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Approximate Mechanism Design without Money
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The literature on algorithmic mechanism design is mostly concerned with game-theoretic versions of op-
timization problems to which standard economic money-based mechanisms cannot be applied efficiently.
Recent years have seen the design of various truthful approximation mechanisms that rely on payments.
In this article, we advocate the reconsideration of highly structured optimization problems in the context
of mechanism design. We explicitly argue for the first time that, in such domains, approximation can be
leveraged to obtain truthfulness without resorting to payments. This stands in contrast to previous work
where payments are almost ubiquitous and (more often than not) approximation is a necessary evil that is
required to circumvent computational complexity.

We present a case study in approximate mechanism design without money. In our basic setting, agents
are located on the real line and the mechanism must select the location of a public facility; the cost of an
agent is its distance to the facility. We establish tight upper and lower bounds for the approximation ratio
given by strategyproof mechanisms without payments, with respect to both deterministic and randomized
mechanisms, under two objective functions: the social cost and the maximum cost. We then extend our
results in two natural directions: a domain where two facilities must be located and a domain where each
agent controls multiple locations.

Categories and Subject Descriptors: F.2 [Theory of Computation]: Analysis of Algorithms and Problem
Complexity; J.4 [Computer Applications]: Social and Behavioral Sciences—Economics

General Terms: Algorithms, Theory, Economics

Additional Key Words and Phrases: Approximation, mechanism design

ACM Reference Format:
Procaccia, A. D. and Tennenholtz, M. 2013. Approximate mechanism design without money. ACM Trans.
Econ. Comp. 1, 4, Article 18 (December 2013), 26 pages.
DOI:http://dx.doi.org/10.1145/2542174.2542175

1. INTRODUCTION

We anticipate that most computer scientists and most economists will view our contri-
bution differently, hence we initially cater to the two (complementary) points of view
separately as we introduce our work.

The Computer Science Perspective. The vibrant field of algorithmic mechanism de-
sign, which originated in the work of Nisan and Ronen [2001], deals with game-
theoretic versions of (often Internet-related) optimization problems, such as task
scheduling and resource allocation. In these settings, the problem input is distributed
among selfish agents; the agents might lie about their private information if this serves
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18:2 A. D. Procaccia and M. Tennenholtz

their own ends, resulting in a deterioration in the quality of the outcome. A mechanism
is a function that selects an outcome, and possibly also a payment scheme, given the
reported types of agents. The goal is then to design mechanisms that encourage truth-
fulness while optimizing an objective function.1

It has been observed [Christodoulou et al. 2007] that there are two major classes
of problems in algorithmic mechanism design. The first class contains problems for
which there exist optimal truthful mechanisms, but the problem is computationally
intractable. Typical examples include the line of work on combinatorial auctions (see,
e.g., [Dobzinski et al. 2006; Holzman et al. 2004; Lavi and Swami 2005; Lehmann et al.
2002]), where the objective function is usually the maximization of social welfare, that
is, the sum of agents’ utilities. For this objective function, a truthful optimal mech-
anism is given by the well-known Vickrey-Clarke-Groves (VCG) mechanism [Clarke
1971; Groves 1973; Vickrey 1961]. VCG uses payments in order to align the interests
of individual agents with the interests of society. Unfortunately, it turns out that an ap-
proximation of the social welfare is insufficient to guarantee truthfulness using VCG.
Therefore, researchers have focused on designing truthful yet efficient approximation
mechanisms; by approximation, we refer to the standard multiplicative sense, that is,
an α-approximation mechanism always returns a solution that is within an α-factor of
the optimal solution. In other words, researchers circumvent the computational hard-
ness by resorting to approximation, and at the same time, enforce tailor-made pay-
ments to guarantee truthfulness. Papers about scheduling on related machines (see,
e.g., [Andelman et al. 2005; Archer and Tardos 2001; Dhangwatnotai et al. 2008]) also
fall into the first class, although in the scheduling domain, the objective is usually to
minimize the makespan.

The second (significantly smaller) class of problems involves optimization problems
that are not necessarily intractable but for which there is no optimal truthful mecha-
nism. The prominent problem in this class is scheduling on unrelated machines (see,
e.g., [Christodoulou et al. 2007; Lavi and Swami 2007; Nisan and Ronen 2001]). In
such domains, one might investigate the optimal approximation ratio achievable by
any truthful mechanism, regardless of computational feasibility.

The assumption underlying essentially almost all previous work on truthful approx-
imation mechanisms is the existence of money, or, in other words, the ability to make
payments. This assumption is explicit in Nisan and Ronen’s [2001] very definition of
mechanism, but is easily challenged when it comes to computational settings. In par-
ticular, in Internet domains, payments are notoriously difficult to implement, mainly
due to security and banking issues. Moreover, Schummer and Vohra [2007] note that
“there are many important environments where money cannot be used as a medium
of compensation” due to ethical considerations (e.g., in political decision making) or
legal considerations (e.g., in the context of organ donations). It is therefore natural
to ask whether it is possible to design truthful mechanisms without payments; such
mechanisms are known as strategyproof in the social choice literature.

To summarize, from the computer science viewpoint, the novel component of
the eponymous phrase “approximate mechanism design without money” is “without
money”.

The Economics Perspective. A significant body of work studies mechanism design
without money. Prominent examples include strategyproof mechanisms for stable
matchings [Gale and Shapley 1962; Roth and Sotomayor 1991], related papers on
mechanisms for kidney exchange (see, e.g., [Ashlagi and Roth 2011]), and papers at
the intersection of mechanism design and social choice, some of which are discussed in

1Here we are taking a narrow view of algorithmic mechanism design.
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Approximate Mechanism Design without Money 18:3

detail later (see, e.g., [Miyagawa 2001; Moulin 1980]). For more details, see the survey
by Schummer and Vohra [2007].2

Economists typically gauge the quality of an outcome using Boolean properties, such
as Pareto efficiency, which requires that there be no other outcome that is at least as
good for all agents and strictly better for at least one agent. In particular, the existing
literature on mechanism design without money typically does not attempt to quantify
the quality of an outcome. Without an explicit optimization objective that measures
the quality of outcomes, approximation cannot play a role.

To summarize, from the economics viewpoint, the novel component of “approximate
mechanism design without money” is “approximate”, which also encapsulates our focus
on optimization problems.

All Together Now: What is Approximate Mechanism Design Without Money? We con-
sider game-theoretic optimization problems where returning the optimal solution is
not strategyproof. Our main conceptual contribution is the explicit suggestion that ap-
proximation can be used to obtain strategyproofness without resorting to payments; in
other words, we propose to sacrifice the optimality of the solution in order to achieve
strategyproofness and (crucially) to quantify how much was sacrificed using the notion
of approximation. In essence, this agenda is reminiscent of the second class of algorith-
mic mechanism design problems previously discussed, in the sense that approximation
is seen to enable truthfulness rather than hinder it. However, our rejection of money
stands in contrast to the existing work in algorithmic mechanism design (again, nar-
rowly construed), where payments are almost ubiquitous.

The contrast with previous work in algorithmic mechanism design becomes even
more striking when one considers (as we do) computationally tractable optimization
problems where there is an optimal, computationally efficient, truthful, payment-
based mechanism, but there is no optimal truthful mechanism without money. Cru-
cially, this type of problems does not fall into either of the two classes just mentioned.
We therefore have a new class of problems that has previously been disregarded and,
we suggest, should be considered.

Importantly, our agenda only applies to optimization problems where there exist
reasonable strategyproof mechanisms without payments. In particular, we must es-
cape social choice impossibility results, such as the Gibbard-Satterthwaite Theorem
[Gibbard 1973; Satterthwaite 1975] and its variations, for example, the important pa-
per of Barberà and Peleg [1990] regarding continuous preferences. Hence, we consider
highly structured domains where these results do not hold.

Our Results. This article presents a case study in approximate mechanism design
without money. Our point of departure is the literature on single-peaked preferences.
Single-peaked preferences are induced by an ordering of the possible outcomes, or al-
ternatives, on a line. For example, the alternatives can represent different candidates
in a political election, and their position can reflect the position of the candidates on a
political issue, from left wing to right wing. Each agent i is assumed to have a peak,
which is its most preferred alternative. The ordinal preferences of agents must obey
the following restriction: if an agent prefers alternative a to b, then either (i) a is the
agent’s peak, or (ii) a and b lie on opposite sides of the peak, or (iii) a and b lie on the
same side of the peak and a is closer to the peak than b. Single-peaked preferences and
their extensions have been extensively studied in the social choice literature, starting

2Some of the work by computer scientists can also be labeled as “mechanism design without money”, for
example, work on interdomain routing by Levin et al. [2008], as well as (arguably) some of the work on
computational complexity as a barrier to manipulation in elections [Faliszewski and Procaccia 2010].
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18:4 A. D. Procaccia and M. Tennenholtz

with the work of Black [1958] and Moulin [1980]; see the surveys by Barberà [2001]
and Sprumont [1995] and the references therein.

Recall that we are interested in optimization problems, and hence we restrict agents’
preferences further. In the basic domain that we study, each agent i has a location
xi ∈ R. Given the locations of all the agents, a mechanism selects the location y ∈ R of
a facility. The cost of agent i is simply the distance |y − xi|. For example, xi might be
the location of the house of agent i on a street, and y might be the location of a grocery
store or a public library. We use the terminology of facility location problems, but the
facility is simply an abstraction of a public good, and the same domain can also be used
to represent other settings. Indeed, returning to the political election example and spe-
cializing it, xi may be the agent’s desired national income tax rate on a scale between
50% (extreme left wing) and 0% (extreme right wing). Under these interpretations—
and others—payments may be infeasible, for the reasons already discussed.

