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Cake-Cutting



Cake-Cutting
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• A heterogeneous divisible good
Ø Heterogeneous = same part may be 

valued differently by different agents
Ø Divisible = can be divided between agents

• Cake 𝐶 = [0,1]
Ø Almost without loss of generality

• Agents 𝑁 = {1,… , 𝑛}

• Piece of cake 𝑋 ⊆ [0,1] = finite union of disjoint intervals 

• Allocation 𝐴 = (𝐴!, … , 𝐴")
Ø Partition of the cake where each 𝐴! is a piece of the cake



Agent	Valuations

CSC2556 - Nisarg Shah 4

• Valuation of agent 𝑖 is given by an integrable value density 
function 𝑓#: 0,1 → ℝ$
Ø Her value for a piece of cake 𝑋 is 𝑉! 𝑋 = ∫"∈$ 𝑓! 𝑥 𝑑𝑥

• Two key properties
Ø Additive: For 𝑋 ∩ 𝑌 = ∅,
𝑉! 𝑋 + 𝑉! 𝑌 = 𝑉! 𝑋 ∪ 𝑌

Ø Divisible: ∀𝜆 ∈ [0,1] and 𝑋,
∃𝑌 ⊆ 𝑋 s.t. 𝑉! 𝑌 = 𝜆𝑉!(𝑋)

• WLOG
Ø Normalized: 𝑉! 0,1 = 1

β𝛼 + 𝛽

𝛼 𝛽

𝛼

𝜆𝛼



Fairness	Goals
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• What kind of fairness might we want from an allocation 𝐴?

• Proportionality (Prop):

∀𝑖 ∈ 𝑁: 𝑉# 𝐴# ≥
1
𝑛

• Envy-Freeness (EF):

∀𝑖, 𝑗 ∈ 𝑁: 𝑉# 𝐴# ≥ 𝑉#(𝐴%)

• Equitability (EQ):
∀𝑖, 𝑗 ∈ 𝑁: 𝑉# 𝐴# = 𝑉%(𝐴%) Only makes 

sense with 
normalization



Fairness	Goals
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• Prop: ∀𝑖 ∈ 𝑁: 𝑉# 𝐴# ≥ ⁄1 𝑛
• EF: ∀𝑖, 𝑗 ∈ 𝑁: 𝑉# 𝐴# ≥ 𝑉# 𝐴%

• Question: 
What is the relation between proportionality and EF?

1. Prop ⇒ EF
2. EF ⇒ Prop
3. Equivalent
4. Incomparable



CUT-AND-CHOOSE
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• Algorithm for 𝑛 = 2 agents

• Agent 1 divides the cake into two pieces 𝑋, 𝑌 s.t.
𝑉! 𝑋 = 𝑉! 𝑌 = ⁄1 2

• Agent 2 chooses the piece she prefers.

• This is EF and therefore proportional.
Ø Why?



Measuring	Complexity
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• Running time does not make sense
Ø Typically, we measure the running time as a function of the length of 

input encoded in binary
Ø Our input consists of functions 𝑉!, which requires infinitely many bits 

to encode
Ø We want running time just as a function of 𝑛.

• Query models make sense
Ø Allow specific types of queries to agents’ valuation functions
Ø Measure the number of queries that need to be made in order to 

find an allocation satisfying the given properties



Robertson-Webb	Model
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• Two types of queries to an agent’s valuation function 𝑉#
Ø Eval!(𝑥, 𝑦) returns 𝑉! 𝑥, 𝑦
Ø Cut!(𝑥, 𝛼) returns the smallest 𝑦 such that 𝑉! 𝑥, 𝑦 = 𝛼
o If no such 𝑦 exists, then it returns 1

• Question:
Ø How many queries are needed to find an EF allocation when 𝑛 = 2?

𝑥 𝑦

𝛼eval output

cut output



DUBINS-SPANIER
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• Protocol for finding a proportional allocation for 𝑛 agents

• Referee starts with a knife at 0
• Referee continuously moves the knife to the right
• Repeat 𝑛 − 1 times: Whenever the piece to the left of knife 

is worth 1/𝑛 to a agent, the agent shouts “stop”, gets the 
piece, and exits.

• The last agent gets the remaining piece.



DUBINS-SPANIER
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1/3 1/3 ≥ 1/3
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DUBINS-SPANIER
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• Moving a knife continuously is not really needed.

• At each stage, we can ask each remaining agent a cut query 
to mark his 1/𝑛 point in the remaining cake.

• Move the knife to the leftmost mark.



