CSC304 Lecture 3 Guest Lecture: Prof. Allan Borodin

Game Theory (More examples, PoA, PoS)

Recap

- Normal form games
- Domination among strategies
 - > A strategy weakly/strictly dominating another
 - > A strategy being weakly/strictly dominant
 - > Iterated elimination of dominated strategies
- Nash equilibria
 - > Pure may be none, unique, or multiple
 - $\,\circ\,$ Identified using best response diagrams
 - > Mixed at least one!
 - $\circ\,$ Identified using the indifference principle

This Lecture

- More examples of games
 - > Identifying pure and mixed Nash equilibria
 - More careful analysis
- Price of Anarchy
 - How bad it is for the players to play a Nash equilibrium compared to playing the best outcome (if they could coordinate)?

Revisiting Cunning Airlines

- Two travelers, both lose identical luggage
- Airline asks them to individually report the value between 2 and 99 (inclusive)
- If they report (*s*, *t*), the airline pays them

$$\succ$$
 (s, s) if $s = t$

$$(s + 2, s - 2)$$
 if $s < t$

- > (t 2, t + 2) if t < s
- How do you formally derive equilibria?

Revisiting Cunning Airlines

- Pure Nash Equilibria: When can (s, t) be a NE?
 - ≻ Case 1: s < t</p>

 \circ Player 2 is currently rewarded s - 2.

 \circ Switching to (*s*, *s*) will increase his reward to *s*.

 \circ Not stable

> Case 2: $s > t \rightarrow$ symmetric.

> Case 3:
$$s = t = x$$
 (say)

 \circ Each player currently gets *x*.

• Each player wants to switch to x - 1, if possible, and increase his reward to x - 1 + 2 = x + 1.

○ For stability, x - 1 must be disallowed $\Rightarrow x = 2$.

• (2,2) is the only pure Nash equilibrium.

Revisiting Cunning Airlines

• Additional mixed strategy Nash equilibria?

- Hint:
 - > Say player 1 fully randomizes over a set of strategies T.
 - > Let M be the highest value in T.
 - > Would player 2 ever report any number that is M or higher with a positive probability?

Revisiting Rock-Paper-Scissor

- No pure strategy Nash equilibria
 - > Why? Because "there's always an action that makes a given player win".
- Suppose row and column players play (a_r, a_s)

> If one player is losing, he can change his strategy to win.

 If the other player is playing Rock, change to Paper; if the other player is playing Paper, change to Scissor; ...

> If it's a tie ($a_r = a_s$), both want to deviate and win!

> Cannot be stable.

Revisiting Rock-Paper-Scissor

- Mixed strategy Nash equilibria
- Suppose the column player plays (R,P,S) with probabilities (p,q,1-p-q).
- Row player:
 - > Calculate $\mathbb{E}[R]$, $\mathbb{E}[P]$, $\mathbb{E}[S]$ for the row player strategies.
 - Say expected rewards are 3, 2, 1. Would the row player randomize?
 - > What if they were 3, 3, 1?
 - > When would he fully randomize over all three strategies?

Revisiting Rock-Paper-Scissor

- Solving a special case
 - Fully mixed: Both randomize over all three strategies.
 - > Symmetric: Both use the same randomization (p,q,1-p-q).
 - 1. Assume column player plays (p,q,1-p-q).
 - 2. For the row player, write $\mathbb{E}[R] = \mathbb{E}[P] = \mathbb{E}[S]$.
- All cases?
 - > 4 possibilities of randomization for each player
 - > Asymmetric strategies (need to write equal rewards for column players too)

Hunter 1 Hunter 2	Stag	Hare
Stag	(4 , 4)	(0 , 2)
Hare	(2 , 0)	(1,1)

- Game
 - Stag requires both hunters, food is good for 4 days for each hunter.
 - > Hare requires a single hunter, food is good for 2 days
 - > If they both catch the same hare, they share.
- Two pure Nash equilibria: (Stag, Stag), (Hare, Hare)

- Two pure Nash equilibria: (Stag,Stag), (Hare,Hare)
 > Other hunter plays "Stag" → "Stag" is best response
 > Other hunter plays "Hare" → "Hare" is best reponse
- What about mixed Nash equilibria?

- Symmetric: $s \rightarrow \{ \text{Stag w.p. } p, \text{ Hare w.p. } 1 p \}$
- Indifference principle:
 - Given the other hunter plays s, equal E[reward] for Stag and Hare
 - $\succ \mathbb{E}[\text{Stag}] = p * 4 + (1 p) * 0$
 - > $\mathbb{E}[\text{Hare}] = p * 2 + (1 p) * 1$
 - \succ Equate the two $\Rightarrow p = 1/3$

- Noncooperative game theory provides a framework for analyzing rational behavior.
- But it relies on many assumptions that are often violated in the real world.
- Due to this, human actors are observed to play Nash equilibria in some settings, but play something far different in other settings.

• Assumptions:

> Rationality is common knowledge.

- All players are rational.
- $\,\circ\,$ All players know that all players are rational.
- $\,\circ\,$ All players know that all players know that all players are rational.
- o ... [Aumann, 1976]
- Behavioral economics
- > Rationality is perfect = "infinite wisdom"
 - Computationally bounded agents
- Full information about what other players are doing.
 Bayes-Nash equilibria

- Assumptions:
 - No binding contracts.
 - Cooperative game theory
 - > No player can commit first.
 - Stackelberg games (will study this in a few lectures)
 - > No external help.
 - Correlated equilibria
 - > Humans reason about randomization using expectations.
 - Prospect theory

- Also, there are often multiple equilibria, and no clear way of "choosing" one over another.
- For many classes of games, finding a single equilibrium is provably hard.
 - > Cannot expect humans to find it if your computer cannot.

• Conclusion:

- > For human agents, take it with a grain of salt.
- > For AI agents playing against AI agents, perfect!

Price of Anarchy and Stability

- If players play a Nash equilibrium instead of "socially optimum", how bad will it be?
- Objective function: e.g., sum of utilities
- Price of Anarchy (PoA): compare the optimum to the worst Nash equilibrium
- Price of Stability (PoS): compare the optimum to the best Nash equilibrium

Price of Anarchy and Stability

• Price of Anarchy (PoA)

Maximum social utility

Minimum social utility in any Nash equilibrium

• Price of Stability (PoS)

Costs → flip: Nash equilibrium divided by optimum

Maximum social utility

Maximum social utility in any Nash equilibrium

Hunter 1 Hunter 2	Stag	Hare
Stag	(4 , 4)	(0 , 2)
Hare	(2 , 0)	(1,1)

- Optimum social utility = 4+4 = 8
- Three equilibria:
 - > (Stag, Stag) : Social utility = 8
 - > (Hare, Hare) : Social utility = 2
 - > (Stag:1/3 Hare:2/3, Stag:1/3 Hare:2/3)
 - \circ Social utility = $(1/3)^{*}(1/3)^{*8} + (1-(1/3)^{*}(1/3))^{*2} = Btw 2 and 8$
- Price of stability? Price of anarchy?

Revisiting Prisoner's Dilemma

John Sam	Stay Silent	Betray
Stay Silent	(-1 , -1)	(-3 , 0)
Betray	(0 , -3)	(-2 , -2)

- Optimum social cost = 1+1 = 2
- Only equilibrium:

> (Betray, Betray) : Social cost = 2+2 = 4

• Price of stability? Price of anarchy?