CSC304 Lecture 2

Game Theory (Basic Concepts)

Game Theory

- How do rational, self-interested agents act?
- Each agent has a set of possible actions
- Rules of the game:
 - Rewards for the agents as a function of the actions taken by different agents

We focus on noncooperative games
 No external force or agencies enforcing coalitions

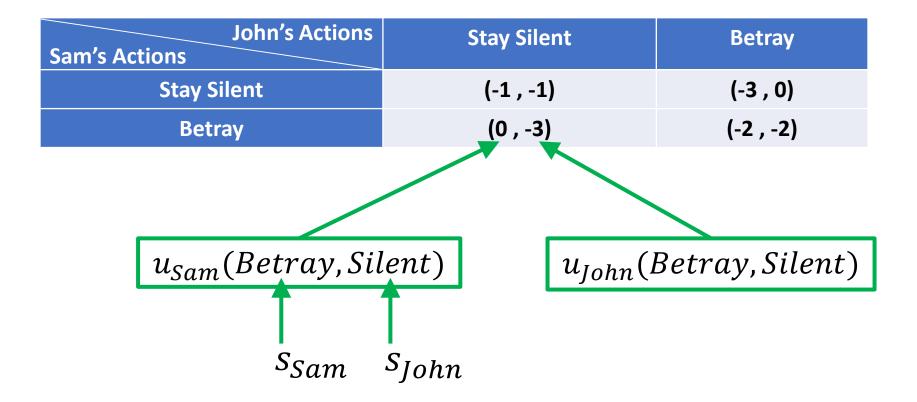
Normal Form Games

- A set of players $N = \{1, ..., n\}$
- A set of actions S
 - > Action of player $i \rightarrow s_i$
 - > Action profile $\vec{s} = (s_1, ..., s_n)$
- For each player *i*, utility function $u_i: S^n \to \mathbb{R}$
 - ≻ Given action profile $\vec{s} = (s_1, ..., s_n)$, each player *i* gets reward $u_i(s_1, ..., s_n)$

Normal Form Games

Recall: Prisoner's dilemma

$$S = \{\text{Silent}, \text{Betray}\}$$



Player Strategies

- Pure strategy
 - > Choose an action to play
 - > E.g., "Betray"
 - > For our purposes, simply an action.
 - In repeated or multi-move games (like Chess), need to choose an action to play at every step of the game based on history.
- Mixed strategy
 - > Choose a probability distribution over actions
 - > Randomize over pure strategies
 - E.g., "Betray with probability 0.3, and stay silent with probability 0.7"

Dominant Strategies

- For player *i*, s_i dominates s'_i if playing s_i "is better than" playing s'_i irrespective of the strategies of the other players.
- Two variants: Weakly dominate / Strictly dominate

$$> u_i(s_i, \vec{s}_{-i}) \ge u_i(s'_i, \vec{s}_{-i}), \forall \vec{s}_{-i}$$

- > Strict inequality for some $\vec{s}_{-i} \qquad \leftarrow$ Weak
- > Strict inequality for all \vec{s}_{-i} \leftarrow Strict

Dominant Strategies

- s_i is a strictly (or weakly) dominant strategy for player i if
 - > it strictly (or weakly) dominates every other strategy
- If there exists a strictly dominant strategy
 > Only makes sense to play it
- If every player has a strictly dominant strategy
 Determines the rational outcome of the game

Example: Prisoner's Dilemma

• Recap:

John's Actions Sam's Actions	Stay Silent	Betray
Stay Silent	(-1 , -1)	(-3 , 0)
Betray	(0 , -3)	(-2 , -2)

- Each player strictly wants to
 - > Betray if the other player will stay silent
 - > Betray if the other player will betray
- Betray = strictly dominant strategy for each player

Iterated Elimination

- What if there are no dominant strategies?
 - No single strategy dominates every other strategy
 - > But some strategies might still be dominated
- Assuming everyone knows everyone is rational...
 - Can remove their dominated strategies
 - > Might reveal a newly dominant strategy
- Eliminating only strictly dominated vs eliminating weakly dominated

Iterated Elimination

- Toy example:
 - > Microsoft vs Startup
 - > Enter the market or stay out?

Startup Microsoft	Enter	Stay Out
Enter	(2 , -2)	(4 , 0)
Stay Out	(0 , 4)	(0 , 0)

- Q: Is there a dominant strategy for startup?
- Q: Do you see a rational outcome of the game?

Iterated Elimination

- More serious: "Guess 2/3 of average"
 - Each student guesses a real number between 0 and 100 (inclusive)
 - The student whose number is the closest to 2/3 of the average of all numbers wins!
- Q: What would you do?

Nash Equilibrium

- If you can find strictly dominant strategies...
 - > Either directly, or by iteratively eliminating dominated strategies
 - > Rational outcome of the game
- What if this doesn't help?

Professor Students	Attend	Be Absent
Attend	(3 , 1)	(-1 , -3)
Be Absent	(-1 , -1)	(0 , 0)

Nash Equilibrium

Domination

- X dominates Y = "Play X instead of Y irrespective of what others are doing"
- > Too strong
- > Replace by "given what others are doing"

• Nash Equilibrium

> A strategy profile \vec{s} is in Nash equilibrium if s_i is the best action for player *i* given that other players are playing \vec{s}_{-i}

$$u_i(s_i, \vec{s}_{-i}) \ge u_i(s'_i, \vec{s}_{-i}), \forall s'_i$$

0

No quantifier on \vec{s}_{-i}

Recap: Prisoner's Dilemma

John's Actions Sam's Actions	Stay Silent	Betray
Stay Silent	(-1 , -1)	(-3 , 0)
Betray	(0 , -3)	(-2 <i>,</i> -2)

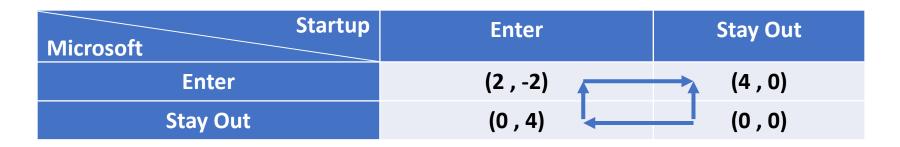
- Nash equilibrium?
- Q: If player *i* has a strictly dominant strategy...
 - a) It has nothing to do with Nash equilibria.
 - b) It must be part of some Nash equilibrium.
 - c) It must be part of all Nash equilibria.

