CSC304 Lecture 10

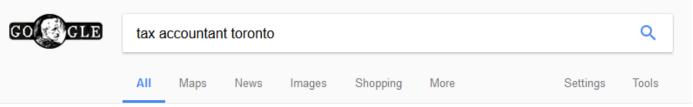
Mechanism Design w/ Money: Sponsored search; Bayesian framework; Bayes-Nash equilibria; First price auction

Announcements

Reminder:

- > Assignment 1 is due on Monday, Oct 14 by 3pm
- > You can take up to two late days for the assignment
- On Wednesday, Oct 16, one of the TAs will go over assignment solutions in class
 - Assignment solutions will NOT be posted online!
- > The first midterm will be on Monday, Oct 21, 3:10-4pm in your assigned tutorial room

Recap: VCG


- Maximizes reported welfare
- Charges each agent the apparent reduction in welfare they cause to others due to their presence
- Satisfies four properties
 - Welfare maximization
 - > Strategyproofness
 - > No payments to agents
 - > Individual rationality

This Lecture: More Auctions

Sponsored search

- Other auction mechanisms
 - > 1st price auction and ascending (English) auction
 - > Comparison to the 2nd price auction
- A different type of incentive guarantee
 - Bayes-Nash Incentive Compatibility

Sponsored Search Auctions

About 549,000 results (0.84 seconds)

Need A Good Tax Accountant? - We are Tax Experts in Toronto.

Ad www.taxsos.ca/Tax-Accountant ▼

Solve Complex Tax Problems Quickly. Service Special. Contact Us Now!

Highlights: Team Of Professionals, Free Consultation Available...

Go Green Lane, Unit 13, Thornhill, ON - Closing soon · 10:00 AM − 6:00 PM ▼

About Us Contact Us
Why Choose Tax SOS Cost of Services

Looking For An Accountant? - Get Expert & Trusted Advice - intuit.ca

Ad quickbooks.intuit.ca/QBOA ▼

Select From Over 50,000 QuickBooks Pro Advisors

Bookkeeping · Accounting Service · Tax & Financial Planning · Quickbooks Setup · Business Consult...

AZ Accounting Toronto - Specializing in Small Business

(Ad) www.azaccountingfirm.ca/ ▼

Tax Consulting and Finance Services

Services: Financial Statements, Professional Corporations, Self-Employed Individuals...

Specialized Tax Accountant - Best Tax Service For Less Now.

Ad www.crataxrescue.ca/CRATaxProblem/Tax-Accountant ▼

Quick Relief For CRA Tax Troubles. Get Free Meeting Today.


Frequently Asked Question - 3 Easy Steps To Fix Taxes

Sponsored Search Auctions

- A search engine receives a query
- There are k advertisement slots

$$\succ$$
 "Clickthrough rates" : $c_1 \ge c_2 \ge \cdots \ge c_k \ge c_{k+1} = 0$

• There are *n* advertisers (bidders)

- \succ Bidder i derives value v_i per click
- \succ Value to bidder i for slot $j = v_i \cdot c_j$
- \succ Without loss of generality, $v_1 \geq v_2 \geq \cdots \geq v_n$

Question:

> Who gets which slot, and how much do they pay?

Sponsored Search: VCG

VCG

- > Maximize welfare:
 - o bidder j gets slot j for $1 \le j \le k$, other bidders get nothing
- > Payment of bidder *j*?
- Increase in social welfare to others if j abstains
 - \triangleright Bidders j+1 through "k+1" get upgraded by one slot
 - > Payment of bidder $j = \sum_{i=j+1}^{k+1} v_i \cdot (c_{i-1} c_i)$
 - > Payment of bidder j **per click** = $\sum_{i=j+1}^{k+1} v_i \cdot \frac{c_{i-1}-c_i}{c_j}$

Sponsored Search: VCG

What if all the clickthrough rates are same?

