CSC304 Lecture 4 Guest Lecture: Prof. Allan Borodin

Game Theory (Cost sharing & congestion games, Potential function, Braess' paradox)

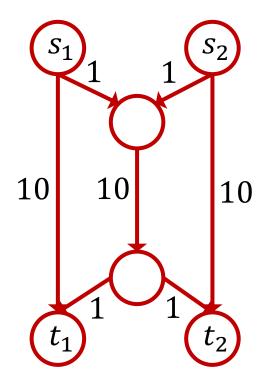
Recap

- Finding pure and mixed Nash equilibria
 - > Best response diagrams
 - > Indifference principle
- Price of Anarchy (PoA) and Price of Stability (PoS)
 - How does the Nash equilibrium compare to the social optimum, in the worst case and in the best case?

Cost Sharing Game

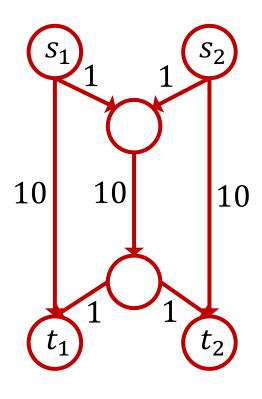
• n players on directed weighted graph G

- Player *i*
 - \triangleright Wants to go from s_i to t_i
 - > Strategy set S_i = {directed $S_i \rightarrow t_i$ paths}
 - \triangleright Denote his chosen path by $P_i \in S_i$
- Each edge e has cost c_e (weight)
 - > Cost is split among all players taking edge e
 - \succ That is, among all players i with $e \in P_i$



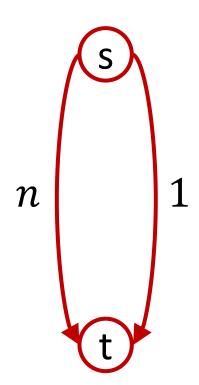
Cost Sharing Game

- Given strategy profile \vec{P} , cost $c_i\left(\vec{P}\right)$ to player i is sum of his costs for edges $e \in P_i$
- Social cost $C\left(\vec{P}\right) = \sum_{i} c_{i}\left(\vec{P}\right)$
 - > Note that $C(\vec{P}) = \sum_{e \in E(\vec{P})} c_e$, where $E(\vec{P})$ ={edges taken in \vec{P} by at least one player}
- In the example on the right:
 - What if both players take the direct paths?
 - What if both take the middle paths?
 - What if only one player takes the middle path while the other takes the direct path?



Cost Sharing: Simple Example

- Example on the right: n players
- Two pure NE
 - \triangleright All taking the n-edge: social cost = n
 - > All taking the 1-edge: social cost = 1
 - Also the social optimum
- In this game, price of anarchy $\geq n$
- We can show that for all cost sharing games, price of anarchy $\leq n$



Cost Sharing: PoA

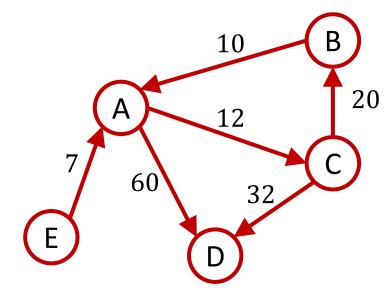
• Theorem: The price of anarchy of a cost sharing game is at most n.

Proof:

- > Suppose the social optimum is $(P_1^*, P_2^*, ..., P_n^*)$, in which the cost to player i is c_i^* .
- \triangleright Take any NE with cost c_i to player i.
- \triangleright Let c'_i be his cost if he switches to P_i^* .
- \triangleright NE $\Rightarrow c_i' \ge c_i$ (Why?)
- \triangleright But : $c_i' \le n \cdot c_i^*$ (Why?)
- $> c_i \le n \cdot c_i^*$ for each $i \Rightarrow$ no worse than $n \times$ optimum

Cost Sharing

- Price of anarchy
 - > All cost-sharing games: PoA $\leq n$
 - \triangleright Example game where PoA = n
- Price of stability? Later...
- Both examples we saw had pure Nash equilibria
 - What about more complex games, like the one on the right?