We study the preceding, basic setting in Section 3. We observe that choosing the
median location is a group strategyproof (i.e., even coalitions of agents cannot gain
by lying) mechanism that minimizes the social cost, that is, the sum of the agents’
costs. However, if the goal is to minimize the maximum cost, selecting the optimal
facility location—the average of the leftmost and rightmost locations—is no longer
strategyproof. With respect to this objective function, we give a deterministic group
strategyproof mechanism (without money) that yields an approximation ratio of 2, and
provide a matching lower bound that holds even against (individually) strategyproof
deterministic mechanisms (without money). Further, we give a group strategyproof
randomized mechanism with an approximation ratio of 3/2 and provide a matching
strategyproof lower bound. These results are summarized in Table I.

We subsequently study two natural extensions of the basic setting. In both settings,
the optimal solution is not strategyproof even with respect to the social cost, and we
resort to strategyproof approximation mechanisms, some straightforward and some
nontrivial. Section 4 deals with a setting where two facilities must be located; the cost
of an agent is its distance to the nearest one. Our main result of Section 4 is a ran-
domized strategyproof 5/3-approximation mechanism for the maximum cost objective
function. This result is notable since the mechanism (Mechanism 2) incorporates sev-
eral new ideas in order to achieve strategyproofness, and, unlike other mechanisms,
the difficult part of its analysis (Theorem 4.5) is the proof of strategyproofness.

Section 5 is concerned with a setting where only one facility must be located, but
each agent is associated with multiple locations. For example, a real estate agent is
responsible for multiple properties, and in expressing preferences for a facility would
take the location of all of these properties into account. More generally, an agent is
interested in optimizing the objective function with respect to its own multiset of lo-
cations, whereas the designer is interested in optimizing over the entire multiset of
locations. In this section, our main results are a randomized strategyproof mechanism
that yields a 2-approximation to the social cost when there are two agents that control
the same number of locations, and a randomized group strategyproof mechanism that
has a tight approximation ratio of 3/2 for the maximum cost. Due to the sheer num-
ber of results, we do not list them all here, but rather refer the impatient reader to
Tables II and III.

2. RELATED WORK

Previous and Parallel Work. The origins of the agenda of approximate mechanism
design without money can be traced to several earlier papers. Dekel et al. [2010]
deal with incentive compatible learning, a line of work that was followed up in
recent papers Meir et al. [2010, 2012]. It turns out that the study of incentives in

ACM Transactions on Economics and Computation, Vol. 1, No. 4, Article 18, Publication date: December 2013.
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Approximate Mechanism Design without Money 18:5

general learning-theoretic domains reduces to simpler settings where strategyproof
approximation mechanisms without money can be designed. There are some math-
ematical connections between our work and that of Dekel et al. [2010] on which we
elaborate in Section 5.

LeGrand et al. [2007] studied a voting setting (without money) in which it is com-
putationally hard to compute the optimal solution. Their work focuses on complexity
results and approximation algorithms, but they also mention that the optimal solution
is manipulable, whereas one of their approximation algorithms (which simply chooses
the best outcome for a random agent) is strategyproof. Bezáková and Dani [2005] con-
sidered the problem of allocating indivisible goods to maximize the minimum value of
any agent. This is again a computationally hard problem, and some of the results are
purely algorithmic, but Bezáková and Dani also provide a strategyproof approxima-
tion mechanism. While these last three papers [Bezáková and Dani 2005; Dekel et al.
2010; LeGrand et al. 2007] construct approximation mechanisms without payments,
one of the main contributions of our article is that we properly crystallize and explicitly
advocate approximate mechanism design without money.

Our agenda is reminiscent of the line of work on the frugality of mechanisms (see,
e.g., [Archer and Tardos 2007; Elkind et al. 2004] in the context of buying an s-t path).
This body of research deals with designing truthful mechanisms that have to pay as
little as possible. One way to see our work is as taking the concept of frugality to the
limit by requiring zero payments.

The domain that we study in Section 4, in which two facilities must be located on the
real line, was previously studied by Miyagawa [2001]. He gave an interesting charac-
terization of strategyproof, Pareto-optimal, and continuous mechanisms in this setting.
Unfortunately, continuous mechanisms cannot give a good approximation ratio, hence
we cannot technically utilize this result.

Incentives aside and taking an algorithmic point of view, the problems that we deal
with are the one-dimensional Euclidean k-median and k-center problems, when the
objective functions are the social cost and the maximum cost, respectively, and k = 1
(Sections 3 and 5) or k = 2 (Section 4). This may sound discouraging, but recall that we
deliberately focus on relatively simple, structured problems (to avoid game-theoretic
impossibilities), and the domains that we deal with are extremely well studied in the
social choice literature [Barberà 2001; Sprumont 1995]. The k-median and k-center
problems were extensively investigated, especially in the context of clustering, and
can be approximated using sophisticated algorithms (see, e.g., [Arora et al. 1998; Bern
and Eppstein 1996]).

Some papers in Operations Research [Bandelt 1985; Bandelt and Labbé 1986;
Hansen and Thisse 1981; Labbé 1985] deal with the question: “How bad can a
Condorcet point be?” A Condorcet point is a facility location that is preferred to any
other location by a majority of agents. The quality of a Condorcet point is measured
by computing the ratio between its social cost and the minimum social cost. This line
of work deals with settings where the agents are located on a graph; the approach
is descriptive rather than algorithmic, and game-theoretic considerations are not
directly taken into account.

Finally, the rather large body of work on cost sharing includes papers on strate-
gyproof mechanisms for facility location problems that are related to ours (see, e.g.,
[Leonardi and Schäfer 2004; Pál and Tardos 2003]). Cost sharing deals with groups
of agents that agree to install a jointly used facility and split its cost, and thus this
setting inherently assumes the availability of money.

Subsequent Work on Approximate Mechanism Design without Money. Since an early
version of this article became publicly available in November 2008, a considerable

ACM Transactions on Economics and Computation, Vol. 1, No. 4, Article 18, Publication date: December 2013.
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18:6 A. D. Procaccia and M. Tennenholtz

amount of work has been devoted to improving and extending our facility location
results (some published papers include [Alon et al. 2010; Cheng et al. 2013; Fotakis
and Tzamos 2010; Lu et al. 2009, 2010; Nissim et al. 2012; Thang 2010; Todo et al.
2010]). For example, our basic setting was first extended by Alon et al. [2010],
who considered facility location problems where one facility must be located (as
in Section 3), but the agents are located on a graph; the model is identical to the
one investigated by Schummer and Vohra [2002]. Alon et al. provide a randomized
algorithm that gives a 2-approximation to the social cost on any graph. They also
design a randomized mechanism that yields an approximation ratio of 3/2 for the
maximum cost when the agents are located on a circle; this mechanism builds on our
Mechanism 1.

Perhaps the two most technically relevant papers are those by Lu et al. [2009, 2010].
Rather than outlining their results here, we discuss them in detail in Sections 4.3
and 5.3.

More importantly, the idea of approximate mechanism design without money, as first
presented in our work, has subsequently been applied to various domains that are
fundamentally different from the facility location setting studied here. These domains
include the following.

(1) Allocation of Items [Guo and Conitzer 2010; Guo et al. 2009]. The agents have
private additive valuation functions with respect to a set of heterogeneous items.
A mechanism maps the valuations of the agents to the allocation of the items. The
optimization target is the social welfare, that is, the sum of utilities.

(2) Generalized Assignment [Dughmi and Ghosh 2010]. An instance is a bipartite
graph, where the vertices on one side correspond to jobs and the vertices on the
other correspond to machines; the agents are the jobs. Machines have capacities,
and the edges have values and sizes. The edges incident to an agent are the agent’s
private information. A mechanism returns an assignment of jobs to machines. The
goal is to maximize the social welfare.

(3) Approval Voting [Alon et al. 2011]. The agents are the nodes of a directed graph,
where an edge from agent i to agent j means that agent i approves, trusts, or
supports j. An agent’s outgoing edges are its private information. A mechanism
selects a subset of agents of fixed size. An agent’s utility is 1 if it is a mem-
ber of the selected subset and 0 otherwise. A mechanism is considered strate-
gyproof if an agent cannot affect its chances of being selected by misreporting its
outgoing edges. The optimization target is the number of incoming edges to the
selected subset. This setting addresses realistic problems that arise in the con-
text of directed social networks (such as Twitter), reputation systems, and Web
search.

(4) Matching [Ashlagi et al. 2010; Caragiannis et al. 2011]. Each agent controls a pri-
vate subset of vertices in an undirected graph. A mechanism outputs a matching
on the graph. An agent’s utility is the number of its vertices that are matched. A
mechanism is strategyproof if an agent cannot benefit by hiding vertices, where
the assumption is that an agent can privately match hidden vertices among them-
selves. The optimization target is the social welfare, that is, (twice) the size of the
matching.

(5) Scheduling [Koutsoupias 2011]. The agents are (unrelated) machines, and there is
a set of tasks such that machine i requires time tij to execute task j. A mechanism
maps the reported execution times to an allocation of tasks to machines. The cost
of an agent is the sum of execution times of its assigned tasks, and the goal is to
minimize the social cost or the maximum cost (also known in this context as the
makespan).

ACM Transactions on Economics and Computation, Vol. 1, No. 4, Article 18, Publication date: December 2013.
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3. THE BASIC SETTING

Let N = {1, . . . , n} be a set of agents. Each agent i ∈ N has a location xi ∈ R. We refer
to the collection x = 〈x1, . . . , xn〉 as the location profile.3

A (deterministic) mechanism in this simple setting is a function f : Rn → R, that is,
a function that maps a given location profile to a location of a facility. If the facility is
located at y, the cost of agent i ∈ N is cost(y, xi) = |y − xi|.