$$> c_1 = c_2 = \cdots = c_k > c_{k+1} = 0$$

> Payment of bidder *j per click*

$$0 \sum_{i=j+1}^{k+1} v_i \cdot \frac{c_{i-1} - c_i}{c_j} = v_{k+1}$$

- \blacktriangleright Bidders 1 through k pay the value of bidder k+1
 - Familiar? VCG for k identical items

Sponsored Search: GSP

- Generalized Second Price Auction (GSP)
 - For $1 \le j \le k$, bidder j gets slot j and pays the value of bidder j+1 *per click*
 - > Other bidders get nothing and pay nothing

- Natural extension of the "second price" idea
 - > We considered this before for two identical slots
 - > Not strategyproof
 - > In fact, truth-telling may not even be a Nash equilibrium

Sponsored Search: GSP

- But there is a good Nash equilibrium that...
 - > realizes the VCG outcome, i.e., maximizes welfare, and
 - > generates as much revenue as VCG © [Edelman et al. 2007]
- Even the worst Nash equilibrium...
 - \triangleright gives 1.282-approximation to welfare ($PoA \le 1.282$) and
 - > generates at least half of the revenue of VCG [Caragiannis et al. 2011, Dutting et al. 2011, Lucier et al. 2012]
- So if the players achieve an equilibrium, things aren't so bad.

VCG vs GSP

VCG

- > Truthful revelation is a dominant strategy, so there's a higher confidence that players will reveal truthfully and the theoretical welfare/revenue guarantees will hold
- > But it is difficult to convey and understand

• GSP

- > Need to rely on players reaching a Nash equilibrium
- But has good welfare and revenue guarantees and is easy to convey and understand
- Industry is split on this issue too!

From Theory to Reality

- Value is proportional to clickthrough rate?
 - ➤ Could it be that users clicking on the 2nd slot are more likely buyers than those clicking on the 1st slot?
- Misaligned values of advertisers and ad engines?
 - > An advertiser having a high value for a slot does not necessarily mean their ad is appropriate for the slot
- Market competition?
 - What if there are other ad engines deploying other mechanisms and advertisers are strategic about which ad engines to participate in?

Bayesian Framework

 Useful for providing weaker incentive guarantees than strategyproofness

Strategyproofness:

"It's best for me to tell the truth even if I know what other players are doing, and regardless of what they are doing."

Weaker guarantee:

- "I don't exactly know what others are going to do, but I have some idea. In expectation, it's best for me to tell the truth."
- > Incomplete information setting

Bayesian Framework

Setup

- \triangleright Distribution D_i for each agent i
 - All distributions are known to all agents.
- \triangleright Each agent i's valuation v_i is sampled from D_i
 - $\circ v_i$'s are independent of each other
 - \circ Only agent i knows v_i
 - Private information of agent = "type" of agent
- > T_i = type space for agent i (support of $D_i \subseteq T_i$)
- $> A_i =$ set of possible actions/reports/bids of agent i
- > Strategy $s_i: T_i \rightarrow A_i$
 - "How do I convert my valuation to my bid?"

Bayesian Framework

- Strategy profile $\vec{s} = (s_1, ..., s_n)$
 - > Interim/expected utility of agent *i* is

$$E_{\{v_j \sim D_j\}_{j \neq i}} [u_i(s_1(v_1), ..., s_n(v_n))]$$

where utility u_i is "value derived – payment charged"

- $ightharpoonup \vec{s}$ is a Bayes-Nash equilibrium (BNE) if s_i is the best strategy for agent i given \vec{s}_{-i} (strategies of others)
 - NOTE: I don't know what others' values are. But I know they are rational players, so I can reason about what strategies they might use.

Example

- Sealed-bid first price auction for a single item
 - \triangleright Each agent i privately submits a bid b_i
 - \triangleright Agent i^* with the highest bid wins the item, pays b_{i^*}
- Suppose there are two agents
 - \succ Common prior: each has valuation drawn from U[0,1]
- Claim: Both players using $s_i(v_i) = v_i/2$ is a BNE.
 - > Proof on the board.