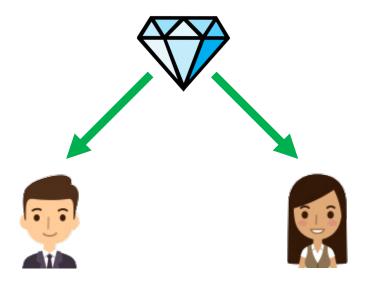
CSC2556

Lecture 9

Fair Division 2: Allocating Indivisible Goods

- Goods which cannot be shared among players
 - > E.g., house, painting, car, jewelry, ...
- Problem: Envy-free allocations may not exist!



Model

- Set of n agents $N = \{1, ..., n\}$
- Set of m indivisible goods M
- Valuation function of agent i is $V_i: 2^M \to \mathbb{R}_{\geq 0}$
 - > Additive: $V_i(S) = \sum_{g \in S} V_i(\{g\})$
 - ightharpoonup We write $v_{i,g}$ to denote $V_i(\{g\})$ for simplicity
- Allocation $A = (A_1, ..., A_m)$ is a partition of M
 - $\triangleright \cup_i A_i = M \text{ and } A_i \cap A_j = \emptyset, \forall i, j$
 - \triangleright For partial allocations, we drop the $\cup_i A_i = M$ requirement

8	7	20	5
9	11	12	8
9	10	18	3

8	7	20	5
9	11	12	8
9	10	18	3

8	7	20	5
9	11	12	8
9	10	18	3

8	7	20	5
9	11	12	8
9	10	18	3

EF1

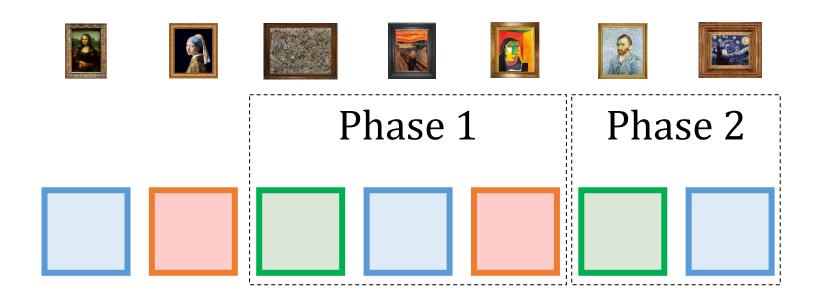
• Envy-freeness up to one good (EF1):

$$\forall i, j \in N, \exists g \in A_j : V_i(A_i) \ge V_i(A_j \setminus \{g\})$$

- > Technically, we need either this or $A_j = \emptyset$.
- In words...
 - \succ "If i envies j, there must be some good in j's bundle such that removing it would make i envy-free of j."
- Question: Does there always exist an EF1 allocation?

EF1

- Yes, a simple round-robin procedure guarantees EF1
 - \triangleright Order the agents arbitrarily (say 1,2, ..., n)
 - > In a cyclic fashion, agents arrive one-by-one and pick the item they like the most among the ones left



EF1 + PO

- Pareto optimality (PO)
 - > An allocation A is Pareto optimal if there is no other allocation B such that $v_i(B_i) \ge v_i(A_i)$ for all i and the inequality is strict for at least one i
- Sadly, round-robin does not always return a PO allocation
 - > There exist instances in which, by reallocating items at the end, we can make all agents strictly happier
- Question: Does there always exist an allocation that is both EF1 and PO simultaneously?

EF1+P0?

- Nash welfare to the rescue!
- Theorem [Caragiannis et al. '16]
 - > The allocation $\operatorname{argmax}_A \prod_{i \in N} V_i(A_i)$ is EF1 + PO.

Note

- > Maximization is over integral allocations
- > Recall that in cake-cutting, the *fractional* allocation maximizing Nash welfare was EF + PO.