A randomized mechanism is a function f from Rn to probability distributions over R.
In other words, a randomized mechanism allows us to randomly specify the location of
the facility for every given location profile. If f (x) = P, where P is a probability distri-
bution, the cost of agent i ∈ N is defined as the expected distance from the location of
i, that is, cost(P, xi) = Ey∼P|y − xi|.

A mechanism f is strategyproof if an agent can never benefit from reporting a
false location, regardless of the strategies of the other agents. In the current set-
ting, this means that for all x ∈ Rn, for all i ∈ N, and for all x′

i ∈ R, cost(f (x), xi) ≤
cost(f (x′

i, x−i), xi), where x−i = 〈x1, . . . , xi−1, xi+1, . . . , xn〉 is the vector of the locations of
all agents in N \ {i}.

A mechanism is group strategyproof if for any location profile x and any coalition S ⊆
N, there is no joint deviation x′

S of the agents in S such that all the agents in S gain,
that is, for all x ∈ Rn, for all S ⊆ N, and for all xS ∈ R|S|, there exists i ∈ S such that
cost(f (x), xi) ≤ cost(f (x′

S, x−S), xi). Notice that it is possible to define (strong) group
strategyproofness by asking that it cannot be the case that all the deviating agents
do not lose and at least one gains. Some of our group strategyproofness results do not
hold under this stronger definition. However, our (weaker) notion of strategyproofness
is very common in social choice, since in settings where payments (and in particular,
side payments) cannot be made, an agent that does not strictly gain has no incentive
to become a member of the deviating coalition.

In this article, we shall be interested in strategyproof mechanisms that also do well
with respect to optimizing one of two objective functions: minimizing the social cost, or
minimizing the maximum cost.

The social cost of a facility location y ∈ Rn with respect to the profile x ∈ Rn

is sc(y, x) = ∑
i∈N cost(y, xi); the social cost of a distribution P with respect to x is

sc(P, x) = Ey∼P[ sc(y, x)]. The maximum cost of a y with respect to x is mc(y, x) =
maxi∈N cost(y, xi), whereas the maximum cost of P with respect to x is mc(P, x) =
Ey∼P[ mc(y, x)].

3.1. Social Cost

We warm up by tackling an easy question: is there a strategyproof mechanism that
minimizes the social cost? The solution is very simple: choose the median location in
x, which we shall denote by med(x). Indeed, assume that n is odd, n = 2k + 1. Any
point that is to the left of the median has higher social cost than that of the median,
since it is further away from at least k + 1 locations and closer to at most k locations,
and the same holds for any point to the right of the median. If n is even, n = 2k, and
without loss of generality x1 ≤ x2 ≤ · · · ≤ xn, then any point in the interval [ xk, xk+1]
is an optimal facility location. In this case, when we refer to the median med(x), we
mean the leftmost point of the optimal interval, that is, the kth order statistic.

As noted in Section 1, the structure of the preferences of our agents is known in the
social choice literature as single peaked: the peak, or bliss point, of agent i is at xi,
and the closer a location is to xi, the more preferred it is. It has long been known that

3Some papers on single-peaked preferences restrict the locations to an interval; our results hold in that
model as well.

ACM Transactions on Economics and Computation, Vol. 1, No. 4, Article 18, Publication date: December 2013.
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18:8 A. D. Procaccia and M. Tennenholtz

when agents have single-peaked preferences, the selection of the kth order statistic
for some k ∈ {1, . . . , n} is group strategyproof [Moulin 1980]; this is also very easy
to verify. In particular, selecting the median peak is group strategyproof. Hence, in
our basic setting, the social cost can in fact be minimized using a group strategyproof
mechanism.

3.2. Maximum Cost

The second objective function that we consider is minimizing the maximum cost. Here,
the situation becomes nontrivial, even in the basic setting previously presented. We
will first investigate deterministic mechanisms and then turn our attention to ran-
domized mechanisms.

Deterministic Mechanisms. For a location profile x ∈ Rn, denote the leftmost location
in x by lt(x) = mini∈N xi, and the rightmost location by rt(x) = maxi∈N xi. Further-
more, denote the center of the interval [ lt(x), rt(x)] by cen(x) = (lt(x)+ rt(x))/2. Given
x, the solution that minimizes the maximum cost is cen(x). Unfortunately, this solu-
tion is not (even individually) strategyproof. Indeed, if N = {1, 2}, x1 = 0, and x2 = 1,
agent 2 can move the optimal solution to its own location by reporting x′

2 = 2.
A trivial, group strategyproof solution would be to choose any kth order statistic for

some k ∈ {1, . . . , n}. For reasons that will become apparent in the sequel, we choose
the first-order statistic, that is, lt(x). Notice that any point in the interval [ lt(x), rt(x)]
would give a 2-approximation to the maximum cost. We have therefore obtained the
following straightforward result.

THEOREM 3.1. f (x) = lt(x) is a group strategyproof 2-approximation mechanism
for the maximum cost.

Given the simplicity of our group strategyproof, 2-approximation mechanism, it may
be somewhat surprising that no (even individually) strategyproof mechanism can do
better, as the following theorem asserts.

THEOREM 3.2. Let N = {1, . . . , n}, n ≥ 2. Any deterministic strategyproof mecha-
nism f : Rn → R has an approximation ratio of at least 2 for the maximum cost.

PROOF. We first deal with the case where N = {1, 2}, and subsequently touch on
extending the proof to an arbitrary n.

Assume for contradiction that f : Rn → R is a strategyproof mechanism and has an
approximation ratio smaller than 2 for the maximum cost. Consider the location pro-
file x, where x1 = 0 and x2 = 1. Assume without loss of generality that f (x) = 1/2 + ε,
ε ≥ 0. Now, consider the profile x′, where x′

1 = 0 and x′
2 = 1/2 + ε. The optimum is the

average of the two locations, namely, 1/4 + ε/2, which has a maximum cost of 1/4 + ε/2.
If the mechanism is to achieve an approximation ratio better than 2, the facility must
be placed in (0, 1/2+ ε). In that case, given the profile x′, agent 2 can benefit by report-
ing x2 = 1, thus moving the solution to 1/2 + ε, in contradiction to strategyproofness.

In order to extend this result to an arbitrary n, simply locate all the agents N \ {1, 2}
at 1/2 in each one of the profiles previously described. All of the arguments given go
through smoothly.

Randomized Mechanisms. We presently turn to randomized mechanisms; we shall
demonstrate that randomization allows us to break the deterministic lower bound of
2, given by Theorem 3.2. Indeed, we focus on the following mechanism.

Mechanism 1. Given x, return lt(x) with probability 1/4, rt(x) with probability 1/4,
and cen(x) with probability 1/2.

ACM Transactions on Economics and Computation, Vol. 1, No. 4, Article 18, Publication date: December 2013.
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Approximate Mechanism Design without Money 18:9

It is possible to demonstrate that Mechanism 1 is group strategyproof. Moreover, the
mechanism gives a 3/2-approximation, well below the deterministic lower bound.

THEOREM 3.3. Mechanism 1 is a group strategyproof 3/2-approximation mecha-
nism for the maximum cost.

The proof of Theorem 3.3 is based on the observation that if there is a contraction of
the interval over which the mechanism randomizes, then the agents at the boundaries
must be members of the deviating coalition.

PROOF OF THEOREM 3.3. By scaling the distances, we can assume without loss of
generality that lt(x) = 0 and rt(x) = 1. We shall first prove the claim about the ap-
proximation ratio.

The optimum cost is 1/2, whereas the expected cost of the algorithm is

1
4

· 1 + 1
4

· 1 + 1
2

· 1
2

= 3
4

.

The approximation ratio is therefore 3/2.
We now turn to proving group strategyproofness. Let S ⊆ N be a coalition. We must

demonstrate that the agents in S cannot all gain by deviating.
A crucial observation is that given x ∈ Rn, the only deviations that affect the outcome

of the mechanism are the ones that modify the locations of the extreme agents lt(x)
and rt(x). The location of lt(x) can always be pushed to the left, and the location of rt(x)
can always be pushed to the right. However, lt(x) can be pushed to the right only if the
leftmost agent is a member of the deviating coalition S, that is, argmini∈Nxi ∩ S = ∅.
Similarly, rt(x) can be pushed to the left only if the rightmost agent is a member of S.

Let x ∈ Rn and let x′ ∈ Rn where, for every i = S, x′
i = xi. Further, let �1 =

lt(x) − lt(x′), and �2 = rt(x′) − rt(x). We consider four cases.

Case 1. �1 ≥ 0 and �2 ≥ 0. Let i ∈ S; clearly xi ∈ [ lt(x), rt(x)]. Denoting Mecha-
nism 1 by f , we have

cost(f (x′), xi) = 1
4

· (xi − lt(x) + �1) + 1
4

· (rt(x) − xi + �2)

+ 1
2

·
∣∣∣∣xi − lt(x) − �1 + rt(x) + �2

2

∣∣∣∣
≥ 1

4
· (xi − lt(x)) + 1

4
· (rt(x) − xi) + 1

2
·
∣∣∣∣xi − lt(x) + rt(x)

2

∣∣∣∣
= cost(f (x), xi).

Case 2. �1 < 0 and �2 ≥ 0. In this case, it must be true that the leftmost agent,
which is located at 0, is a member of S. It is obvious that this agent cannot benefit
from the deviation, and in fact must strictly lose, since the leftmost point, the center,
and possibly the rightmost point are all moving further away from the agent’s location
at 0.

