CSC304 Lecture 6

Game Theory : Security games, Applications to security

Recap

- Last lecture
 - > Zero-sum games
 - > The minimax theorem
- Assignment 1 posted
 - > Might add one or two questions (more if you think it's a piece of cake)
 - > Kept my promise (approximately)
 - > Due: October 11 by 3pm

Till now...

- Simultaneous-move Games
- All players act simultaneously
- Nash equilibria = stable outcomes
- Each player is best responding to the strategies of all other players

Sequential Move Games

- Focus on two players: "leader" and "follower"
- Leader first commits to playing a (possibly mixed) strategy x_1

Cannot later backtrack

- Leader communicates x₁ to follower
 Follower must believe leader's commitment is credible
- Follower chooses the best response x_2

Can assume to be a pure strategy

Sequential Move Games

- Wait. Does this give us anything new?
 - Can't I, as player 1, commit to playing x₁ in a simultaneous-move game too?
 - > Player 2 wouldn't believe you.

That's unless...

• You're as convincing as this guy.

How to represent the game?

- Extensive form representation
 - > Can also represent "information sets", multiple moves, ...

How to represent the game?

Mixed strategies are hard to visually represent
 Continuous spectrum of possible actions

A Curious Case

P2 P1	Left	Right
Up	(1 , 1)	(3 , 0)
Down	(0,0)	(2,1)

- Q: What are the Nash equilibria of this game?
- Q: You are P1. What is your reward in Nash equilibrium?

A Curious Case

P2 P1	Left	Right
Up	(1 , 1)	(3 , 0)
Down	(0 , 0)	(2 , 1)

- Q: As P1, you want to commit to a pure strategy. Which strategy would you commit to?
- Q: What would your reward be now?

Commitment Advantage

P2 P1	Left	Right
Up	(1,1)	(3 , 0)
Down	(0 , 0)	(2 , 1)

- Reward in the only Nash equilibrium = 1
- Reward when committing to Down = 2
- Again, why can't P1 get a reward of 2 with simultaneous moves?

Commitment Advantage

P2 P1	Left	Right
Up	(1 , 1)	(3,0)
Down	(0,0)	(2 , 1)

- With commitment to mixed strategies, the advantage could be even more.
 - If P1 commits to playing Up and Down with probabilities
 0.49 and 0.51, respectively...
 - > P2 is still better off playing Right than Left, in expectation
 - > E[Reward] for P1 increases to ~2.5

Stackelberg vs Nash

- Commitment disadvantage?
- Q: Can the leader lose in Stackelberg equilibrium compared to a Nash equilibrium?
 - In Stackelberg, he must commit in advance, while in Nash, he can change his strategy at any point.
 - A: No. The optimal reward for the leader in the Stackelberg game is always greater than or equal to his maximum reward under any Nash equilibrium of the simultaneous-move version.

Stackelberg vs Nash

- What about police trying to catch a thief, and the thief trying to avoid?
- It is important that..
 - > the leader can commit to mixed strategies
 - > the follower knows (and trusts) the leader's commitment
 - > the leader knows the follower's reward structure
- Will later see practical applications

Stackelberg and Zero-Sum

Recall the minimax theorem for 2-player zero-sum games

$$\max_{x_1} \min_{x_2} (x_1)^T A x_2 = \min_{x_2} \max_{x_1} (x_1)^T A x_2$$

- What would player 1 do if he were to go first?
- What about player 2?

Stackelberg and General-Sum

• 2-player non-zero-sum game with reward matrices A and $B \neq -A$ for the two players

$$\max_{x_1} (x_1)^T A f(x_1)$$

where $f(x_1) = \max_{x_2} (x_1)^T B x_2$

• How do we compute this?

Stackelberg Games via LPs

• S_1 , S_2 = sets of actions of leader and follower

•
$$|S_1| = m_1, |S_2| = m_2$$

- $x_1(s_1)$ = probability of leader playing s_1
- π_1 , π_2 = reward functions for leader and follower

$$\max \Sigma_{s_{1} \in S_{1}} x_{1}(s_{1}) \cdot \pi_{1}(s_{1}, s_{2}^{*})$$

subject to
$$\forall s_{2} \in S_{2}, \ \Sigma_{s_{1} \in S_{1}} x_{1}(s_{1}) \cdot \pi_{2}(s_{1}, s_{2}^{*}) \geq \sum_{s_{1} \in S_{1}} x_{1}(s_{1}) \cdot \pi_{2}(s_{1}, s_{2})$$

$$\Sigma_{s_{1} \in S_{1}} x_{1}(s_{1}) = 1$$

$$\forall s_{1} \in S_{1}, x_{1}(s_{1}) \geq 0$$

- One LP for each s_2^* , take the maximum over all m_2 LPs
- The LP corresponding to s₂^{*} optimizes over all x₁ for which s₂^{*} is the best response

Real-World Applications

- Security Games
 - Defender (leader) has k identical patrol units
 - Defender wants to defend a set of n targets T
 - > In a pure strategy, each resource can protect a subset of targets $S \subseteq T$ from a given collection S
 - A target is covered if it is protected by at least one resource
 - Attacker wants to select a target to attack

Real-World Applications

• Security Games

- For each target, the defender and the attacker have two utilities: one if the target is covered, one if it is not.
- Defender commits to a mixed strategy; attacker follows by choosing a target to attack.

Ah!

- Q: Because this is a 2-player Stackelberg game, can we just compute the optimal strategy for the defender in polynomial time...?
- Time is polynomial in the number of pure strategies of the defender
 - > In security games, this is $|S|^k$
 - > Exponential in k
- Intricate computational machinery required...

Newsweek National News

Subscribe Now Make Newsweek Your Homepage Newsletters R55

The Element of Surprise

To help combat the terrorism threat, officials at Los Angeles Inter Airport are introducing a bold new idea into their arsenal: random of security checkpoints. Can game theory help keep us safe?

WEB EXCLUSIVE

By Andrew Murr Newsweek Updated: 1:00 p.m. PT Sept 28, 2007

Sept. 28, 2007 - Security officials at Los Angeles International Airport now have a new weapon in their fight against terrorism: complete, baffling randomness. Anxious to thwart future terror attacks in the early stages while plotters are casing the airport, LAX security patrols have begun using a new software program called ARMOR, NEWSWEEK has learned, to make the placement of security checkpoints completely unpredictable. Now all airport security officials have to do is press a button labeled

Security forces work the sidewalk -

"Randomize," and they can throw a sort of digital cloak of invisibility over where they place the cops' antiterror checkpoints on any given day.

LAX

Real-World Applications

- Protecting entry points to LAX
- Scheduling air marshals on flights
 - > Must return home
- Protecting the Staten Island Ferry
 Continuous-time strategies
- Fare evasion in LA metro
 > Bathroom breaks !!!
- Wildlife protection in Ugandan forests
 > Poachers are not fully rational
- Cyber security

. . .