CSC304 Lecture 12

Ending Mechanism Design w/ Money: Recap revenue maximization & Myerson's auction

Begin Mechanism Design w/o Money: Facility Location

Recap

- Single-item auction with 1 seller, *n* buyers
- Buyer *i* has value v_i drawn from cdf F_i (pdf f_i)

• Virtual value function:
$$\varphi_i(v_i) = v_i - \frac{1 - F_i(v_i)}{f_i(v_i)}$$

- Myerson's theorem: E[Revenue] = E[$\sum_{i} \varphi_{i}(v_{i}) * x_{i}$]
 - Maximize revenue = maximize virtual welfare subject to monotonic allocation rule

Recap

- When all *F_i*'s are regular
 Monotonicity is automatic
- Allocation: Give to agent i with maximum $\varphi_i(v_i)$ if $\varphi_i(v_i) \ge 0$
 - > When the maximum $\varphi_i(v_i)$ is negative, not selling the item is better (zero virtual welfare > negative virtual welfare)
- Payment: Charge $v_i^* = \min\{v_i': \varphi_i(v_i') \ge \max(0, \varphi_j(v_j)) \forall j \neq i\}$
 - Least possible value for which the agent still gets the item
 If virtual value drops below any other virtual value or below 0, the agent loses the item

Recap

- Special case: All $F_i = F = \text{Regular}$ > VCG with reserve price $\varphi^{-1}(0)$
- Allocation: Give the item to agent *i* with the maximum value v_i but only if v_i ≥ φ⁻¹(0)
 ≻ Equivalent to φ(v_i) ≥ 0
- Payment: $\max\left(\varphi^{-1}(0), \max_{j\neq i} v_j\right)$
 - Least possible value for which the agent still gets the item
 - The agent loses the item as soon as his value goes below either the 2nd highest bid or the reserve price

Approx. Optimal Auctions

- When F_i 's are complex, the virtual valuation function is complex too
 - > The optimal auction is unintuitive
 - > Two simple auctions that achieve good revenue
- Theorem [Hartline & Roughgarden, 2009]: For independent regular distributions, VCG with bidder-specific reserve prices can guarantee 50% of the optimal revenue.

Approx. Optimal Auctions

- Still relies on knowing bidders' distributions
 - Can break down if the true distribution is different than the assumed distribution
- Theorem [Bulow and Klemperer, 1996]: For i.i.d. bidder valuations,
 E[Revenue of VCG with n + 1 bidders] ≥
 E[Optimal revenue with n bidders]
- "Spend effort in getting one more bidder than in figuring out the optimal auction"

Simple Proof

 (n+1)-bidder VCG has the maximum expected revenue among all (n+1)-bidder DSIC auctions that always allocate the item

> Revenue Equivalence Theorem

- Consider the following (n+1)-bidder DSIC auction
 - > Run *n*-bidder Myerson on first *n* bidders. If the item is unallocated, give it to agent n + 1 for free.
 - > As much expected revenue as n-bidder Myerson auction
 - > No more expected revenue than (n+1)-bidder VCG
- QED!

Optimizing Revenue is Hard

- Beyond single-parameter settings, the optimal auctions become even trickier
- Example: Two items, a single bidder with i.i.d. values for both items
 - Q: Shouldn't the optimal auction just sell each item individually using Myerson's auction?
 - A: No! Putting a take-it-or-leave-it offer on the two items bundled together can increase revenue!
- Slow progress on optimal auctions, but fast progress on simple and approximately optimal auctions

Mechanism Design Without Money

Lack of Money

- Mechanism design with money:
 - > VCG can implement the welfare maximizing outcome because it can charge payments
- Mechanism design without money:
 - Suppose you want to give away a single item, but cannot charge any payments
 - > Impossible to get meaningful information about valuations from strategic agents
 - > How would you maximize welfare as much as possible?