Case 3. �1 ≥ 0 and �2 < 0. The case is symmetric to Case 2.

Case 4. �1 < 0 and �2 < 0. In this case, the leftmost agent, located at 0, and the
rightmost agent, located at 1, must both be members of S. We shall demonstrate that
they cannot both gain from the deviation.

cost(f (x′), 0) = 1
4

· |�1| + 1
4

· (1 − |�2|) + 1
2

· |�1| + 1 − |�2|
2

= cost(f (x), 0) + |�1| − |�2|
2

.

ACM Transactions on Economics and Computation, Vol. 1, No. 4, Article 18, Publication date: December 2013.



�

�

�

�

�

�

�

�

18:10 A. D. Procaccia and M. Tennenholtz

Similarly,

cost(f (x′), 1) = cost(f (x), 1) + |�2| − |�1|
2

.

We conclude that

cost(f (x′), 0) + cost(f (x′), 1) = cost(f (x), 0) + cost(f (x), 1),

and hence either cost(f (x′), 0) ≥ cost(f (x), 0) or cost(f (x′), 1) ≥ cost(f (x), 1).

While the theorem implies that randomization allows us to drop the feasible strat-
egyproof approximation ratio from 2 to 3/2, we can also show that this is as far as
randomization can take us.

THEOREM 3.4. Let N = {1, . . . , n}, n ≥ 2. Any randomized strategyproof mechanism
has an approximation ratio of at least 3/2 for the maximum cost.

In order to prove the theorem, we require two straightforward lemmata.

LEMMA 3.5. Let N = {1, 2}, and let x ∈ R2. Let P be a probability distribution over
R such that

Ey∼P

[∣∣∣∣y − x1 + x2

2

∣∣∣∣
]

= �.

Then the expected maximum cost is

� + |x1 − x2|
2

.

PROOF. For every y ∈ R, we have that the maximum cost is
∣∣y − x1+x2

2

∣∣ + |x1−x2|
2 .

Therefore, the expected maximum cost is

Ey∼P

[∣∣∣∣y − x1 + x2

2

∣∣∣∣ + |x1 − x2|
2

]
= � + |x1 − x2|

2
.

LEMMA 3.6. Let N = {1, 2}, and let x1, x2 ∈ R. Let P be a probability distribution
over R. Then there exists i ∈ N such that

Ey∼P[ |y − xi|] ≥ |x1 − x2|
2

.

PROOF. Let Y be a random variable distributed according to P, and let X1 and X2
be random variables defined by X1 = |Y − x1|, X2 = |Y − x2|. Then

E[ X1] +E[ X2] = E[ X1 + X2] ≥ |x1 − x2|.
The lemma directly follows.

We are now ready to prove the theorem.

PROOF OF THEOREM 3.4. As in the proof of Theorem 3.2, we first deal with the
case N = {1, 2} and then extend the proof to more agents.

Let f be a randomized mechanism. Consider the profile x ∈ R2, where x1 = 0 and
x2 = 1. We have that f (x) = P, where P is a distribution over R. By Lemma 3.6, there
exists xi for i ∈ N, without loss of generality x2, such that cost(P, x2) ≥ 1/2.

Now, consider the profile where x1 = 0, x′
2 = 2. By strategyproofness, the expected

distance from 1 must still be at least 1/2, otherwise agent 2 gains from deviating from
x2 to x′

2. By Lemma 3.5 (with � ≥ 1/2), the expected maximum cost is therefore at
least 3/2, whereas the optimum has a cost of 1; it follows that the approximation ratio
of f is at least 3/2.

ACM Transactions on Economics and Computation, Vol. 1, No. 4, Article 18, Publication date: December 2013.
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Table I. Summary of the Results of Section 3

Objective Function Deterministic Randomized

Social Cost UB: 1 GSP
LB: 1 SP

Maximum Cost UB: 2 GSP (Thm 3.1)
LB: 2 SP (Thm 3.2)

UB: 3/2 GSP (Thm 3.3)
LB: 3/2 SP (Thm 3.4)

Note: UB and LB stand for upper bound and lower bound, respectively. SP and GSP stand for strategy-
proof and group strategyproof, respectively.

In order to extend the proof to an arbitrary number of agents n, we simply set the
locations of the additional agents to be 1/2; the proof works as before.

3.3. Discussion

Table I summarizes the results of Section 3. Our results in this section are completely
tight. As we move on to significantly more-involved settings, obtaining tight bounds
inevitably becomes much more difficult.

Interestingly, if payments are allowed, it is possible to obtain a truthful optimal
solution even for the maximum cost by using VCG-like payments: each agent i ∈ N
pays the distance between the optimal facility location when x is reported and the
optimal facility location when x−i is reported.

4. EXTENSION I: TWO FACILITIES

In this section, we investigate a first natural extension to the setting examined in
Section 3: locating two facilities instead of just one. A deterministic mechanism is now
a function f : Rn → R2, that is, the mechanism returns the locations y ∈ R2 of both
facilities given a location profile. If y = 〈y1, y2〉, the cost of an agent is its distance to
the nearest facility: cost(y, xi) = min{|y1−xi|, |y2−xi|}. We usually assume that y1 ≤ y2.

Similarly, a randomized mechanism returns a probability distribution P over R2,
and the cost of an agent is its expected distance to the nearest facility. We redefine
sc(y, x) and mc(y, x) in the obvious way according to the new definition of cost given
previously.

4.1. Social Cost

As before, we shall first look into minimizing the social cost in a strategyproof way. Let
us first consider the algorithmic problem of locating two facilities in a way that mini-
mizes the social cost, disregarding incentives. This problem is quite simple, although
this may not be immediately apparent. Indeed, given a location profile x ∈ Rn, let the
optimal facility locations be y1, y2 ∈ R, y1 ≤ y2. Informally, we can associate with y1
a multiset of locations L(x) � {x1, . . . , xn} (for “left”) whose cost is computed with re-
spect to y1, and similarly associate with y2 a multiset of locations R(x) � {x1, . . . , xn}
(for “right”) whose cost is computed with respect to y2, such that for all xi ∈ L, xj ∈ R,
xi ≤ xj. Now, y1 is the median of L(x) and y2 is the median of R(x). Hence, it is sufficient
to optimize over the n − 1 possible choices of L(x) and R(x).

Despite the algorithmic simplicity of the problem, and in contrast to the single fa-
cility setting, minimizing the social cost in the two facility setting is not strategyproof.
Intuitively, the reason is that it is impossible to elicit the structure of L(x) and R(x) in a
strategyproof way. The next theorem in fact establishes a lower bound of 3/2−O(1/n).

THEOREM 4.1. Let N = {1, . . . , n}, n ≥ 3. In the two facility setting, any deter-
ministic strategyproof mechanism f : Rn → R2 has an approximation ratio of at least
3/2 − O(1/n) for the social cost.

ACM Transactions on Economics and Computation, Vol. 1, No. 4, Article 18, Publication date: December 2013.
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18:12 A. D. Procaccia and M. Tennenholtz

PROOF. Let n ≥ 3. We construct a location profile x ∈ Rn as follows: x1 = −1,
x2 = 1, and xi = 0 for all i ∈ N \ {1, 2}. The optimal solution has a social cost of 1.
Let f be a mechanism, and let f (x) = 〈y1, y2〉 ∈ R2. If |y1| ≥ 2

n−2 , and |y2| ≥ 2
n−2 , then

sc(f (x), x) ≥ 2, hence the mechanism’s approximation ratio is at least 2.
By this, we can assume without loss of generality that |y1| ≤ 2

n−2 . Furthermore,
assume without loss of generality that y2 ≤ 0. We consider a deviation of agent
2 to x′

2 = 3/2. Let f (x′
2, x−2) = 〈y′

1, y′
2〉. The optimal solution 〈0, 3/2〉 has a so-

cial cost of 1, therefore we can assume once again that |y′
1| ≤ 2

n−2 . In addition,
cost(〈y1, y2〉, x2) ≥ 1− 2

n−2 , hence by strategyproofness we have that |y′
2 −x2| ≥ 1− 2

n−2 .
It follows that either y′

2 ≥ 2 − 2
n−2 , or y′

2 ≤ 2
n−2 . In both cases, we get that

sc(〈y′
1, y′

2〉, 〈x′
2, x−2〉) ≥ 3

2
− 2

n − 2
= 3

2
− O

(
1
n

)
,

hence the approximation ratio is at least 3/2 − O(1/n).

It can be verified that a group strategy proof (n − 1)-approximation mechanism is
given by choosing lt(x) and rt(x) given the location profile x ∈ Rn. In brief, the reason
is that lt(x) ∈ L(x) and rt(x) ∈ R(x). The gap between this result and the lower bound
given by Theorem 4.1 is still huge; this gap was very recently closed by Lu et al. [2010]
(see Section 4.3).

4.2. Maximum Cost

Let us now turn to strategyproof mechanisms that approximate the maximum cost.
Similarly to the social cost objective, the problem of locating two facilities in a way
that minimizes the maximum cost is computationally straightforward. Moreover, we
can give a very accurate characterization of the structure of the optimal solution. We
shall first require some notation.

Given x ∈ Rn, let the left boundary location be lb(x) = max {xi : i ∈ N, xi ≤ cen(x)},
and the right boundary location be rb(x) = min {xi : i ∈ N, xi ≥ cen(x)}. Now, denote
dist(x) = max{lb(x)− lt(x), rt(x)− rb(x)}. The following lemma is the foundation of the
positive results in this section.

LEMMA 4.2. Given x ∈ Rn, the optimal placement of two facilities has a maximum
cost of dist(x)/2.

