CSC304 Lecture 10

Mechanism Design w/ Money: Revelation principle; First price, second price, and ascending auctions; Revenue equivalence

Announcements

- Homework/midterm solutions will NOT be uploaded online
- Will instead dedicate the first 30 minutes of Friday's office hour for going over them
 - Should attend this if you have questions about homework/midterm instead of asking independently or on Piazza
- Hope to give graded test back on Wed

> Homework sometime later (?)

Recap

• Direct revelation truthful mechanisms

$$F(v) = a^* = \operatorname{argmax}_{a \in A} \sum_i v_i(a)$$

$$P_i(v) = \left[\max_a \sum_{j \neq i} v_j(a) \right] - \left[\sum_{j \neq i} v_j(a^*) \right]$$

• Dominant strategy incentive compatible (DSIC)

This Lecture

- Beyond direct revelation
 - > 1st price auction and ascending (English) auction
 - Comparing with 2nd price auction
- Bayes-Nash Incentive Compatibility
- Revelation principle
- Revenue equivalence theorem
- A note on "credible" mechanisms

- Needed for mechanisms that are not incentive compatible in *dominant strategies*
- For such mechanisms, we need to reason about how each agent thinks the other agents would act
- Agents have incomplete information about valuations of other agents
 - Know the distributions from which others' valuations are drawn, but don't know their exact valuations

- Common prior assumption
 - > All agents agree about which distribution agent i's valuation is drawn from
 - > Not entirely convincing, but a very useful assumption

• In this lecture, we will assume the valuations are independently drawn from their own distributions

- Setup
 - > Distribution D_i for each agent i
 - > All agents know all distributions, agent i additionally knows his privately drawn valuation $v_i \sim D_i$
 - > Private information of agent = "type" of agent
 - > T_i be the type space for agent i
 - > A_i be the action space (possible reports/bids) for agent i
 - > Strategy s_i for agent i is a function from T_i to A_i

 $\,\circ\,$ "How will I convert my valuation to my bid?"

• Strategy profile $\vec{s} = (s_1, \dots, s_n)$

 \succ Interim utility of agent *i* is

$$E_{\{v_j \sim D_j\}_{j \neq i}} [u_i(s_1(v_1), \dots, s_n(v_n))]$$

where utility u_i is "value derived – payment charged"

- > \vec{s} is a Bayes-Nash equilibrium (BNE) if s_i is the best strategy for agent i *given* \vec{s}_{-i} (strategies of others)
 - "Given others' strategies, and in expectation over their types/valuations, I'm doing the best I can"

Example

- Sealed-bid first price auction for a single item
 - > Each agent i privately submits a bid b_i
 - > Agent i^* with the highest bid wins the item, pays b_{i^*}
- Suppose there are two agents

> Common prior: each has valuation drawn from U[0,1]

Claim: Both players using s_i(v_i) = v_i/2 is a BNE.
 ≻ Proof on the board.

BNIC

- A direct revelation mechanism is Bayes-Nash incentive compatible (BNIC) if all players playing $s_i(v_i) = v_i$ is a BNE.
 - I don't know what other's valuations are, only the distributions they're drawn from.
 - > I know what strategies they're using (valuation \rightarrow bid).
 - > In expectation, I don't lose when reporting truthfully.
- Compare to DSIC
 - I don't care what others' valuations are.
 - > I don't care what strategies they're using (valuation \rightarrow bid)
 - > I never lose when reporting truthfully.

Revelation Principle

- Outcome = (allocation, payments)
- DSIC version [Gibbard, '73]
 - If a mechanism implements an outcome in dominant strategies, there's a direct revelation DSIC mechanism implementing the same outcome.
- BNIC version [Dasgupta et al. '79, Holmstrom '77, Myerson '79]
 - If a mechanism implements an outcome as BNE, there's a direct revelation BNIC mechanism implementing the same outcome.

Revelation Principle

• Informal proof:

Applying Revelation Principle

- We already saw...
 - Sealed-bid 1st price auction
 - > 2 agents with valuations drawn from U[0,1]
 - > Each player halving his value was a BNE
 - > Not naturally BNIC (players don't report value)
- BNIC variant through revelation principle?
- Can also be used on non-direct-revelation mechs

1st Price Auction

- For n players with iid valuations, "shadowing" the bid by a factor of (n-1)/n is a BNE
- E[Revenue] to the auctioneer? > $E_{\{v_i \sim U[0,1]\}_{i=1}^n} \left(\frac{n-1}{n}\right) * \max_i v_i = \frac{n-1}{n+1}$ (Why?)
- Interestingly, this is equal to E[Revenue] from 2nd price auction

>
$$E_{\{v_i \sim U[0,1]\}_{i=1}^n} [2^{nd} \text{ highest } v_i] = \frac{n-1}{n+1}$$
 (Why?)

Revenue Equivalence

- If two BNIC mechanisms A and B:
 - 1. Always produce the same allocation;
 - 2. Have the same expected payment to agent *i* for some type v_i^0 (e.g., "zero value for all" \rightarrow zero payment);
 - Have agent valuations drawn from distributions with "path-connected support sets";
- Then they:
 - Charge the same expected payment to all agent types;
 - > Have the same expected total revenue.

Revenue Equivalence

- Informally...
 - > If two BNIC mechanisms always have the same allocation, then they have the same E[payments] and E[revenue].
 - > Very powerful as it applies to any pair of BNIC mechanism
- 1st price (BNIC variant) and 2nd price auctions
 - Have the same allocation:
 - Item always goes to the agent with the highest valuation
 - > Thus, also have the same revenue

Non-Direct-Revelation Auctions

- Ascending auction (a.k.a. English auction)
 - > All agents + auctioneer meet in a room.
 - > Auctioneer starts the price at 0.
 - > All agents want the item, and have their hands raised.
 - > Auctioneer raise the price continuously.
 - > Agents drop out when price > value for them
- Descending auction (a.k.a. Dutch auction)
 - Start price at a very high value.
 - > Keep decreasing the price until some agent agrees to buy.

Ascending Auction

- When price > 2nd highest value, all but the highest value agent drop out.
 - The agent with the highest value gets the item, pays the second highest value.
 - > This outcome is implemented in dominant strategies.
- DSIC revelation principle applied to ascending auction $\rightarrow 2^{nd}$ price auction!
 - ➢ Different from the BNIC variant of the 1st price auction ← BNIC revelation principle applied to 1st price auction

The Trio

- 2nd price auction
 > Sealed-bid + truthful for agents
- 1st price auction
 > Sealed-bid
- Ascending auction
 "truthful" for agents

Seems strictly better.

Truthful for agents.

Truthful for auctioneer?

Credible Mechanisms

- Warning: The remaining lecture is informal!
- Typical mechanism design
 - > Auctioneer commits to using a mechanism.
 - > Assume that auctioneer does not deviate later on.
 - Stackelberg game between auctioneer and agents"
- Credible Mechanisms [Akbarpour and Li, 2017]
 - Auctioneer is incentivized to not deviate from his commitment at any stage of auction execution.

Credible Mechanisms

- Sealed-bid 2nd Price Auction
 - > Auctioneer collects all bids.
 - > Auctioneer goes to highest bidder (bid b).
 - > Auctioneer says 2^{nd} highest bid was $b \epsilon$.
 - > Highest bidder can't prove him wrong.
 - > Auctioneer has an incentive to lie \rightarrow not credible!
- 1^{st} price auction \rightarrow credible (Why?)
- Ascending auction → credible (Why?)

Credible Mechanisms

[Akbarpour and Li, 2017]

• Corollary: sealed-bid \cap DSIC \cap credible = Ø