DUBINS-SPANIER
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DUBINS-SPANIER
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⁄1 3



DUBINS-SPANIER
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⁄1 3 ⁄1 3



DUBINS-SPANIER
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⁄1 3 ⁄1 3 ≥ ⁄1 3



DUBINS-SPANIER
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• Question: What is the complexity of the Dubins-Spanier
protocol in the Robertson-Webb model?

1. Θ 𝑛
2. Θ 𝑛 log 𝑛
3. Θ 𝑛%

4. Θ 𝑛% log 𝑛



EVEN-PAZ
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• Input: Interval [𝑥, 𝑦], number of agents 𝑛
Ø Assume 𝑛 = 2& for some 𝑘

• If 𝑛 = 1, give [𝑥, 𝑦] to the single agent.
• Otherwise, let each agent 𝑖 mark 𝑧# s.t.

𝑉! 𝑥, 𝑧! =
1
2
𝑉! 𝑥, 𝑦

• Let 𝑧∗ be the 𝑛/2-th mark from the left.
• Recurse on [𝑥, 𝑧∗] with the left 𝑛/2 agents and on [𝑧∗, 𝑦]

with the right 𝑛/2 agents.



EVEN-PAZ
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EVEN-PAZ
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• Theorem: EVEN-PAZ returns a Prop allocation.
• Proof:

Ø Inductive proof. We want to prove that if agent 𝑖 is allocated piece 𝐴!
when [𝑥, 𝑦] is divided between 𝑛 agents, 𝑉! 𝐴! ≥ ⁄1 𝑛 𝑉! 𝑥, 𝑦
o Then Prop follows because initially 𝑉! 𝑥, 𝑦 = 𝑉! 0,1 = 1

Ø Base case: 𝑛 = 1 is trivial.
Ø Suppose it holds for 𝑛 = 2&'(. We prove for 𝑛 = 2&.
Ø Take the 2&'( left agents. 
o Every left agent 𝑖 has 𝑉! 𝑥, 𝑧∗ ≥ ⁄1 2 𝑉! 𝑥, 𝑦
o If it gets 𝐴!, by induction, 𝑉! 𝐴! ≥ (

%!"#
𝑉! 𝑥, 𝑧∗ ≥ (

%!
𝑉! 𝑥, 𝑦



EVEN-PAZ
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• Question: What is the complexity of the Even-Paz protocol 
in the Robertson-Webb model?

1. Θ 𝑛
2. Θ 𝑛 log 𝑛
3. Θ 𝑛%

4. Θ 𝑛% log 𝑛



Complexity	of	Proportionality
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• Theorem [Edmonds and Pruhs, 2006]: Any proportional 
protocol needs Ω(𝑛 log 𝑛) operations in the Robertson-
Webb model.

• Thus, the EVEN-PAZ protocol is (asymptotically) provably 
optimal!



Envy-Freeness?
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• “I suppose you are also going to give such cute algorithms 
for finding envy-free allocations?”

• Bad luck. For 𝑛-agent EF cake-cutting:
Ø [Brams and Taylor, 1995] gave an unbounded EF protocol.
Ø [Procaccia 2009] proved Ω 𝑛% lower bound for EF.
Ø In 2016, the long-standing major open question of “bounded EF 

protocol” was resolved!

Ø [Aziz and Mackenzie, 2016]: 𝑂(𝑛*$
$$

$

) protocol!
o Not a typo!



Other	Desiderata
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• There are two more properties that we often desire from an 
allocation.

• Pareto optimality (PO)
Ø Notion of efficiency
Ø Informally, it says that there should be no “obviously better” 

allocation

• Strategyproofness (SP)
Ø No agent should be able to gain by misreporting her valuation



Strategyproofness	(SP)
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• Deterministic mechanisms
Ø Strategyproof: No agent should be able to increase her utility by 

misreporting her valuation, irrespective of what other agents report.

• Randomized mechanisms
Ø Strategyproof-in-expectation: Replace utility with expected utility in 

the above definition.
Ø For simplicity, we’ll just call this strategyproofness too.



Strategyproofness	(SP)
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• Deterministic
Ø Bad news!
Ø Theorem [Menon & Larson ‘17]: No deterministic SP mechanism is 

(even approximately) proportional.

• Randomized
Ø Good news!
Ø Theorem [Chen et al. ‘13, Mossel & Tamuz ‘10]: There is a 

randomized SP mechanism that always returns an envy-free
allocation.