PROOF. As usual, we can assume without loss of generality (by scaling the dis-
tances) that lt(x) = 0, rt(x) = 1; further, assume without loss of generality that
lb(x) ≥ 1 − rb(x), that is, dist(x) is defined by lb(x). We shall first show that there is a
solution with the announced cost. Indeed, let y∗ with y∗

1 = lb(x)/2, y∗
2 = (rb(x) + 1)/2.

It holds that mc(y∗, x) = lb(x)/2 ≤ 1/4.
We argue that any solution must have a cost of at least lb(x)/2. Indeed, consider

first a solution y, where y1 ≤ 1/2 and y2 ≤ 1/2, or y1 ≥ 1/2 and y2 ≥ 1/2; then
mc(y, x) ≥ 1/2, making this solution inferior to y∗. Now, given that the solution only
locates one facility y1 to the left of 1/2, we can assume that y2 ≥ 3/4; otherwise, the
cost is at least 1/4. Any location such that |y1 − lb(x)/2| = ε > 0 has a cost of at least
lb(x)/2+ε, incurred by its distance to either 0 or lb(x). We conclude that the maximum
cost is at least lb(x)/2.

Deterministic Mechanisms. Given our experience with the single facility case and
Lemma 4.2, obtaining a 2-approximation, group strategyproof, deterministic mecha-
nism is quite straightforward: given x ∈ Rn, simply select the leftmost location lt(x)
and the rightmost location rt(x). Indeed, the maximum cost of our solution is dist(x),

ACM Transactions on Economics and Computation, Vol. 1, No. 4, Article 18, Publication date: December 2013.
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whereas the maximum cost of the optimal solution, by Lemma 4.2, is dist(x)/2. We
have obtained the following theorem.

THEOREM 4.3. f (x) = 〈lt(x), rt(x)〉 is a group strategyproof 2-approximation mech-
anism for the maximum cost in the two facility setting.

As for lower bounds, notice that when there are two agents, it is possible to obtain
an optimal strategyproof solution by selecting the locations of the two agents. When
n ≥ 3, however, we can use a variation on the construction in the proof of Theorem 3.2.

COROLLARY 4.4. Let N = {1, . . . , n}, n ≥ 3. Any deterministic strategyproof mecha-
nism f : Rn → R2 has an approximation ratio of at least 2 for the maximum cost in the
two facility setting.

PROOF SKETCH. Use the same construction as in the proof of Theorem 3.2 for n − 1
agents, and locate an additional agent at, say, 10 in all the location profiles used in the
proof. In order to get a 2-approximation, one of the two facilities must always be close
to 10, whereas the same arguments as before apply to the second facility and the rest
of the agents.

Randomized Mechanisms. We just saw that with respect to deterministic mecha-
nisms, the results from Section 3 carry over quite smoothly to the two-facility setting.
This is no longer true with respect to randomized mechanisms, for a variety of reasons.

We consider the following mechanism. It is inspired by Mechanism 1 but re-
quires several additional new ideas: randomizing over two equal intervals, unbalanced
weights at the edges, and correlation between the two facilities. These “tricks” play a
crucial role in satisfying the delicate strategyproofness constraints associated with the
two facility setting.

Mechanism 2. Given x ∈ Rn, compute dist(x). Return y according to the follow-
ing probability distribution: 〈lt(x), rt(x)〉 with probability 1/2, 〈lt(x) + dist(x), rt(x) −
dist(x)〉 with probability 1/6, and 〈lt(x) + dist(x)/2, rt(x) − dist(x)/2〉 with probabil-
ity 1/3.

The unbalanced weights inevitably harm the mechanism’s approximation perfor-
mance. Nevertheless, we shall demonstrate that Mechanism 2 succeeds in breaking
the deterministic lower bound of 2 by a significant margin.

THEOREM 4.5. Mechanism 2 is a strategyproof 5/3-approximation mechanism for
the maximum cost in the two facility setting.

PROOF. Let us first tackle the easy claim about the approximation ratio of the mech-
anism. Given x, with probability 1/3, the output of the mechanism has a maximum cost
of dist(x)/2. With probability 2/3, the output has a maximum cost of dist(x). Hence, the
expected maximum cost of the mechanism of (5/6) ·dist(x). By Lemma 4.2, the optimal
solution has a maximum cost of dist(x)/2. The ratio of the two expressions is 5/3.

Let us now turn to proving strategyproofness. Let x ∈ Rn be a location profile. Con-
sider some agent i ∈ N. We have that either xi ∈ [ lt(x), lt(x) + dist(x)] or xi ∈ [ rt(x) −
dist(x), rt(x)]; assume without loss of generality that xi ∈ [ lt(x), lt(x) + dist(x)].
Denoting Mechanism 2 by f , let us compute the cost of agent i when x is reported.

cost(f (x), xi) = 1
2

·(xi − lt(x))+ 1
6

·((lt(x)+dist(x))−xi)+ 1
3

· |(lt(x)+dist(x)/2)−xi|. (1)

We analyze a deviation x′
i = xi of agent i ∈ N. Define a location profile x′ ∈ Rn such

that x′
j = xj for every agent j = i. The proof proceeds by a case analysis.

ACM Transactions on Economics and Computation, Vol. 1, No. 4, Article 18, Publication date: December 2013.
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lt(x) rt(x)xi rb(x)

cen(x)dist(x) dist(x)

(a) Truthful location profile x.

lt(x′) rt(x′)x′
i xi rb(x′)

cen(x′)dist(x′) dist(x′)
(b) Manipulated location profile x′.

Fig. 1. An illustration of subsubcase 1.2.2 in the proof of Theorem 4.5.

Case 1. x′
i ∈ [ lt(x), ∞). In this case, xi is at least as close to lt(x′), lt(x′) + dist(x′)/2,

and lt(x′) + dist(x′) as to rt(x′), rt(x′) − dist(x′)/2 and rt(x′) − dist(x′), respectively.
Therefore, we can ignore the location the mechanism selects for the right facility y2
and concentrate on the location of the left facility y1. We examine two subcases.

Subcase 1.1. lt(x) < lt(x′). Crucially, in this case xi = lt(x). We wish to claim that

lt(x) + dist(x) ≤ lt(x′) + dist(x′). (2)

This is trivial if lt(x′) ≥ lt(x) + dist(x), so we can assume that lt(x′) < lt(x) + dist(x).
Now, if lt(x) + dist(x) = lb(x), and since we have that cen(x) < cen(x′), it must
hold that lb(x′) ≥ lt(x) + dist(x), hence Eq. (2) holds. If rt(x) − dist(x) = rb(x) and
rb(x) ≤ cen(x′), then Eq. (2) trivially holds, since then lb(x′) ≥ rb(x). Finally, assume
that rt(x) − dist(x) = rb(x) and rb(x) > cen(x′); then dist(x′) ≥ rt(x′)− rb(x) ≥ dist(x),
where the second inequality holds since rt(x′) ≥ rt(x). Therefore, Eq. (2) follows from
the fact that lt(x) < lt(x′).

Using Eq. (2), we have that lt(x) < lt(x′), lt(x) + dist(x) ≤ lt(x′) + dist(x′), hence
lt(x) + dist(x)/2 < lt(x′) + dist(x′)/2. Since xi = lt(x), this means that

0 = lt(x) − xi < lt(x′) − xi,

(lt(x) + dist(x)) − xi ≤ (lt(x′) + dist(x′)) − xi,

and

(lt(x) + dist(x)/2) − xi ≤ (lt(x′) + dist(x′)/2) − xi.

In other words, the distance between xi and the locations that the mechanism ran-
domizes over only increases as a result of the deviation. Hence, the cost of agent i can
only increase from the deviation.

Subcase 1.2. lt(x) = lt(x′). We examine three subsubcases.

Subsubcase 1.2.1. dist(x′) = dist(x). In this subsubcase, the probability distribution
over the location of y1 does not change as a result of the deviation, so i does not benefit.4

Subcase 1.2.2. dist(x′) < dist(x). An important observation in the current subsub-
case is that xi = lt(x) + dist(x), that is, xi defines the border of the interval over which
the mechanism randomizes. Indeed, we have assumed that xi ∈ [ lt(x), lt(x) + dist(x)],
so xi ≤ lt(x) + dist(x). If xi < lt(x) + dist(x), then either there is an agent j = i such
that xj = lt(x) + dist(x) or xj = rt(x) − dist(x); notice that in the latter case it also
holds that xj ≥ lt(x) + dist(x). Since x′

j = xj, it must be the case that dist(x′) ≥ dist(x).
See Figure 1 for an illustration.

4Note that the probability distribution over the location of y2 might change, since if x′
i > rt(x), then

rt(x′) = x′
i.
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lt(x) rt(x)xi rb(x)lb(x)

cen(x)dist(x) dist(x)

(a) Truthful location profile x.

lt(x) rt(x′)xix′
i rb(x′)lb(x′)

cen(x′)dist(x′) dist(x′)

�

(b) Manipulated location profile x′.

Fig. 2. An illustration of subsubcase 2.1.1 in the proof of Theorem 4.5.

It follows from the observation and from the fact that lt(x) = lt(x′) (since we are in
Case 1.2) that in our current subsubcase,

0 = xi − (lt(x) + dist(x)) < xi − (lt(x′) + dist(x′)),

xi − (lt(x) + dist(x)/2) < xi − (lt(x′) + dist(x′)/2),

and xi − lt(x) = xi − lt(x′). As in Subcase 1.1, the distance between xi and the locations
that the mechanism randomizes over only increases as a result of the deviation, so the
cost of agent i increases from the deviation.

