## CSC2556

## Lecture 7

## Stable Matching

## Stable Matching

## Stable Matching

- Recap Graph Theory:
- In graph $G=(V, E)$, a matching $M \subseteq E$ is a set of edges with no common vertices
> That is, each vertex should have at most one incident edge
$>$ A matching is perfect if no vertex is left unmatched.
- $G$ is a bipartite graph if there exist $V_{1}, V_{2}$ such that $V=V_{1} \cup$ $V_{2}$ and $E \subseteq V_{1} \times V_{2}$


## Stable Marriage Problem

- Bipartite graph, two sides with equal vertices
> $n$ men and $n$ women
(old school terminology $(:)$
- Each man has a ranking over women \& vice versa
$>$ E.g., Eden might prefer Alice $>$ Tina $>$ Maya
> And Tina might prefer Tony $>$ Alan $>$ Eden
- Want: a perfect, stable matching
> Match each man to a unique woman such that no pair of man $m$ and woman $w$ prefer each other to their current matches (such a pair is called a "blocking pair")


## Example: Preferences

| Albert | Diane | Emily | Fergie |
| :--- | :--- | :--- | :--- |
| Bradley | Emily | Diane | Fergie |
| Charles | Diane | Emily | Fergie |


| Diane | Bradley | Albert | Charles |
| :--- | :--- | :--- | :--- |
| Emily | Albert | Bradley | Charles |
| Fergie | Albert | Bradley | Charles |



## Example: Matching 1

| Albert | Diane | Emily | Fergie |
| :--- | :--- | :--- | :--- |
| Bradley | Emily | Diane | Fergie |
| Charles | Diane | Emily | Fergie |


| Diane | Bradley | Albert | Charles |
| :--- | :--- | :--- | :--- |
| Emily | Albert | Bradley | Charles |
| Fergie | Albert | Bradley | Charles |

## Question: Is this a stable matching?

## Example: Matching 1

| Albert | Diane | Emily | Fergie |
| :--- | :--- | :--- | :--- |
| Bradley | Emily | Diane | Fergie |
| Charles | Diane | Emily | Fergie |


| Diane | Bradley | Albert | Charles |
| :--- | :--- | :--- | :--- |
| Emily | Albert | Bradley | Charles |
| Fergie | Albert | Bradley | Charles |

## No, Albert and Emily form a blocking pair.

## Example: Matching 2

| Albert | Diane | Emily | Fergie |
| :--- | :--- | :--- | :--- |
| Bradley | Emily | Diane | Fergie |
| Charles | Diane | Emily | Fergie |


| Diane | Bradley | Albert | Charles |
| :--- | :--- | :--- | :--- |
| Emily | Albert | Bradley | Charles |
| Fergie | Albert | Bradley | Charles |

## Question: How about this matching?

## Example: Matching 2

| Albert | Diane | Emily | Fergie |
| :--- | :--- | :--- | :--- |
| Bradley | Emily | Diane | Fergie |
| Charles | Diane | Emily | Fergie |


| Diane | Bradley | Albert | Charles |
| :--- | :--- | :--- | :--- |
| Emily | Albert | Bradley | Charles |
| Fergie | Albert | Bradley | Charles |

Yes! (Charles and Fergie are unhappy, but helpless.)

# Does a stable matching always exist in the marriage problem? 

Can we compute it in a strategyproof way?

Can we compute it efficiently?

## Gale-Shapley 1962

- Men-Proposing Deferred Acceptance (MPDA):

1. Initially, no proposals, engagements, or matches are made.
2. While some man $m$ is unengaged:
$>w \leftarrow m$ 's most preferred woman to whom $m$ has not proposed yet
> $m$ proposes to $w$
> If $w$ is unengaged:
o $m$ and $w$ are engaged
> Else if $w$ prefers $m$ to her current partner $m^{\prime}$
$\circ m$ and $w$ are engaged, $m^{\prime}$ becomes unengaged
> Else: $w$ rejects $m$
3. Match all engaged pairs.

## Example: MPDA

| Albert | Diane | Emily | Fergie |
| :--- | :--- | :--- | :--- |
| Bradley | Emily | Diane | Fergie |
| Charles | Diane | Emily | Fergie |


| Diane | Bradley | Albert | Charles |
| :--- | :--- | :--- | :--- |
| Emily | Albert | Bradley | Charles |
| Fergie | Albert | Bradley | Charles |

$\square$ = proposed
$\square$ = engaged
$\square=$ rejected

## Running Time

- Theorem: DA terminates in polynomial time (at most $n^{2}$ iterations of the outer loop)
- Proof:
> In each iteration, a man proposes to someone to whom he has never proposed before.
> $n$ men, $n$ women $\rightarrow n \times n$ possible proposals
> Can actually tighten a bit to $n(n-1)+1$ iterations


## Matching

- Theorem: DA returns a perfect matching upon termination
- Proof:
> Suppose it doesn't
> Since there are an equal number of men and women, there must be a man $m$ and a woman $w$ who are both unengaged at the end
> A woman becomes engaged at the first proposal and stays engaged
- Hence, $w$ must have never received a proposal
- Hence, $m$ never proposed to $w$
- Hence, the algorithm can continue with $m$ proposing to $w$
- Contradiction!


