CSC304 Lecture 19

Fair Division 2: Cake-cutting, Indivisible goods

Recall: Cake-Cutting

- A heterogeneous, divisible good
 > Represented as [0,1]
- Set of players N = {1, ..., n}
 ➤ Each player i has valuation V_i
- Allocation $A = (A_1, \dots, A_n)$
 - > Disjoint partition of the cake

Recall: Cake-Cutting

• We looked at two measures of fairness:

• Proportionality: $\forall i \in N: V_i(A_i) \ge 1/n$

"Every agent should get her fair share."

• Envy-freeness: $\forall i, j \in N: V_i(A_i) \ge V_i(A_j)$

"No agent should prefer someone else's allocation."

Other Desiderata

- There are two more properties that we often desire from an allocation.
- Pareto optimality (PO)
 - > Notion of efficiency
 - Informally, it says that there should be no "obviously better" allocation

• Strategyproofness (SP)

No player should be able to gain by misreporting her valuation

Strategyproofness (SP)

- For deterministic mechanisms
 - Strategyproof": No player should be able to increase her utility by misreporting her valuation, irrespective of what other players report.
- For randomized mechanisms
 - Strategyproof-in-expectation": No player should be able to increase her *expected utility* by misreporting.
 - For simplicity, we'll call this strategyproofness, and assume we mean "in expectation" if the mechanism is randomized.

Strategyproofness (SP)

- Deterministic
 - > Bad news!
 - Theorem [Menon & Larson '17] : No deterministic SP mechanism is (even approximately) proportional.
- Randomized
 - Good news!
 - Theorem [Chen et al. '13, Mossel & Tamuz '10]: There is a randomized SP mechanism that always returns an envyfree allocation.

Perfect Partition

- Theorem [Lyapunov '40]:
 - > There always exists a "perfect partition" $(B_1, ..., B_n)$ of the cake such that $V_i(B_j) = \frac{1}{n}$ for every $i, j \in [n]$.
 - > Every agent values every bundle equally.
- Theorem [Alon '87]:
 - There exists a perfect partition that only cuts the cake at poly(n) points.
 - In contrast, Lyapunov's proof is non-constructive, and might need an unbounded number of cuts.

Perfect Partition

- Q: Can you use an algorithm for computing a perfect partition as a black-box to design a randomized SP+EF mechanism?
 - Yes! Compute a perfect partition, and assign the n bundles to the n players uniformly at random.
 - > Why is this EF?

• Every agent values every bundle at 1/n.

- > Why is this SP-in-expectation?
 - Because an agent is assigned a random bundle, her expected utility is 1/n, irrespective of what she reports.

Pareto Optimality (PO)

Definition

- > We say that an allocation $A = (A_1, ..., A_n)$ is PO if there is no alternative allocation $B = (B_1, ..., B_n)$ such that
- 1. Every agent is at least as happy: $V_i(B_i) \ge V_i(A_i), \forall i \in N$
- 2. Some agent is strictly happier: $V_i(B_i) > V_i(A_i), \exists i \in N$

> I.e., an allocation is PO if there is no "better" allocation.

- Q: Is it PO to give the entire cake to player 1?
- A: Not necessarily. But yes if player 1 values "every part of the cake positively".

PO + EF

- Theorem [Weller '85]:
 - > There always exists an allocation of the cake that is both envy-free and Pareto optimal.
- One way to achieve PO+EF:
 - > Nash-optimal allocation: $\operatorname{argmax}_A \prod_{i \in N} V_i(A_i)$
 - > Obviously, this is PO. The fact that it is EF is non-trivial.
 - > This is named after John Nash.
 - Nash social welfare = product of utilities
 - Different from utilitarian social welfare = sum of utilities

Nash-Optimal Allocation

• Example:

- > Green player has value 1 distributed over [0, 2/3]
- > Blue player has value 1 distributed over [0,1]
- > Without loss of generality (why?) suppose:
 - Green player gets x fraction of [0, 2/3]
 - Blue player gets the remaining 1 x fraction of [0, 2/3] AND all of [2/3, 1].
- > Green's utility = x, blue's utility = $(1 x) \cdot \frac{2}{3} + \frac{1}{3} = \frac{3 2x}{3}$
- > Maximize: $x \cdot \frac{3-2x}{3} \Rightarrow x = 3/4$ (3/4 fraction of 2/3 is 1/2).