Subsubcase 1.2.3. dist(x′) > dist(x). Let dist(x′) = dist(x) + �. Observe that
lt(x)+dist(x′)/2 = lt(x)+dist(x)/2+�/2. Since xi ∈ [ lt(x), lt(x)+dist(x)], it holds that

cost(f (x′), xi) = 1
2

· (xi − lt(x)) + 1
6

· ((lt(x) + dist(x′)) − xi) + 1
3

· |(lt(x) + dist(x′)/2) − xi|

≥ 1
2

(xi − lt(x)) + 1
6

((lt(x) + dist(x) + �) − xi) + 1
3

(
|lt(x) + dist(x)/2 − xi| − �

2

)

= cost(f (x), xi),

where the last transition follows from Eq. (1).

Case 2. x′
i ∈ (−∞, lt(x)). Let x′

i = lt(x) − �, � > 0. We examine two subcases.

Subcase 2.1. xi ≤ cen(x′). Informally, the deviation in Case 2 affects the location
of cen(x′). However, as long as xi ≤ cen(x′)), xi must be at least as close to lt(x′),
lt(x′)+dist(x′)/2, and lt(x′)+dist(x′) as to rt(x′), rt(x′)−dist(x′)/2 and rt(x′)−dist(x′),
respectively. Therefore, as in Case 1, in Subcase 2.1, we can focus on the distance of xi
from y1 when we calculate the cost of agent i.

We claim that in Subcase 2.1,

dist(x′) ≤ dist(x) + �. (3)

Indeed, assume first that dist(x′) = lb(x′) − lt(x′). Since cen(x) > cen(x′), we have
that lb(x′) < cen(x), and hence

dist(x) ≥ lb(x′) − lt(x) = lb(x′) − lt(x′) − � = dist(x′) − �.

Now assume that dist(x′) = rt(x′) − rb(x′). If rb(x′) ≥ cen(x), then dist(x) ≥ dist(x′),
so we can assume that rb(x′) < cen(x). By definition, rb(x′) ≥ cen(x′). We have
that cen(x′) = cen(x) − �/2, therefore cen(x) − rb(x′) ≤ �/2. It follows that
rb(x′) − lt(x) ≥ rt(x) − rb(x′) − �. Hence,

dist(x) ≥ rb(x′) − lt(x) ≥ rt(x) − rb(x′) − � = rt(x′) − rb(x′) − � = dist(x′) − �.

This concludes the proof of Equation (3). We break the rest of the analysis of Case 2.1
into two subsubcases.
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Subsubcase 2.1.1. There exists j = i such that |xj − cen(x′)| ≤ |xi − cen(x′)|; see Fig-
ure 2 for an illustration. Informally, in this subsubcase, agent i was not “supposed” to
affect the value of dist(x′). We claim that in this subsubcase, dist(x′) ≥ dist(x). Indeed,
if dist(x) = rt(x) − rb(x), then the claim follows from the facts that cen(x′) < cen(x)
and rt(x) = rt(x′). If dist(x) = lb(x) − lt(x), with xk located at lb(x), then the claim
follows from the fact that both

xk − lt(x′) ≥ xk − lt(x) ≥ dist(x),

and
rt(x′) − xk = rt(x) − xk ≥ xk − lt(x) = dist(x).

We are using the assumption of Subsubcase 2.1.1 about xj in the following way:
it might be true that k = i in the preceding arguments, but in that case, we are
guaranteed that there exists j = i such that xj is at least as close as xk to cen(x′);
therefore, we can use the location of xj to bound dist(x′).

It holds that lt(x′) = lt(x) − �. Further, since dist(x′) ≥ dist(x), and by Eq. (3) also
dist(x′) ≤ dist(x) + �, we have the following inequalities:

lt(x) + dist(x) − � ≤ lt(x′) + dist(x′) ≤ lt(x) + dist(x),

and
lt(x) + dist(x)/2 − � ≤ lt(x′) + dist(x′)/2 ≤ lt(x′) + dist(x)/2 − �/2.

Hence,

cost(f (x′), xi) = 1
2

· (xi − lt(x′)) + 1
6

· (lt(x′) + dist(x′) − xi) + 1
3

· |lt(x′) + dist(x′)/2 − xi|

≥ 1
2

(xi − lt(x) + �) + 1
6

((lt(x) + dist(x) − xi) − �) + 1
3

(|lt(x) + dist(x)/2 − xi| − �
)

= cost(f (x), xi).

Subsubcase 2.1.2. |xj −cen(x′)| > |xi −cen(x′)| for all agents j = i. In this subsubcase,
it may not be true that dist(x′) ≥ dist(x). Rather than relying on this inequality, we
must rely on the location of agent i.

First, we notice that by the arguments in Subsubcase 2.1.1, it must hold that

lt(x) + dist(x) − xi ≤ �. (4)

Now, if dist(x) ≤ dist(x′), we can use the same arguments we used previously,
so let us assume that dist(x) = dist(x′) + �′ for some �′ > 0. We have that
lt(x′) + dist(x′) = lt(x) + dist(x) − (� + �′), and hence, by Eq. (4),

|lt(x′) + dist(x′) − xi| ≥ (lt(x) + dist(x) − xi) − � + �′.
Furthermore, we have that

lt(x′) + dist(x′)/2 = lt(x) − � + (dist(x) − �′)/2.

Hence, in particular,

|(lt(x′) + dist(x′)/2) − xi| ≥ |(lt(x) + dist(x)/2) − xi| − � − �′/2.

It follows that

cost(f (x′), xi) ≥ 1
2

· (xi − lt(x) + �) + 1
6

· (lt(x) + dist(x) − xi − � + �′)

+ 1
3

·
(

|lt(x) + dist(x)/2 − xi| − � − �′

2

)

= cost(f (x), xi).
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Table II. Summary of the Results of Section 4

Objective Function Deterministic Randomized

Social Cost UB: n − 1 GSP
LB: 3/2 −O(1/n) SP (Thm 4.1) N/A

Maximum Cost UB: 2 GSP (Thm 4.3)
LB: 2 SP (Cor 4.4)

UB: 5/3 SP (Thm 4.5)
LB: 3/2 SP (Cor 4.6)

Note: UB and LB stand for upper bound and lower bound, respectively. SP and GSP stand for
strategyproof and group strategyproof, respectively.

Subcase 2.2. xi > cen(x′). Let x′′
i ∈ R, x′′

i < lt(x), such that cen(x′′
i , x−i) = xi. Define

x′′ such that x′′
j = xj for all j = i. Then,

cost(f (x′), xi) − cost(f (x), xi) = (cost(f (x′), xi) − cost(f (x′′), xi))

+ (cost(f (x′′), xi) − cost(f (x), xi)).

By Subcase 2.1, cost(f (x′′), xi) − cost(f (x), xi) ≥ 0. The reader is encouraged to verify
that using the arguments of Subcase 2.1, it is sufficient to show that

cost(f (x′), xi) − cost(f (x′′), xi) ≥ 0,

under the assumption that

rt(x′′) − dist(x′′) = rt(x′) − dist(x′′) = xi,

and rt(x′) − dist(x′) < xi. We let �′ = dist(x′) − dist(x′′).
Notice that since xi > cen(x′) and xi = cen(x′′), we may measure the cost of agent i

with respect to the location of the right facility y2. We have that

(rt(x′) − dist(x′)) − xi = (rt(x′′) − dist(x′′) − xi) + �′.

On the other hand,

|(rt(x′) − dist(x′)/2) − xi| ≥ |(rt(x′′) − dist(x′′)/2 − xi| − �′/2 .

By similar calculations as before, we get that

cost(f (x′), xi) − cost(f (x′′), xi) ≥ 1
6

· �′ + 1
3

·
(

−�′

2

)
= 0 .

As in the deterministic case, we observe that the lower bound of 3/2 given in Theo-
rem 3.4 also holds, up to an additive term of ε, in our current setting, as long as n ≥ 3.

COROLLARY 4.6. Let N = {1, . . . , n}, and let ε > 0. Any randomized strategyproof
mechanism has an approximation ratio of at least 3/2 − ε for the maximum cost in the
two facility setting.

PROOF SKETCH. We use the same construction as in the proof of Theorem 3.4 for n−
1 agents and add an additional agent located at a large enough value v(ε) that depends
on ε. Now, in order to obtain a small approximation ratio, the expected distance of the
right facility y2 from v(ε) must be small, hence the probability that y2 is relevant to
the first n−1 agents can be made arbitrarily small. We conclude that the arguments of
the proof of Theorem 3.4 work here as well, up to an arbitrarily small additive term.

4.3. Discussion and Subsequent Work

Table II summarizes the results of Section 4. A truly intriguing gap is the one between
the trivial n − 1 strategyproof upper bound for the social cost and the lower bound of
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3/2. Our lower bound was improved to 2 by Lu et al. [2009] and was very recently im-
proved again to (n−1)/2 by Lu et al. [2010]. This last result is asymptotically tight and
implies that there are no nontrivial deterministic SP mechanisms for the social cost.
Lu et al. [2010] complement their deterministic SP lower bound with a surprising ran-
domized SP upper bound of 4, which is obtained via a natural mechanism. Currently,
the best randomized SP lower bound is 1.045 [Lu et al. 2009].

An open problem is the gap between our randomized upper bound of 5/3 for the max-
imum cost and the lower bound of 3/2. Moreover, it is unclear whether Mechanism 2 is
group strategyproof.

A natural way to further extend the results of this section is to consider a setting
with more than two facilities. The computational problems involved are still tractable
when the number of facilities is constant. However, the intuitions behind the positive
results given in this section (i.e., Theorems 4.3 and 4.5), as well as the randomized
mechanism of Lu et al. [2010], already collapse, even with respect to three facilities.