Perfect	Partition
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• Theorem [Lyapunov ’40]: 
Ø There always exists a “perfect partition” (𝐵(, … , 𝐵*) of the cake such 

that 𝑉! 𝐵+ = ⁄( * for every 𝑖, 𝑗 ∈ [𝑛]
Ø Every agent values every piece at exactly 1/𝑛

• Theorem [Alon ‘87]: 
Ø There exists a perfect partition that only cuts the cake at 𝑝𝑜𝑙𝑦(𝑛)

points
Ø In contrast, Lyapunov’s proof is non-constructive and might need an 

unbounded number of cuts

• Unfortunately, computing a perfect partition needs an 
unbounded number of RW queries



Perfect	Partition
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• If you’re given an algorithm for finding a perfect partition…
Ø Can you use it to design a randomized protocol that always returns 

an EF allocation and is SP-in-expectation?

Ø Yes! Compute a perfect partition and assign the 𝑛 bundles to the 𝑛
agents uniformly at random

Ø Why is this always EF? 
o Every agent values every bundle at ⁄( *

Ø Why is this SP-in-expectation?
o Because an agent is assigned a random bundle, her expected 

utility is ⁄( *, irrespective of what she reports



Pareto	Optimality	(PO)
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• Definition
Ø We say that an allocation 𝐴 = (𝐴(, … , 𝐴*) is PO if there is no 

alternative allocation 𝐵 = (𝐵(, … , 𝐵*) such that 
1. Every agent is at least as happy: 𝑉! 𝐵! ≥ 𝑉!(𝐴!), ∀𝑖 ∈ 𝑁
2. Some agent is strictly happier: 𝑉! 𝐵! > 𝑉!(𝐴!), ∃𝑖 ∈ 𝑁

• Q: Is it PO to give the entire cake to agent 1?
Ø A: Not necessarily. But yes, if agent 1 values every part of the cake 

positively.
Ø But a “sequential dictatorship” is always Pareto optimal
o Let agent 1 take whatever she values positively
o From the rest, let agent 2 take whatever she values positively
o And so on…



PO	+	EF
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• Theorem [Weller ‘85]:
Ø There always exists an allocation of the cake that is both envy-free 

and Pareto optimal.

• One way to achieve PO+EF:
Ø Nash-optimal allocation: argmax, ∏!∈-𝑉! 𝐴!
Ø Obviously, this is PO. The fact that it is EF is somewhat non-trivial.
Ø Named after John Nash
o Nash social welfare = product of utilities
o Different from utilitarian social welfare = sum of utilities



Nash-Optimal	Allocation
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• Example:
Ø Green agent has value 1 distributed over 0, ⁄% .
Ø Blue agent has value 1 distributed over [0,1]
Ø Without loss of generality (why?) suppose: 

o Green agent gets 𝑥 fraction of [0, ⁄% &]
o Blue agent gets the remaining 1 − 𝑥 fraction of [0, ⁄% &] AND all of [ ⁄% & , 1].

Ø Green’s utility = 𝑥,   blue’s utility = 1 − x ⋅ &
'
+ (

'
= ')&*

'

Ø Maximize: 𝑥 ⋅ ')&*
'

⇒ 𝑥 = ⁄' + ( ⁄' + fraction of ⁄& ' is ⁄( &).

0 1
!2 3

Allocation 0 1
!1 2 Green has utility '

+

Blue has utility (
&



Problem	with	Nash	Solution
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• Computing any Pareto optimal allocation already requires 
an unbounded number of queries

• Theorem [Aziz & Ye ‘14]:
Ø For piecewise constant valuations, the Nash-optimal solution can be 

computed in polynomial time.

0 1

The density function of a 
piecewise constant 
valuation looks like this



Homogeneous	Divisible	Goods
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• Suppose there are 𝑚 homogeneous divisible goods
Ø Each good can be divided fractionally between the agents

• Let 𝑥#,5 = fraction of good 𝑔 that agent 𝑖 gets
Ø Homogeneous = agent doesn’t care which “part”
o E.g., CPU or RAM

• Special case of cake-cutting
Ø Line up the goods on [0,1] → piecewise uniform valuations



Homogeneous	Divisible	Goods
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• Nash-optimal solution:
Maximize ∑# log𝑈#
𝑈# = Σ5 𝑥#,5 ∗ 𝑣#,5 ∀𝑖
Σ# 𝑥#,5 = 1 ∀𝑔

𝑥#,5 ∈ [0,1] ∀𝑖, 𝑔

• This is known as the Gale-Eisenberg convex program
Ø Can be solved exactly in strongly polynomial time