Integral Nash Allocation

8	7	20	5
9	11	12	8
9	10	18	3

20 * 8 * (9+10) = 3040

8	7	20	5
9	11	12	8
9	10	18	3

(8+7) * 8 * 18 = 2160

8	7	20	5
9	11	12	8
9	10	18	3

8 * (12+8) * 10 = 1600

8	7	20	5
9	11	12	8
9	10	18	3

20 * (11+8) * 9 = 3420

8	7	20	5
9	11	12	8
9	10	18	3

EF1+PO?

What is wrong in these arguments?

- Proof that A maximizing $\prod_i v_i(A_i)$ is EF1 + PO
 - > PO is obvious
 - Suppose for contradiction that there is an allocation B such that $v_i(B_i) \ge v_i(A_i)$ for each i and $v_i(B_i) > v_i(A_i)$ for at least one i
 - \circ Then, $\prod_i v_i(B_i) \ge \prod_i v_i(A_i)$, which is a contradiction
 - > EF1 requires a bit more work
 - \circ Fix any agents i,j and consider moving good g from A_j to A_i
 - $\circ v_i(A_i \cup \{g\}) \cdot v_j(A_j \setminus \{g\}) \le v_i(A_i) \cdot v_j(A_j)$

$$\circ \ 1 - \frac{v_j(g)}{v_j(A_j)} \le 1 - \frac{v_i(g)}{v_i(A_i \cup \{g\})} \le 1 - \frac{v_i(g)}{v_i(A_i \cup \{g^*\})} \Rightarrow \frac{v_j(g)}{v_j(A_j)} \ge \frac{v_i(g)}{v_i(A_i \cup \{g^*\})} \ \forall g \in A_j$$

- Here, $g^* \in A_i$ is the good liked the most by i
- Summing over all $g \in A_j$, we get $v_i(A_i \cup \{g^*\}) \ge v_i(A_j)$, which means i doesn't envy j up to good g^*

EF1+P0?

Edge case

- > It may be possible that all allocations have zero Nash welfare
 - For example, allocate two goods between three agents
 - Allocating both goods to a single agent can violate EF1
 - Allocating the goods to the "wrong agents" can violate PO
- > Requires a slight modification of the rule in this edge case
 - Step 1: Choose a subset of agents $S \subseteq N$ with largest |S| such that it is possible to give a positive utility to each agent in S simultaneously
 - Step 2: Choose $\operatorname{argmax}_A \prod_{i \in S} V_i(A_i)$

Computation

- For indivisible goods, finding a Nash-optimal allocation is strongly NP-hard
 - > That is, remains NP-hard even if all values in the matrix are bounded

Open Question:

- Can we compute some EF1+PO allocation in polynomial time?
- > [Barman et al., '17]:
 - There exists a pseudo-polynomial time algorithm for finding an EF1+PO allocation
 - Time is polynomial in n, m, and $\max_{i,g} v_{i,g}$
 - Already better than the time complexity of computing a Nashoptimal allocation

EFX

- Envy-freeness up to any good (EFX)
 - $\Rightarrow \forall i, j \in N, \forall g \in A_j : V_i(A_i) \ge V_i(A_j \setminus \{g\})$
 - \triangleright In words, i shouldn't envy j if she removes any good from j's bundle
- EFX \Rightarrow EF1
 - \succ Recall EF1: $\forall i, j \in N, \exists g \in A_j : V_i(A_i) \ge V_i(A_j \setminus \{g\})$
 - \triangleright In words, i shouldn't envy j if she removes some good from j's bundle
- Question: Does there always exist EFX allocation?
 - > Still open

Stronger Fairness

- The difference between EF1 and EFx:
 - > Suppose there are two players and three goods with values as follows.

	Α	В	С
P1	5	1	10
P2	0	1	10

- > If you give $\{A\} \rightarrow P1$ and $\{B,C\} \rightarrow P2$, it's EF1 but not EFx.
 - EF1 because if P1 removes C from P2's bundle, all is fine.
 - Not EFx because removing B doesn't eliminate envy.
- \succ Instead, {A,B} → P1 and {C} → P2 would be EFx.

