CSC304 Lecture 8

Mechanism Design w/ Money: Vickrey auction (single-item, general case)

Mechanism Design Recap

• Goal: Maximize social welfare $\max_{a} \sum_{i} v_{i}(a)$

- Method: Truthful Direct Revelation Mechanism
 - 1. Declare (f, p)
 - 2. Elicit valuations $v = (v_i)_{i=1}^n$
 - 3. f(v) chooses the social welfare maximizing outcome
 - 4. p(v) sets the payments charged to agents in a way that every agent wants to reveal their v_i truthfully

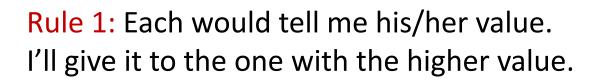
Mechanism Design Recap

- Revelation Principle \rightarrow without loss of generality
 - If a mechanism selects outcome a, payments p in eq., so does some truthful direct revelation mechanism.

Note:

- Principal wants to maximize social welfare $\sum_i v_i(a)$
- Each agent *i* wants to maximize his net utility
 > If outcome *a* is chosen and agent *i* pays *p_i*, his net utility is *v_i(a) − p_i*

Objective: The one who really needs it more should have it.



Objective: The one who really needs it more should have it.

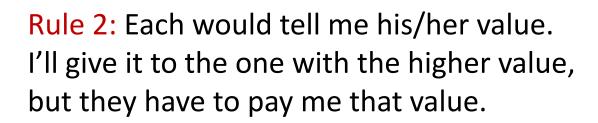


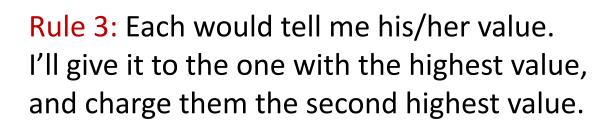
Image Courtesy: Freepik

Objective: The one who really needs it more should have it.

Implements the desired outcome. But not truthfully.

Image Courtesy: Freepik

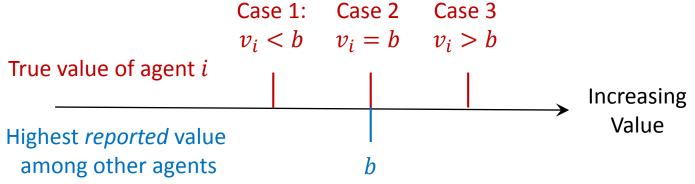
Objective: The one who really needs it more should have it.



Vickrey Auction: Single-Item

- f : give the item to agent $i^* \in \operatorname{argmax}_i v_i$
- $p: p_{i^*} = \max_{j \neq i^*} v_j$, nothing to other agents

Theorem: Vickrey auction is dominant strategy incentive compatible.



Vickrey Auction: Identical Items

- Two identical xboxes
 - > Each agent *i* only wants one, has value v_i
 - > Goal: give to the agents with the two highest values
- Attempt 1
 - > To agent with highest value, charge 2nd highest value.
 - > To agent with 2nd highest value, charge 3rd highest value.
- Attempt 2
 - To agents with highest and 2nd highest values, charge the 3rd highest value.
- Piazza Question: Which attempt(s) would be DSIC?
 - > Both, 1, 2, None.

- What if I want to give away an xbox AND a ps4?
- Each agent still wants only one of them
 - > But has different values for the two
 - > $v_i(xbox)$, $v_i(ps4)$
 - $\succ v_i(\{xbox, ps4\}) = \max(v_i(xbox), v_i(ps4))$
- Who gets the xbox? Who gets the ps4? How much should I charge them?

- Recall:
 - Set of alternatives A
 - > Valuations $v = (v_i)_{i=1}^n$
 - > Social choice function f(v)
 - > Payment rule p(v)

As always, do what maximizes social welfare.

• Vickrey Auction > $f(v) = \operatorname{argmax}_{a \in A} \sum_{i} v_i(a)$ > $p_i(v) = -\sum_{j \neq i} v_j(f(v))$ Pay (not charge!) to each agent the total value to others

- Why is this truthful (DSIC)?
 > Suppose agent j ≠ i reports v̂_j
- Utility to agent *i* when reporting v_i'
 > Let f(v_i', v̂_{-i}) = a
 > u_i = v_i(a) (-∑_{j≠i} v̂_j(a))
 > Agent *i* wants *a* to maximize v_i(a) + ∑_{j≠i} v̂_j(a)
 > f chooses *a* that maximizes v_i'(a) + ∑_{j≠i} v̂_j(a)
 > Simple! Report v'_i = v_i

- Problem: Even to give away my single xbox, I need to pay each friend who doesn't get it the value of the friend who gets it
 - > OK, I'm not that rich!
- Want two properties in addition to DSIC
 - > Agents should pay the principal: $p_i(v) \ge 0$
 - ≻ Agents shouldn't pay too much: $p_i(v) \le v_i(f(v))$ Individual Rationality (IR)

Idea

- Vickrey auction > $f(v) = \operatorname{argmax}_{a \in A} \sum_{i} v_i(a)$ > $p_i(v) = -\sum_{j \neq i} v_j(f(v))$
- A slight modification > $f(v) = \operatorname{argmax}_{a \in A} \sum_{i} v_i(a)$ > $p_i(v) = h_i(v_{-i}) - \sum_{j \neq i} v_j(f(v))$
- Still truthful. Agent i has no control over his additional payment $h_i(v_{-i})$