10 players: $E \rightarrow C$

27 players: $B \rightarrow D$

19 players: $C \rightarrow D$

Good News

Theorem: All cost sharing games have a pure Nash eq.

• Proof:

> Via "potential function" argument

Step 1: Define Potential Fn

- Potential function: $\Phi: \prod_i S_i \to \mathbb{R}_+$
 - > For all pure strategy profiles $\vec{P} = (P_1, ..., P_n) \in \prod_i S_i, ...$
 - \triangleright all players i, and ...
 - \succ all alternative strategies $P'_i \in S_i$ for player i...

$$c_{i}\left(P'_{i}, \vec{P}_{-i}\right) - c_{i}\left(\vec{P}\right) = \Phi\left(P'_{i}, \vec{P}_{-i}\right) - \Phi\left(\vec{P}\right)$$

- When a single player changes his strategy, the change in his cost is equal to the change in the potential function
 - > Do not care about the changes in the costs to others

Step 2: Potential $F^n \rightarrow pure Nash Eq$

- All games that admit a potential function have a pure Nash equilibrium. Why?
 - \succ Think about \overrightarrow{P} that minimizes the potential function.
 - > What happens when a player deviates?
 - If his cost decreases, the potential function value must also decrease.
 - $\circ \vec{P}$ already minimizes the potential function value.
- Pure strategy profile minimizing potential function is a pure Nash equilibrium.

Step 3: Potential Fⁿ for Cost-Sharing

- Recall: $E(\vec{P}) = \{\text{edges taken in } \vec{P} \text{ by at least one player} \}$
- Let $n_e(\vec{P})$ be the number of players taking e in \vec{P}

$$\Phi(\vec{P}) = \sum_{e \in E(\vec{P})} \sum_{k=1}^{n_e(\vec{P})} \frac{c_e}{k}$$

• Note: The cost of edge e to each player taking e is $c_e/n_e(\vec{P})$. But the potential function includes all fractions: $c_e/1$, $c_e/2$, ..., $c_e/n_e(\vec{P})$.

Step 3: Potential Fⁿ for Cost-Sharing

$$\Phi\left(\vec{P}\right) = \sum_{e \in E(\vec{P})} \sum_{k=1}^{n_e(\vec{P})} \frac{c_e}{k}$$

- Why is this a potential function?
 - > If a player changes path, he pays $\frac{c_e}{n_e(\vec{P})+1}$ for each new edge e, gets back $\frac{c_f}{n_f(\vec{P})}$ for each old edge f.
 - > This is precisely the change in the potential function too.
 - > So $\Delta c_i = \Delta \Phi$.

Potential Minimizing Eq.

- There could be multiple pure and multiple mixed Nash equilibria
 - Pure Nash equilibria are "local minima" of the potential function.
 - > A single player deviating should not decrease the function value.

- Minimizing the potential function just gives one of the pure Nash equilibria
 - > Is this equilibrium special? Yes!

Potential Minimizing Eq.

$$\sum_{e \in E(\vec{P})} c_e \leq \Phi(\vec{P}) = \sum_{e \in E(\vec{P})} \sum_{k=1}^{n_e(\vec{P})} \frac{c_e}{k} \leq \sum_{e \in E(\vec{P})} c_e * \sum_{k=1}^{n} \frac{1}{k}$$
Social cost

$$\forall \vec{P}, \ C\left(\vec{P}\right) \leq \Phi\left(\vec{P}\right) \leq C\left(\vec{P}\right) * H(n)$$

Harmonic function H(n)= $\sum_{k=1}^{n} 1/n = O(\log n)$

$$C\left(\vec{P}^*\right) \leq \Phi\left(\vec{P}^*\right) \leq \Phi(OPT) \leq C(OPT) * H(n)$$
Potential minimizing eq. Social optimum

Potential Minimizing Eq.