Lack of Money

- One possibility: Give the item to each of n bidders with probability 1/n.
- Does not maximize welfare
 > It's impossible to maximize welfare without money
- Achieves an *n*-approximation of maximum welfare $\gg \max_{v} \frac{\max_{i} v_{i}}{(1/n) \sum_{i} v_{i}} \le n$ (What is this?)
- Can't do better than *n*-approximation

MD w/o Money Theme

1. Define the problem: agents, outcomes, valuations

- 2. Define the goal (e.g., maximizing social welfare)
- 3. Check if the goal can be achieved using a strategyproof mechanism
 - > "strategyproof" = DSIC
- 4. If not, find the strategyproof mechanism that provides the best approximation ratio
 - > Approximation ratio is similar to price of anarchy (PoA)

Facility Location

- Set of agents N
- Each agent *i* has a true location $x_i \in \mathbb{R}$
- Mechanism *f*
 - > Takes as input reports $\tilde{x} = (\tilde{x}_1, \tilde{x}_2, ..., \tilde{x}_n)$
 - > Returns a location $y \in \mathbb{R}$ for the new facility
- Cost to agent $i : c_i(y) = |y x_i|$
- Social cost $C(y) = \sum_i c_i(y) = \sum_i |y x_i|$

Facility Location

- Social cost $C(y) = \sum_i c_i(y) = \sum_i |y x_i|$
- Q: Ignoring incentives, what choice of y would minimize the social cost?
- A: The median location med(x₁, ..., x_n)
 > n is odd → the unique "(n+1)/2"th smallest value
 > n is even → "n/2"th or "(n/2)+1"st smallest value
 > Why?

Facility Location

- Social cost $C(y) = \sum_i c_i(y) = \sum_i |y x_i|$
- Median is optimal (i.e., 1-approximation)
- What about incentives?
 - Median is also strategyproof (SP)!
 - Irrespective of the reports of other agents, agent i is best off reporting x_i

Median is SP

No manipulation can help

- A different objective function $C(y) = \max_i |y x_i|$
- Q: Again ignoring incentives, what value of y minimizes the maximum cost?
- A: The midpoint of the leftmost (min x_i) and the rightmost (max x_i) locations (WHY?)
- Q: Is this optimal rule strategyproof?
- A: No! (WHY?)

- $C(y) = \max_i |y x_i|$
- We want to use a strategyproof mechanism.
- Question: What is the approximation ratio of median for maximum cost?
 - 1. ∈ [1,2)
 - *2.* ∈ [2,3)
 - *3.* ∈ [3,4)
 - 4. ∈ [4,∞)

- Answer: 2-approximation
- Other SP mechanisms that are 2-approximation
 - > Leftmost: Choose the leftmost reported location
 - > Rightmost: Choose the rightmost reported location
 - > Dictatorship: Choose the location reported by agent 1

≻ ...

 Theorem [Procaccia & Tennenholtz, '09] No deterministic SP mechanism has approximation ratio < 2 for maximum cost.

• Proof:

Max Cost + Randomized

- The Left-Right-Middle (LRM) Mechanism
 - > Choose $\min_{i} x_i$ with probability $\frac{1}{4}$
 - > Choose max x_i with probability $\frac{1}{4}$
 - > Choose $(\min_{i} x_i + \max_{i} x_i)/2$ with probability $\frac{1}{2}$
- Question: What is the approximation ratio of LRM for maximum cost?

• At most
$$\frac{(1/4)*2C+(1/4)*2C+(1/2)*C}{C} = \frac{3}{2}$$

Max Cost + Randomized

• Theorem [Procaccia & Tennenholtz, '09]: The LRM mechanism is strategyproof.

Max Cost + Randomized

• Exercise for you!

Try showing that no randomized SP mechanism can achieve approximation ratio < 3/2

Suggested outline

- > Consider two agents with $x_1 = 0$ and $x_2 = 1$
- > Show that one of them has expected cost at least $\frac{1}{2}$
- > What happens if that agent moves 1 unit farther from the other agent?