## Stable Matching

- Theorem: DA returns a stable matching
- Proof by contradiction:
> Assume $(m, w)$ is a blocking pair.
> Case 1: $m$ never proposed to $w$
- $m$ cannot be unmatched o/w algorithm would not terminate.
- Men propose in the order of preference.
- Hence, $m$ must be matched with a woman he prefers to $w$

○ $(m, w)$ is not a blocking pair

## Stable Matching

- Theorem: DA returns a stable matching
- Proof by contradiction:
> Assume $(m, w)$ is a blocking pair.
> Case 2: $m$ proposed to $w$
- $w$ must have rejected $m$ at some point
- Women only reject to get better partners
- At the end, $w$ must be matched to a partner she prefers to $m$

○ $(m, w)$ is not a blocking pair

## Men-Optimal Stable Matching

- The stable matching found by MPDA is special.
- Valid partner: For a man $m$, call a woman $w$ a valid partner if $(m, w)$ is in some stable matching.
- Best valid partner: For a man $m$, a woman $w$ is the best valid partner if she is a valid partner, and $m$ prefers her to every other valid partner.
> Denote the best valid partner of $m$ by $\operatorname{best}(m)$.


## Men-Optimal Stable Matching

- Theorem: Every execution of MPDA returns the "menoptimal" stable matching: every man is matched to his best valid partner.
> Surprising that this is a matching. E.g., it means two men cannot have the same best valid partner!
- Theorem: Every execution of MPDA produces the "womenpessimal" stable matching: every woman is matched to her worst valid partner.


## Men-Optimal Stable Matching

- Theorem: Every execution of MPDA returns the menoptimal stable matching.
- Proof by contradiction:
> Let $S=$ matching returned by MPDA.
$>m \leftarrow$ first man rejected by $\operatorname{best}(m)=w$
$>m^{\prime} \leftarrow$ the more preferred man due to which $w$ rejected $m$
$>w$ is valid for $m$, so ( $m, w$ ) part of stable matching $S^{\prime}$
$>w^{\prime} \leftarrow$ woman $m^{\prime}$ is matched to in $S^{\prime}$
> We show that $S^{\prime}$ cannot be stable because ( $m^{\prime}, w$ ) is a blocking pair.


## Men-Optimal Stable Matching

- Theorem: Every execution of MPDA returns the menoptimal stable matching.
- Proof by contradiction:



## Strategyproofness

- Theorem: MPDA is strategyproof for men.
> We'll skip the proof of this.
> Actually, it is group-strategyproof.
- But the women might gain by misreporting.
- Theorem: No algorithm for the stable matching problem is strategyproof for both men and women.


## Women-Proposing Version

- Women-Proposing Deferred Acceptance (WPDA)
> Just flip the roles of men and women
> Strategyproof for women, not strategyproof for men
> Returns the women-optimal and men-pessimal stable matching


## Extensions

- Unacceptable matches
> Allow every agent to report a partial ranking
> If woman $w$ does not include man $m$ in her preference list, it means she would rather be unmatched than matched with $m$. And vice versa.
> ( $m, w$ ) is blocking if each prefers the other over their current state (matched with another partner or unmatched)
> Just $m$ (or just $w$ ) can also be blocking if they prefer being unmatched than be matched to their current partner
- Magically, DA still produces a stable matching.


## Extensions

- Resident Matching (or College Admission)
> Men $\rightarrow$ residents (or students)
> Women $\rightarrow$ hospitals (or colleges)
> Each side has a ranked preference over the other side
> But each hospital (or college) $q$ can accept $c_{q}>1$ residents (or students)
> Many-to-one matching
- An extension of Deferred Acceptance works
> Resident-proposing (resp. hospital-proposing) results in residentoptimal (resp. hospital-optimal) stable matching


## Extensions

- For ~20 years, most people thought that these problems are very similar to the stable marriage problem
- Roth [1985] shows:
> No stable matching algorithm is strategyproof for hospitals (or colleges).


## Extensions

- Roommate Matching
> Still one-to-one matching
> But no partition into men and women
- "Generalizing from bipartite graphs to general graphs"
> Each of $n$ agents submits a ranking over the other $n-1$ agents
- Unfortunately, there are instances where no stable matching exist.
> A variant of DA can still find a stable matching if it exists.
> Due to Irving [1985]


## NRMP: Matching in Practice

- 1940s: Decentralized resident-hospital matching
> Markets "unralveled", offers came earlier and earlier, quality of matches decreased
- 1950s: NRMP introduces centralized "clearinghouse"
- 1960s: Gale-Shapley introduce DA
- 1984: Al Roth studies NRMP algorithm, finds it is really a version of DA!
- 1970s: Couples increasingly don't use NRMP
- 1998: NRMP implements matching with couple constraints (stable matchings may not exist anymore...)
- More recently, DA applied to college admissions

