CSC304 Lecture 11

Mechanism Design w/ Money: Revenue maximization; Myerson's auction

Announcements

- Returning graded midterm
 > Was only able to keep my promise due to wonderful TAs
- Delighted by your performance!
 > Given that the midterm was relatively hard
- Coming up: 4-5 questions of homework 2

Welfare vs Revenue

- In the auction setting...
 - We choose an outcome a based on agent valuations {v_i}
 And charge payments p_i to each agent i
- In welfare maximization, we want to maximize ∑_i v_i(a)
 > VCG = DSIC + maximizes welfare on every single instance
 > Beautiful!
- In revenue maximization, we want to maximize ∑_i p_i
 > We can still use DSIC mechanisms (revelation principle).
 BUT...

Welfare vs Revenue

- Different DSIC mechanisms are better for different instances.
- Example: 1 item, 1 bidder, unknown value v
 - > DSIC = fix a price r, let the agent decide to "take it" ($v \ge r$) or "leave it" (v < r)
 - > Maximize welfare \rightarrow set r = 0
 - > Maximize revenue $\rightarrow r = ?$

 \circ Different r are better for different v

• Must analyze in a Bayesian setting

Single-Item Auction Framework

- *n* bidders
- Value v_i of bidder i is drawn from distribution F_i with density f_i and support $[0, v_{max}]$
- Principal knows $\{F_i\}$, and wants to maximize $E[\sum_i p_i]$
 - > Expectation over each v_i drawn i.i.d. from F_i
 - > Principal wants to use a DSIC mechanism
 - IC part is without loss of generality (revelation principle)
 - $\,\circ\,$ Will see that can't do better using BNIC mechanisms

Single Item, Single Bidder

- Revisiting 1 item, 1 bidder
- Value $v \sim F$
- Want to post a price r on the item
- Revenue from price $r \rightarrow r \cdot (1 F(r))$ (Why?)
- Awesome! Select $r^* = \operatorname{argmax}_r r \cdot (1 F(r))$ > "Monopoly price"
 - > Note: r^* depends on *F*, but not on $v \Rightarrow$ DSIC

Single Item, Single Bidder

- Suppose the bidder's value is drawn from the uniform distribution U[0,1].
- Recall: E[Revenue] from price r is $r \cdot (1 F(r))$
- Q: What is the optimal posted price?
- Q: What is the corresponding optimal revenue?
- Compare this to the revenue of VCG, which is 0

An Aside

- In welfare maximization, we are bound to always selling the item
- In revenue maximization, we are willing to risk leaving the item unsold
 - > If the item is not sold, you get 0 revenue
 - > But if sold, you can get more than 2nd highest bid
- Subject to always selling the item, VCG actually has the highest revenue
 - > Revenue equivalence: "same allocation ⇒ same payment"

Single Item, Two Bidders

- $v_1, v_2 \sim U[0,1]$
- VCG revenue = 2nd highest bid = min(v_1, v_2) > $E[min(v_1, v_2)] = 1/3$
- A possible improvement: "VCG with reserve price"
 > Reserve price r.
 - \succ Highest bidder gets the item if bid more than r
 - > Pays max(r, 2nd highest bid)

Single Item, Two Bidders

- Reserve prices are ubiquitous
 - > E.g., opening bids in eBay auctions
 - Guarantee a certain revenue to the auctioneer if item is sold
- *E*[revenue] = *E*[max(*r*, min(*v*₁, *v*₂))]
 ≻ Maximize over *r*?
- What about other DSIC mechanisms? What if there are more bidders? Other distributions?

Single-Parameter Environments

- Roger B. Myerson solved revenue optimal auctions in "single-parameter environments"
- Proposed a simple auction that maximizes expected revenue

Single-Parameter Environments

- Each agent *i* has a private value $v_i \sim F_i$,
 - > Value if the agent is "served"
 - > Example: single-item auction \rightarrow win the item
 - ► Example: combinatorial auction + single-minded bidder → get the desired set
 - > Can potentially allow agents to be "fractionally" served
- Fixing bids of other agents...
 - > Let $x_i(v_i)$ = fraction served when reporting v_i
 - \odot When fractional serving not allowed, this is in $\{0,1\}$
 - > Let $p_i(v_i)$ = payment charged when reporting v_i

Myerson's Lemma

• Myerson's Lemma:

For a single-parameter environment, a strategy profile is in BNE under a mechanism if and only if

1. $x_i(v_i)$ is monotone non-decreasing

2.
$$p_i(v_i) = v_i \cdot x_i(v_i) - \int_0^{v_i} x_i(z) dz + p_i(0)$$

(typically, $p_i(0) = 0$)

Intuition similar to 2nd price auction
 For every "δ" allocation, x_i pay the lowest value that would have won it p_i(v_i)

Myerson's Lemma

- Note: allocation determines unique payments $p_i(v_i) = v_i \cdot x_i(v_i) - \int_0^{v_i} x_i(z) dz + p_i(0)$
- A corollary: revenue equivalence
 - If two mechanisms use the same allocation x_i, they "essentially" have the same expected revenue
- Another corollary: optimal revenue auctions
 - Optimizing revenue = optimizing some function of allocation (easier to analyze)

Myerson's Theorem

• "Expected Revenue = Expected Virtual Welfare"

- > Recall: $p_i(v_i) = v_i \cdot x_i(v_i) \int_0^{v_i} x_i(z) dz + p_i(0)$
- > Take expectation over draw of valuations + lots of calculus

$$E_{\{v_i \sim F_i\}}[\Sigma_i p_i(v_i)] = E_{\{v_i \sim F_i\}}[\Sigma_i \varphi_i(v_i) \cdot x_i(v_i)]$$

- $\varphi_i(v_i) = v_i \frac{1 F_i(v_i)}{f_i(v_i)}$ is called the virtual value of bidder *i*
- Virtual welfare = sum of virtual values*allocations

Myerson's Auction

- Need the allocation x_i to be monotonic
- E[revenue] = E[virtual welfare]
- Myerson's auction: "The auction that maximizes (expected) revenue is the one whose allocation maximizes the virtual welfare subject to monotonicity"
- Let's apply this to some examples!