5. EXTENSION II: MULTIPLE LOCATIONS PER AGENT

Another natural extension of the setting of Section 3 is the one in which each agent
controls multiple locations. Let wi be the number of locations controlled by agent i ∈
N; these numbers are public information. We denote the set of locations that agent i
controls by xi = 〈xi1, . . . , xiwi〉, and the location profile is now x = 〈x1, . . . , xn〉.

A deterministic mechanism in the multiple locations setting is a function f : Rw1 ×
· · · × Rwn → R, that locates a single facility given the multiple locations reported by
each agent. As in Section 3, a randomized mechanism returns a probability distribu-
tion over R.

As before, we will be interested in minimizing the social cost or the maximum cost,
but now we make different assumptions about an agent’s cost depending on the ob-
jective function we are considering. If the objective function is minimizing the so-
cial cost, given a facility location y, the cost of an agent is the sum of distances to
its locations: cost(y, xi) = sc(y, xi) = ∑wi

j=1 |y − xij|. If the goal is minimizing the
maximum cost, then the cost of an agent is the maximum distance to its locations:
cost(y, xi) = mc(y, xi) = maxj∈{1,...,wi} |y − xij|.

The same goes for randomized mechanisms with respect to expected costs. Notice
that when the individual costs are defined as before, optimizing the social cost is in
fact equivalent to minimizing the sum of distances to all the locations controlled by
all the agents, that is, choosing y that minimizes

∑
i∈N

∑
j∈{1,...,wi} |y − xij|. Optimizing

the maximum cost implies minimizing the maximum distance with respect to all the
locations controlled by all the agents, that is, minimizing maxi∈N maxj∈{1,...,wi} |y − xij|.
5.1. Social Cost

As in Section 4, when moving from the basic setting to this more elaborate setting,
optimization of the social cost is no longer strategyproof. To see this, consider a simple
example with two agents. Let x1 = 〈0, 1, 1〉 and x2 = 〈0, 0〉. The optimal solution is
the median of all the locations, which is 0; we have that cost(0, x1) = 2. However, by
reporting x′

1 = 〈1, 1, 1〉, agent 1 can move the median of all the locations to 1; notice
that cost(1, x1) = 1, hence agent 1 benefits from misreporting its locations.

Deterministic Mechanisms. Dekel et al. [2010] have in fact investigated our current
setting (i.e., optimizing the social cost when each agent controls multiple locations)
with respect to deterministic mechanisms, in the context of incentive compatible re-
gression learning. Some of their results (Section 4 of [Dekel et al. 2010]) deal with a
discrete setting where one wishes to optimize the social cost under the absolute loss
function, when the function class is the class of constant functions; it can be verified,
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although it is not immediately obvious, that the two settings are equivalent. Note that
the results of Dekel et al. are stated under the assumption that the agents all control
the same number of points, that is, wi = wj for all i, j ∈ N, but they also hold when
this is not the case.

The following mechanism (essentially) was suggested by Dekel et al.

Mechanism 3. Given x, create a location profile x′, where for all i ∈ N, x′
i =

〈med(xi), . . . , med(xi)〉. Return med(x′).

In other words, Mechanism 3 projects the wi locations of agent i onto its median and
then selects the median among the modified locations. In essence, Mechanism 3 simply
lies optimally for the agents, given that the median location is being selected. Dekel
et al. proved the following theorem.

THEOREM 5.1 (DEKEL ET AL. [2010], THEOREM 4.1). Mechanism 3 is a group
strategyproof 3-approximation mechanism for the social cost in the multiple locations
setting.

Furthermore, Dekel et al. provided a matching lower bound for deterministic mech-
anisms. Their lower bound holds even when there are only two agents that control the
same number of locations.

THEOREM 5.2 (DEKEL ET AL. [2010], THEOREM 4.2). Let N = {1, 2} and ε > 0.
There is w ∈ N such that, even when w1 = w2 = w, any strategyproof deterministic
mechanism f : Rw × Rw → R has an approximation ratio of at least 3 − ε for the social
cost in the multiple locations setting.

Randomized Mechanisms. Dekel et al. [2010] did not discuss randomized mecha-
nisms. We design a simple randomized mechanism that succeeds in breaking the de-
terministic lower bound given by Dekel et al. [2010].

Mechanism 4. Given x, return med(xi) with probability wi/(
∑

j∈N wj).

This mechanism is strategyproof. Indeed, for each agent i ∈ N, agent i has single
peaked preferences with a peak at med(xi). Consider a situation where i lies; if it is
not selected by the mechanism, the lie does not make a difference; if i is selected, then
it can only be worse off.

However, somewhat counterintuitively and in contrast to the group strategyproof
mechanism given by Dekel et al., Mechanism 4 is not group strategyproof; this is
demonstrated by the following example.

Example 5.3 (Mechanism 4 is not group strategyproof). Let N = {1, 2}, and set x1 =
〈−3, −2, 1〉 and x2 = 〈−1, 2, 3〉. The medians are med(x1) = −2, med(x2) = 2, and each
is selected by Mechanism 4 with probability 1/2. Hence, denoting Mechanism 4 by f ,
we have that for both agents i ∈ N,

cost(f (x), xi) = 1
2

· (1 + 3) + 1
2

· (1 + 4 + 5) = 7 .

On the other hand, consider the location profile x′, where both agents report all
their locations to be at 0. Then f (x′) selects 0 with probability one. Hence, for all i ∈ N,
cost(xi, f (x′)) = 6. This means that both agents strictly benefit from the deviation from
x to x′.

We now turn to establishing the approximation guarantees provided by
Mechanism 4.
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med(x1) med(x) med(x2)

�1 �2

A B C

Fig. 3. An illustration of the construction in the proof of Theorem 5.4. Agent 1 controls the black locations,
whereas Agent 2 controls the white locations.

THEOREM 5.4. Mechanism 4 is a strategyproof mechanism in the multiple locations
setting. Moreover, if n = 2, the mechanism yields an approximation ratio of 2 + |w1−w2|

w1+w2
for the social cost.

PROOF. For a multiset A of points in R and y ∈ R, denote

sc(y, A) =
∑
x∈A

|y − x| .

If med(x1) = med(x2), then the algorithm always selects the median med(x). Hence,
we can assume without loss of generality that x1 < x2. Slightly abusing notation,
denote A = x ∩ (−∞, med(x1)], |A| = a, B = x ∩ (med(x1), med(x2)), |B| = b, and
C = x ∩ [med(x2), ∞), |C| = c. Since med(x1) is the median of x1 and med(x2) is the
median of x2, we have that

|x ∩ (−∞, med(x1))| ≤ w1

2
+ w2

2
,

that is, at most half the points are to the left of med(x1). Similarly, at most half the
points are to the right of med(x2). Hence, we can choose med(x) (breaking ties in case of
an even w1 + w2) such that med(x) ∈ [med(x1), med(x2)]. Let �1 = med(x) − med(x1)
be the distance between med(x1) and med(x), let �2 = med(x2) − med(x), and let
� = �1 + �2 = med(x2) − med(x1) (see Figure 3 for an illustration).

Let us calculate the cost of choosing med(x1) or med(x2). It holds that

sc(med(x1), x) = sc(med(x1), A) + sc(med(x1), B) + sc(med(x1), C)

= sc(med(x1), A) + sc(med(x1), B) +
∑
x∈C

[ x − med(x1)]

= sc(med(x1), A) + sc(med(x1), B) +
∑
x∈C

[ � + (x − med(x2))]

= sc(med(x1), A) + sc(med(x1), B) + (� · c + sc(med(x2), C)) .

Similarly,

sc(med(x2), x) = (� · a + sc(med(x1), A)) + sc(med(x2), B) + sc(med(x2), C) .

Hence, denoting Mechanism 4 by f , the expected cost of the mechanism is

sc(f (x), x) = 1
w1 + w2

[ w1(sc(med(x1), A) + sc(med(x1), B) + � · c + sc(med(x2), C))

+ w2(� · a + sc(med(x1), A) + sc(med(x2), B) + sc(med(x2), C))]
= sc(med(x1), A) + sc(med(x2), C)

+ 1
w1 + w2

[ w1(sc(med(x1), B) + � · c) + w2(� · a + sc(med(x2), B))] . (5)
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It holds that

sc(med(x1), B) + sc(med(x2), B) = � · b ,

and a+b+c = w1 +w2. Applying these two equalities to Eq. (5) and assuming without
loss of generality that w1 ≤ w2, we get the first transition in the following.

sc(f (x), x) = sc(med(x1), A) + sc(med(x2), C)+� · w1+ w2 − w1

w1 + w2
(� · a + sc(med(x2), B))

≤ sc(med(x1), A) + sc(med(x2), C) + � · w1 + w2 − w1

w1 + w2
(� · a + (�2 · b + sc(med(x), B)))

≤ sc(med(x1), A) + sc(med(x2), C) + sc(med(x), B) + � · w1

+ w2 − w1

w1 + w2
(� · a + �2 · ((w1 + w2) − a − c))

≤ sc(med(x1), A) + sc(med(x2), C) + sc(med(x), B) + �1w1 + �2w2 + w2 − w1

w1 + w2
�1 · a.

(6)

We presently calculate the cost of the optimal solution.

sc(med(x), x) = (�1 ·a+sc(med(x1), A))+sc(med(x), B)+(�2 ·c+sc(med(x2), C)) . (7)

We upper bound the ratio sc(f (x), x)/sc(med(x), x) by dropping common terms from
both the numerator and the denominator, that is, dropping the common terms of
Eqs. (6) and (7). Therefore,

sc(f (x), x)

sc(med(x), x)
≤ �1 · w1 + �2 · w2 + w2−w1

w1+w2
· �1 · a

�1 · a + �2 · c
≤ �1 · w1 + �2 · w2

�1 · a + �2 · c
+

w2−w1
w1+w2

· �1 · a

�1 · a

≤ �1 · w1 + �2 · w2

�1 · w1
2 + �2 · w2

2
+ w2 − w1

w1 + w2
= 2 + w2 − w1

w1 + w2
,

where the third transition follows from the fact that med(x1) is the median of x1 and
med(x2) is the median of x2.