EFX

- It is easy to show that an EFX allocation always exists when...
 - > Agents have identical valuations (i.e. $V_i = V_j$ for all i, j)
 - > Agents have binary valuations (i.e. $v_{i,g} \in \{0,1\}$ for all i,g)
 - \triangleright There are n=2 agents with general additive valuations
- But answering this question in general (or even in some other special cases) has proved to be surprisingly difficult!

EFX: Recent Progress

Partial allocations

- ➤ [Caragiannis et al., '19]: There exists a partial EFX allocation A that has at least half of the optimal Nash welfare
- ▶ [Ray Chaudhury et al., '19]: There exists a partial EFX allocation A such that for the set of unallocated goods U, $|U| \le n 1$ and $V_i(A_i) \ge V_i(U)$ for all i
- Restricted number of agents
 - ▶ [Ray Chaudhury et al., '20]: There exists a complete EFX allocation with n=3 agents
- Restricted valuations
 - ▶ [Amanatidis et al., '20]: Maximizing Nash welfare achieves EFX when there exist a, b such that $v_{i,g} \in \{a, b\}$ for all i, g

MMS

- Maximin Share Guarantee (MMS):
 - \triangleright Generalization of "cut and choose" for n players
 - \triangleright MMS value of agent i =
 - The highest value that agent *i* can get...
 - If *she* divides the goods into *n* bundles...
 - But receives the worst bundle according to her valuation
 - \triangleright Let $\mathcal{P}_n(M) =$ family of partitions of M into n bundles

$$MMS_i = \max_{(B_1,...,B_n) \in \mathcal{P}_n(M)} \min_{k \in \{1,...,n\}} V_i(B_k)$$
.

> Allocation A is α -MMS if $V_i(A_i) \ge \alpha \cdot MMS_i$ for all i

MMS

- [Procaccia & Wang, '14]
 - > There exists an instance in which no MMS allocation exists
 - \rightarrow A $^2/_3$ MMS allocation always exists
- [Amanatidis et al., '17]
 - \rightarrow A $(^2/_3 \epsilon)$ MMS allocation can be computed in polynomial time
- [Ghodsi et al. '17]
 - \rightarrow A $^{3}/_{4}$ MMS allocation always exists
 - \rightarrow A $(^3/_4 \epsilon)$ MMS allocation can be computed in polynomial time
- [Garg & Taki, '20]
 - > A $^3/_4$ MMS allocation can be computed in polynomial time
 - \rightarrow A $(^3/_4 + ^1/_{12n})$ MMS allocation always exists

Allocating Bads

- Costs instead of utilities
 - $c_{i,b} = \text{cost of player } i \text{ for bad } b$

$$\circ C_i(S) = \sum_{b \in S} c_{i,b}$$

- $ightharpoonup EF: \forall i, j \ C_i(A_i) \leq C_i(A_j)$
- ▶ PO: There is no allocation B such that $C_i(B_i) \le C_i(A_i)$ for all i and at least one inequality is strict

Divisible bads

- > An EF + PO allocation always exists
- However, we can no longer just maximize the product (of what?)
- Open question: Can we compute an EF+PO allocation of divisible bads in polynomial time?

Allocating Bads

- Indivisible bads
 - $ightharpoonup EF1: \forall i,j \; \exists b \in A_i \; C_i(A_i \setminus \{b\}) \leq C_i(A_i)$
 - ▶ EFX: $\forall i, j \ \forall b \in A_i \ C_i(A_i \setminus \{b\}) \le C_i(A_j)$
 - > Open Question 1:
 - O Does there always exist an EF1 + PO allocation?
 - > Open Question 2:
 - O Does there always exist an EFX allocation?
 - Many more open problems for allocating bads