 - > If two BNIC mechanisms always have the same allocation, then they have the same E[payments] and E[revenue].
 - > Very powerful as it applies to any pair of BNIC mechanism

- 1st price (BNIC variant) and 2nd price auctions
 - Have the same allocation:
 Item always goes to the agent with the highest valuation
 - > Thus, also have the same revenue

Non-Direct-Revelation Auctions

- Ascending auction (a.k.a. English auction)
 - > All agents + auctioneer meet in a room.
 - > Auctioneer starts the price at 0.
 - > All agents want the item, and have their hands raised.
 - > Auctioneer raise the price continuously.
 - > Agents drop out when price > value for them
- Descending auction (a.k.a. Dutch auction)
 - > Start price at a very high value.
 - > Keep decreasing the price until some agent agrees to buy.