In particular, the theorem implies that Mechanism 4 gives a 2-approximation when
there are two agents that control the same number of points, which is a setting where
the deterministic lower bound of 3 (given in [Dekel et al. 2010]) holds. The theorem
was extended beyond two agents by Lu et al. [2009] (see Section 5.3).

We now construct an example that serves two purposes. First, the example shows
that Mechanism 4 does not provide an approximation ratio better than 3 − 2/n when
there are n agents, even when the agents control the same number of locations, and
thus does not significantly beat the deterministic lower bound of 3 when the number
of agents is large. Second, the example demonstrates the tightness of the upper bound
given in Theorem 5.4, that is, when there are two agents with w1 and w2 points, the
mechanism does not obtain an approximation ratio better than 2 + |w1−w2|

w1+w2
.

Example 5.5 (Lower Bounds for the Approximation Ratio of Mechanism 4). We first
establish that when N = {1, . . . , n}, given ε > 0, there is w ∈ N large enough such that
even when each agent controls exactly w locations, the approximation ratio given by
Mechanism 4 is at least 3 − 2

n − ε.
Let w = 2k+1, where k is to be chosen later. Construct a location profile x as follows.

For agent 1, we have x11, . . . , x1,k+1 = 0, and x1,k+2, . . . , x1,2k+1 = 1. For all j ≥ 2 and
all l = 1, . . . , w, xjl = 1. Notice that med(x1) = 0. With probability 1/n, the algorithm
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returns 0 and has a social cost of (n − 1)(2k + 1) + k. With probability (n − 1)/n, the
algorithm selects 1 and has a social cost of k + 1. The ratio is

1
n · ((n − 1)(2k + 1) + k) + n−1

n · (k + 1)

k + 1
= 3 − 2

n
− 1

k + 1
.

To prove the claim, choose k > 1/ε − 1.
Interestingly, the same example also shows a lower bound of 2 + |w1−w2|

w1+w2
− ε in the

setting of Theorem 5.4, by choosing w1 = 2k + 1, w2 = (n − 1)(2k + 1). The analysis
is as before with respect to agent 1, whereas agent 2 replaces agents 2, . . . , n. In this
case,

2 + |w1 − w2|
w1 + w2

= 2 + n − 2
n

= 3 − 2
n

.

5.2. Maximum Cost

Our last object of interest is mechanisms for minimizing the maximum cost in the
setting where each agent i ∈ N controls wi locations. Similarly to Section 4, we shall
demonstrate that the results of Section 3 can be leveraged to obtain tight or nearly
tight results in the current setting.

A crucial observation is that given an agent i ∈ N, its location profile xi ∈ Rwi , and a
facility location y ∈ R,

mc(y, xi) = |y − cen(xi)| + rt(xi) − lt(xi)

2
. (8)

Hence, when cost(y, xi) = mc(y, xi), the preferences of the agents are single peaked
with the peak at cen(xi), and moreover, their utility depends only on the distance
|y − cen(xi)|.

Deterministic Mechanisms. In previous settings, we have seen that it is straight-
forward to obtain a deterministic strategyproof 2-approximation mechanism for the
maximum cost. The reason (implicitly underlying the result of Section 4) was that re-
turning any location between lt(x) and rt(x) yields a 2-approximation. The same logic
also delivers in our current setting.

Given x ∈ Rw1 × · · · ×Rwn , we define the vector multicen(x) = 〈cen(x1), . . . , cen(xn)〉.
This is the vector of the centers of the agents’ location profiles or, in other words,
the vector of the peaks of the agents’ preferences. Hence, choosing the leftmost cen-
ter, lt(multicen(x)), is a group strategyproof solution. Moreover, we have that lt(x) ≤
lt(multicen(x)) ≤ rt(x), so mc(lt(multicen(x), x) ≤ rt(x) − lt(x), whereas the optimal
solution has a maximum cost of at least (rt(x)− lt(x))/2. We have proved the following.

THEOREM 5.6. f (x) = lt(multicen(x)) is a group strategyproof 2-approximation
mechanism for the maximum cost in the multiple location setting.

Since, in the current setting, we can have that wi = 1 for all i ∈ N, any lower bound
from Section 3 holds here as well. In particular, Theorem 3.2 provides a tight lower
bound of 2.

Randomized Mechanisms. In order to obtain randomized mechanisms for the max-
imum cost in the multiple location setting, we once again leverage the techniques of
Section 3. Consider the following mechanism, which is an extension of Mechanism 1.

Mechanism 5. Given x ∈ Rw1 × · · ·Rwn , return lt(multicen(x)) with probability
1/4, rt(multicen(x)) with probability 1/4, and cen(multicen(x)) = (lt(multicen(x)) +
rt(multicen(x)))/2 with probability 1/2.
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Table III. Summary of the Results of Section 5

Objective Function Deterministic Randomized

Social Cost

UB: 3 GSP (Dekel et
al. [2010])

LB: 3 SP (Dekel et
al. [2010])

UB: 2 + |w1−w2|
w1+w2

SP (n = 2, Thm 5.4)
LB: N/A

Maximum Cost UB: 2 GSP (Thm 5.6)
LB: 2 SP (Thm 3.2)

UB: 3/2 GSP (Thm 5.7)
LB: 3/2 SP (Thm 3.4)

Note: UB and LB stand for upper bound and lower bound, respectively. SP and GSP stand for
strategyproof and group strategyproof, respectively.

The following theorem establishes that the mechanism has some very desirable
properties.

THEOREM 5.7. Mechanism 5 is a group strategyproof 3/2-approximation mecha-
nism for the maximum cost in the multiple location setting.

PROOF. It can easily be verified that using Eq. (8), the group strategyproofness
of the mechanism follows from exactly the same arguments as in the proof of The-
orem 3.3. Therefore, we concentrate on establishing the announced approximation
ratio.

Let x ∈ Rn. Without loss of generality (by scaling the distances), we assume that
lt(x) = 0, rt(x) = 1. We first claim that lt(multicen(x)) ≤ 1/2. Indeed, let i ∈ N be
the agent that controls 0. Then, lt(xi) = 0, rt(xi) ≤ 1, hence cen(xi) ≤ 1/2. The claim
directly follows. Similarly, we have that rt(multicen(x)) ≥ 1/2. In other words, it holds
that lt(multicen(x)) is at least as close to 0 as to 1, whereas rt(multicen(x)) is at least
as close to 1 as to 0. Therefore, denoting Mechanism 5 by f , we have

mc(f (x), x) = 1
4

· (1 − lt(multicen(x))) + 1
4

· rt(multicen(x))

+ 1
2

· max
{

lt(multicen(x)) + rt(multicen(x))

2
, 1 − lt(multicen(x)) + rt(multicen(x))

2

}

= max
{

1
4

+ rt(multicen(x))

2
,

3
4

− lt(multicen(x))

2

}
≤ 3

4
,

where the last inequality follows from the fact that lt(multicen(x)) ≥ 0 and
rt(multicen(x)) ≤ 1. The optimal solution has a cost of 1/2. Therefore, we get an
approximation ratio of 3/2.

Finally, we remark that the randomized lower bound of 3/2 given by Theorem 3.4
holds here as well. We find it quite surprising that the upper bound yielded by the
seemingly “generous” Mechanism 5 is tight.

5.3. Discussion and Subsequent Work

Table III summarizes the results of Section 5. The most interesting question is how
the analysis of Mechanism 4 extends to n > 2. In the conference version of this article,
we conjectured that for any number of agents n, if wi = wj for all i, j ∈ N, then the
mechanism yields an approximation ratio of 3 − 2/n. Such a result is tight by the
Example 5.5. This conjecture was in fact confirmed by Lu et al. [2009]. Moreover,
these authors established a randomized lower bound of 1.33 with respect to the social
cost by solving a related linear program.

The setting investigated in this section has many applications, but we note that, in
particular, any results about randomized strategyproof mechanisms for the social cost
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can be directly applied in the incentive compatible regression learning setting of Dekel
et al. [2010].

6. OPEN PROBLEMS AND FUTURE WORK

Subsequent papers have considered some of the natural extensions of our model,
including the setting where the agents are located on a graph or even a general metric
space [Alon et al. 2010; Lu et al. 2010]. We suggest additionally considering allotment
rules, namely, rules that assign a point ai ∈ [0, 1] to each agent such that

∑
i∈N ai = 1;

this setting models the division of a task or a good among the agents [Barberà 2001,
Section 4.1]. Furthermore, it is possible to consider almost any combination of the
extensions, for example, a domain in which agents control multiple locations (as in
Section 5) and two facilities must be located (as in Section 4). However, in our opinion,
the most important technical open problem is the extension of the results of Section 4,
as well as the subsequent results of Lu et al. [2009, 2010], to settings with three
facilities and beyond.

As noted in Section 2, the conceptual ideas that were first presented in this work
have already been applied to at least five other fundamentally different domains. We
believe that the most influential future work would unify some of the mechanisms
that were developed for these domains. Indeed, some of the basic ideas, such as choos-
ing the optimal solution with certain probability and a suboptimal solution with the
complement probability (as realized by Mechanism 1), are used again and again. We
are therefore hopeful that it would prove feasible to develop approximate mechanisms
without money that provide general guarantees across domains.
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