VCG

- Clarke's pivot rule
 - $> h_i(v_{-i}) = \max_a \sum_{j \neq i} v_j(a)$
 - Maximum welfare to others if agent i wasn't there
- VCG (Vickrey-Clarke-Groves Auction) > $f(v) = a^* = \operatorname{argmax}_{a \in A} \sum_i v_i(a)$ > $p_i(v) = \left[\max_a \sum_{j \neq i} v_j(a)\right] - \left[\sum_{j \neq i} v_j(a^*)\right]$
- Payment charged to agent i = loss in welfare caused to others due to presence of agent i

VCG

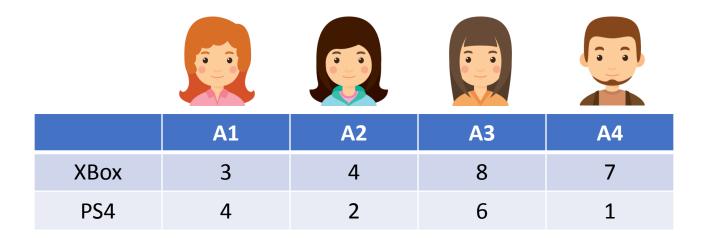
• $f(v) = a^* = \operatorname{argmax}_{a \in A} \sum_i v_i(a)$

•
$$p_i(v) = \left[\max_a \sum_{j \neq i} v_j(a)\right] - \left[\sum_{j \neq i} v_j(a^*)\right]$$

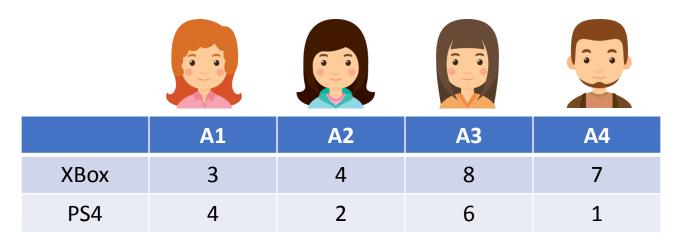
- We already saw that this is DSIC.
- Why is $p_i(v) \ge 0$?

• Why is
$$p_i(v) \le v_i(f(v))$$
?

• Let's go back to giving away an xbox and a ps4.

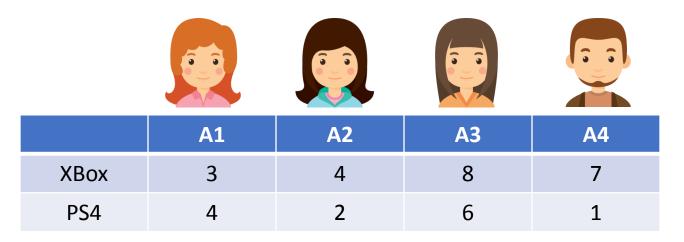


Q: Who gets the xbox and who gets the PS4? Q: How much do they pay?



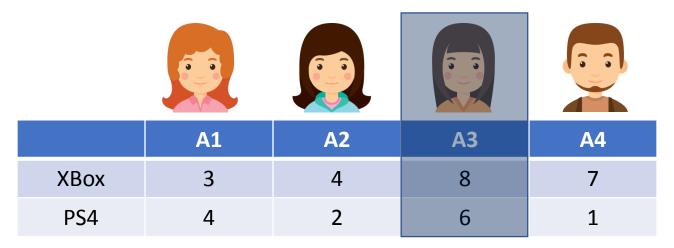
Allocation:

- A4 gets XBox, A3 gets PS4
- Achieves maximum welfare of 7 + 6 = 13



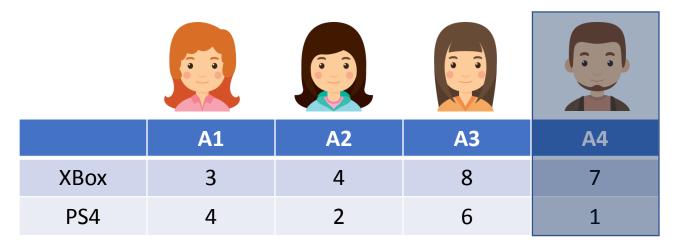
Payments:

- Zero payments charged to A1 and A2
- "Deleting" either of them does not change the outcome or payments for others
- Can also be seen by individual rationality



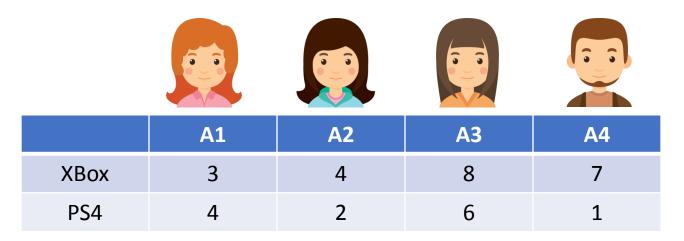
Payments:

- Payment charged to A3 = 11 7 = 4
- Max welfare to others if A3 absent: 7 + 4 = 11
 Give XBox to A4 and PS4 to A1
- Welfare to others if A3 present: 7



Payments:

- Payment charged to A4 = 12 6 = 6
- Max welfare to others if A4 absent: 8 + 4 = 12
 > Give XBox to A3 and PS4 to A1
- Welfare to others if A4 present: 6



Final Outcome:

- Allocation: A3 gets PS4, A4 gets XBox
- Payments: A3 pays 4, A4 pays 6
- Net utilities: A3 gets 6 4 = 2, A4 gets 7 6 = 1

Recap

- Four properties
 - > Maximize social welfare
 - > Dominant strategy incentive compatibility (DSIC)
 - No payments to agents
 - > Individual rationality (IR)
- Vickrey auction satisfies the first two
- VCG adds Clarke's pivot rule to satisfy all four