Recap: Prisoner's Dilemma

John's Actions Sam's Actions	Stay Silent	Betray
Stay Silent	(-1 , -1)	(-3 , 0)
Betray	(0 , -3)	(-2 <i>,</i> -2)

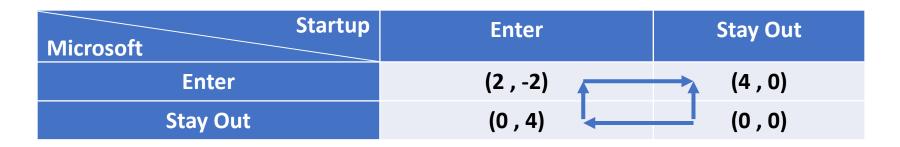
- Nash equilibrium?
- Q: If player *i* has a weakly dominant strategy...
 - a) It has nothing to do with Nash equilibria.
 - b) It must be part of some Nash equilibrium.
 - c) It must be part of all Nash equilibria.

Recap: Microsoft vs Startup



- Nash equilibrium?
- Q: Removal of strictly dominated strategies...
 - a) Might remove existing Nash equilibria.
 - b) Might add new Nash equilibria.
 - c) Both of the above.
 - d) None of the above.

Recap: Microsoft vs Startup



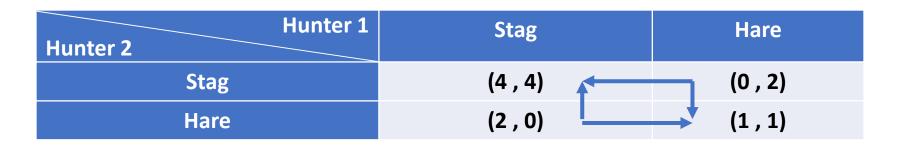
- Nash equilibrium?
- Q: Removal of weakly dominated strategies...
 - a) Might remove existing Nash equilibria.
 - b) Might add new Nash equilibria.
 - c) Both of the above.
 - d) None of the above.

Recap: Attend or Not

Professor Students	Attend	Be Absent
Attend	(3 , 1)	(-1 , -3)
Be Absent	(-1 , -1)	(0 , 0)

• Nash equilibrium?

Example: Stag Hunt



• Game:

- > Each hunter decides to hunt stag or hare.
- Stag = 8 days of food, hare = 2 days of food
- Catching stag requires both hunters, catching hare requires only one.
- > If they catch only one animal, they share.
- Nash equilibrium?

Example: Rock-Paper-Scissor

P1 P2	Rock	Paper	Scissor
Rock	(0 , 0)	(-1 , 1)	(1 , -1)
Paper	(1 , -1)	(0 , 0)	(-1 , 1)
Scissor	(-1 , 1)	(1 , -1)	(0 , 0)

• Nash equilibrium?

Example: Inspect Or Not

Inspector Driver	Inspect	Don't Inspect
Pay Fare	(-10 , -1)	(-10 , 0)
Don't Pay Fare	(-90 , 29)	(0 , -30)

- Game:
 - > Fare = 10
 - Cost of inspection = 1
 - Fine if fare not paid = 30
 - > Total cost to driver if caught = 90
- Nash equilibrium?

Nash's Beautiful Result

- Theorem: Every normal form game admits a mixedstrategy Nash equilibrium.
- What about Rock-Paper-Scissor?

P1 P2	Rock	Paper	Scissor
Rock	(0,0)	(-1 , 1)	(1 , -1)
Paper	(1 , -1)	(0 , 0)	(-1 , 1)
Scissor	(-1 , 1)	(1 , -1)	(0 , 0)

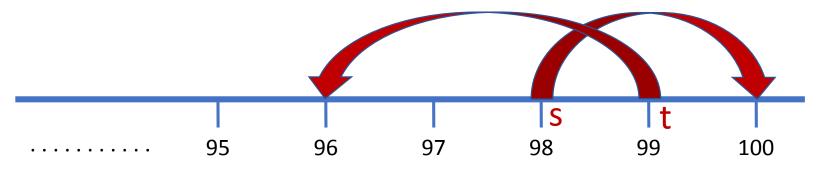
Indifference Principle

□ If the mixed strategy of player i in a Nash equilibrium randomizes over a set of pure strategies T_i, then the expected payoff to player i from each pure strategy in T_i must be identical.

• Derivation of rock-paper-scissor on the blackboard.

Extra Fun 1: Cunning Airlines

- Two travelers lose their luggage.
- Airline agrees to refund up to \$100 to each.
- Policy: Both travelers would submit a number between 2 and 99 (inclusive).
 - > If both report the same number, each gets this value.
 - If one reports a lower number (s) than the other (t), the former gets s+2, the latter gets s-2.



Extra Fun 2: Ice Cream Shop

- Two brothers, each wants to set up an ice cream shop on the beach ([0,1]).
- If the shops are at s, t (with $s \leq t$)

> The brother at s gets
$$\left[0, \frac{s+t}{2}\right]$$
, the other gets $\left[\frac{s+t}{2}, 1\right]$