Example

• 2 bidders, 1 item, values drawn i.i.d. from U[0,1]

$$\Rightarrow \varphi(v) = v - \frac{1 - F(v)}{f(v)} = v - \frac{1 - v}{1} = 2v - 1$$

Note: virtual value can be negative!!

- Given bids (v_1, v_2) , ...
 - ≻ Maximize $x_1 \cdot (2v_1 1) + x_2 \cdot (2v_2 1)$
 - ▷ Subject to $x_1, x_2 \in \{0,1\}$ and $x_1 + x_2 \le 1$

Optimal Auction Example

• Maximize $x_1 \cdot (2v_1 - 1) + x_2 \cdot (2v_2 - 1)$

▷ $x_1, x_2 \in \{0, 1\}$ and $x_1 + x_2 \le 1$

- Prove on the board:
 - > Allocation:

○ If ∃ bidder with value $\geq \frac{1}{2}$, give to the highest bidder.

 \circ If both have value < $\frac{1}{2}$, neither gets the item.

- > Payment if item sold = $max(\frac{1}{2}, lesser bid)$
- Precisely VCG with reserve price $\frac{1}{2}$

Optimal Auctions

• Theorem: For a single item and n bidders whose valuations are drawn i.i.d., the optimal auction is VCG with reserve price $\varphi^{-1}(0)$.

Note: Reserve price is independent of #bidders!

- *Wait!* We didn't check for monotonicity of allocation!
- It turns out that for "nice" distributions, maximizing virtual welfare already gives a monotonic allocation rule!

Special Distributions

• Regular Distributions:

A distribution F is regular if its virtual value function v - (1 - F(v))/f(v) is non-decreasing.

- Lemma: If all F_i 's are regular, the virtual welfare maximizing rule is monotone.
- Monotone Hazard Rate (MHR): A distribution F has monotone hazard rate if (1 - F(v))/f(v) is non-increasing.

> Important special case (MHR \Rightarrow Regular)

Special Distributions

- Not crazy assumptions
 - Many practical distributions are MHR: e.g., uniform, exponential, Gaussian.
 - Some important distributions are not MHR, but still regular: e.g., power-law distributions.

Optimal Single-Item Auction

- Allocation: Give the item to agent i with highest $\varphi_i(v_i)$ if that is non-negative
- Payment: "lowest bid that still would have won"
 Follows from p_i(v_i) = v_i ⋅ x_i(v_i) ∫₀^{v_i} x_i(z)dz + p_i(0)
- All F_i 's are equal to F and regular:
 - > r^* = monopoly price of F
 - \succ Item goes to the highest bidder if bid more than r^*
 - > Payment charged is $max(r^*, 2nd highest bid)$,
 - > VCG with reserve price $r^*!$

Extensions

- Irregular distributions:
 - > E.g., multi-modal or extremely heavy tail distributions
 - > Need to add the monotonicity constraint
 - > Turns out, we can "iron" irregular distributions to make them regular, and use standard Myerson's framework
- Relaxing DSIC to BNIC
 - > Myerson's mechanism has optimal revenue among all DSIC mechanisms
 - > Turns out, it also has optimal revenue among the much larger class of BNIC mechanisms!

Approx. Optimal Auctions

- For i.i.d. regular distributions, the optimal auction is simple (VCG with reserve price)
- For unequal distributions, it can be very complex
 - In practice, we prefer simple auctions that bidders can understand, but still want approximately optimal revenue
- Theorem [Hartline & Roughgarden, 2009]: For independent regular distributions, VCG with bidder-specific reserve prices is a 2-approximation of the optimal revenue.

Approximately Optimal

- Still relies on knowing bidders' distributions
 - Dangerous! Guarantees can break down if the true distribution is different from the assumed distribution
- Theorem [Bulow and Klemperer, 1996]: For i.i.d. bidder valuations,
 E[Revenue of VCG with n + 1 bidders] ≥
 E[Optimal revenue with n bidders]
- "Spend effort in getting one more bidder than in figuring out the optimal auction"

Simple proof

- VCG with n + 1 bidders has the maximum revenue among all n + 1 bidder DSIC auctions that always allocate the item [via revenue equivalence]
- Consider the auction: "Run *n*-bidder Myerson on first *n* bidders. If the item is unallocated, give it to agent n + 1 for free."
 - > n + 1 bidder DSIC auction
 - > As much revenue as n-bidder Myerson auction

Optimizing Revenue is Hard

- Slow progress beyond single-parameter setting
 - Even with just two items and one bidder with i.i.d. values for both items, the optimal auction DOES NOT run Myerson's auction on individual items!
 - "Take-it-or-leave-it" offers for the two items bundled might increase revenue
- But nowadays, the focus is on simple, approximately optimal auctions instead of complicated, optimal auctions.