- Potential minimizing equilibrium gives $O(\log n)$ approximation to the social optimum
 - \triangleright Price of stability is $O(\log n)$
 - \triangleright Compare to the price of anarchy, which can be n

Congestion Games

- Generalize cost sharing games
- n players, m resources (e.g., edges)
- Each player i chooses a set of resources P_i (e.g., $s_i \rightarrow t_i$ paths)
- When n_j player use resource j, each of them get a cost $f_j(n_j)$
- Cost to player is the sum of costs of resources used

Congestion Games

- Theorem [Rosenthal 1973]: Every congestion game is a potential game.
- Potential function:

$$\Phi\left(\vec{P}\right) = \sum_{j \in E(\vec{P})} \sum_{k=1}^{n_j(\vec{P})} f_j(k)$$

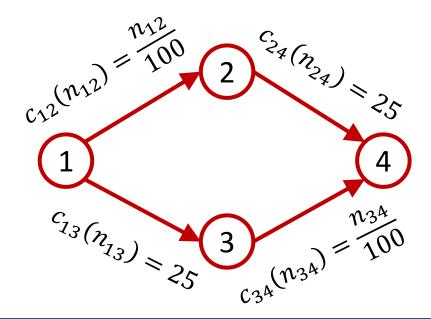
• Theorem [Monderer and Shapley 1996]: Every potential game is equivalent to a congestion game.

Potential Functions

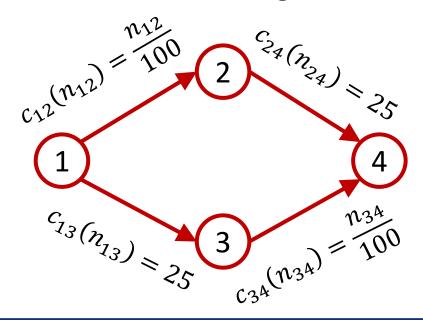
- Potential functions are useful for deriving various results
 - E.g., used for analyzing amortized complexity of algorithms
- Bad news: Finding a potential function that works may be hard.

- In cost sharing, f_i is decreasing
 - > The more people use a resource, the less the cost to each.
- f_i can also be increasing
 - > Road network, each player going from home to work
 - > Uses a sequence of roads
 - > The more people on a road, the greater the congestion, the greater the delay (cost)
- Can lead to unintuitive phenomena

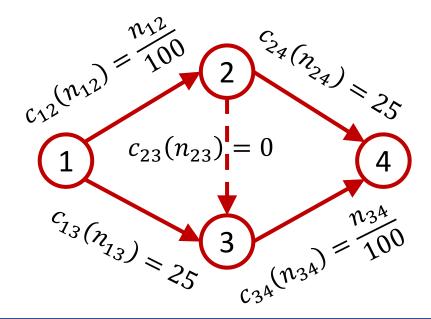
- Parkes-Seuken Example:
 - > 2000 players want to go from 1 to 4
 - $> 1 \rightarrow 2$ and $3 \rightarrow 4$ are "congestible" roads
 - $\gt 1 \rightarrow 3$ and $2 \rightarrow 4$ are "constant delay" roads



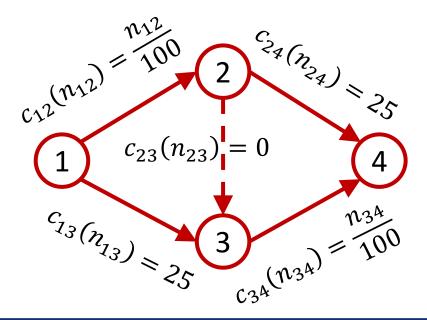
- Pure Nash equilibrium?
 - > 1000 take $1 \rightarrow 2 \rightarrow 4$, 1000 take $1 \rightarrow 3 \rightarrow 4$
 - \triangleright Each player has cost 10 + 25 = 35
 - Anyone switching to the other creates a greater congestion on it, and faces a higher cost



- What if we add a zero-cost connection $2 \rightarrow 3$?
 - > Intuitively, adding more roads should only be helpful
 - > In reality, it leads to a greater delay for everyone in the unique equilibrium!



- Nobody chooses $1 \rightarrow 3$ as $1 \rightarrow 2 \rightarrow 3$ is better irrespective of how many other players take it
- Similarly, nobody chooses $2 \rightarrow 4$
- Everyone takes $1 \rightarrow 2 \rightarrow 3 \rightarrow 4$, faces delay = 40!



- In fact, what we showed is:
 - > In the new game, $1 \rightarrow 2 \rightarrow 3 \rightarrow 4$ is a strictly dominant strategy for each firm!