Allocation 0 1 Each player's utility =
$$3/4$$

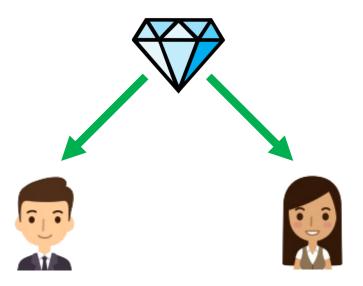
Problem with Nash Solution

- Difficult to compute in general
 - I believe it should require an unbounded number of queries in the Robertson-Webb model. But I can't find such a result in the literature.
- Theorem [Aziz & Ye '14]:

For piecewise constant valuations, the Nash-optimal solution can be computed in polynomial time.

Indivisible Goods

- Goods cannot be shared / divided among players
 > E.g., house, painting, car, jewelry, ...
- Problem: Envy-free allocations may not exist!



Indivisible Goods: Setting

8	7	20	5
9	11	12	8
9	10	18	3

Given such a matrix of numbers, assign each good to a player. We assume additive values. So, e.g., $V_{\bullet}(\{\blacksquare, \clubsuit\}) = 8 + 7 = 15$

Indivisible Goods

• Envy-freeness up to one good (EF1):

 $\forall i, j \in N, \exists g \in A_j : V_i(A_i) \ge V_i(A_j \setminus \{g\})$

- > Technically, we need either this or $A_j = \emptyset$.
- "If i envies j, there must be some good in j's bundle such that removing it would make i envy-free of j."
- Does there always exist an EF1 allocation?

EF1

- Yes! We can use Round Robin.
 - > Agents take turns in cyclic order: 1,2, ..., n, 1,2, ..., n, ...
 - In her turn, an agent picks the good she likes the most among the goods still not picked by anyone.
- Observation: This always yields an EF1 allocation.
 > Informal proof on the board.
- Sadly, on some instances, this returns an allocation that is not Pareto optimal.

EF1+PO?

- Nash welfare to rescue!
- Theorem [Caragiannis et al. '16]:
 - > The allocation $\operatorname{argmax}_A \prod_{i \in N} V_i(A_i)$ is EF1 + PO.
 - Note: This maximization is over only "integral" allocations that assign each good to some player in whole.
 - Note: Subtle tie-breaking if all allocations have zero Nash welfare.
 - Step 1: Choose a subset of players $S \subseteq N$ with largest |S| such that it is possible to give a positive utility to every player in S simultaneously.
 - Step 2: Choose $\operatorname{argmax}_A \prod_{i \in S} V_i(A_i)$

Integral Nash Allocation?

20 * (11+8) * 9 = 3420 is the maximum possible product

			V
8	7	20	5
9	11	12	8
9	10	18	3

Computation

- For indivisible goods, Nash-optimal solution is strongly NP-hard to compute
 - > That is, remains NP-hard even if all values in the matrix are bounded
- Open Question: If our goal is EF1+PO, is there a different polynomial time algorithm?
 - > Not sure. But a recent paper gives a pseudo-polynomial time algorithm for EF1+PO

• Time is polynomial in *n*, *m*, and $\max_{i \in a} V_i(\{g\})$.

Stronger Fairness

- Open Question: Does there always exist an EFx allocation?
- EF1: $\forall i, j \in N, \exists g \in A_j : V_i(A_i) \ge V_i(A_j \setminus \{g\})$
 - > Note: Or $A_i = \emptyset$ also allowed.

Intuitively, i doesn't envy j if she gets to remove her most valued item from j's bundle.

- EFx: $\forall i, j \in N, \forall g \in A_j : V_i(A_i) \ge V_i(A_j \setminus \{g\})$
 - > Note: $\forall g \in A_j$ such that $V_i(\{g\}) > 0$.
 - Intuitively, i doesn't envy j even if she removes her least positively valued item from j's bundle.

Stronger Fairness

- To clarify the difference between EF1 and EFx:
 - Suppose there are two players and three goods with values as follows.

	А	В	С
P1	5	1	10
P2	0	1	10

- > If you give {A} → P1 and {B,C} → P2, it's EF1 but not EFx.
 EF1 because if P1 removes C from P2's bundle, all is fine.
 Not EFx because removing B doesn't eliminate envy.
- > Instead, $\{A,B\} \rightarrow P1$ and $\{C\} \rightarrow P2$ would be EFx.